Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.117.8.1
      1 /*	$NetBSD: pmap.h,v 1.117.8.1 2016/11/04 14:49:01 pgoyette Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 /*
     29  * Copyright (c) 2001 Wasabi Systems, Inc.
     30  * All rights reserved.
     31  *
     32  * Written by Frank van der Linden for Wasabi Systems, Inc.
     33  *
     34  * Redistribution and use in source and binary forms, with or without
     35  * modification, are permitted provided that the following conditions
     36  * are met:
     37  * 1. Redistributions of source code must retain the above copyright
     38  *    notice, this list of conditions and the following disclaimer.
     39  * 2. Redistributions in binary form must reproduce the above copyright
     40  *    notice, this list of conditions and the following disclaimer in the
     41  *    documentation and/or other materials provided with the distribution.
     42  * 3. All advertising materials mentioning features or use of this software
     43  *    must display the following acknowledgement:
     44  *      This product includes software developed for the NetBSD Project by
     45  *      Wasabi Systems, Inc.
     46  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     47  *    or promote products derived from this software without specific prior
     48  *    written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     52  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     53  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     60  * POSSIBILITY OF SUCH DAMAGE.
     61  */
     62 
     63 #ifndef	_I386_PMAP_H_
     64 #define	_I386_PMAP_H_
     65 
     66 #if defined(_KERNEL_OPT)
     67 #include "opt_user_ldt.h"
     68 #include "opt_xen.h"
     69 #endif
     70 
     71 #include <sys/atomic.h>
     72 
     73 #include <i386/pte.h>
     74 #include <machine/segments.h>
     75 #if defined(_KERNEL)
     76 #include <machine/cpufunc.h>
     77 #endif
     78 
     79 #include <uvm/uvm_object.h>
     80 #ifdef XEN
     81 #include <xen/xenfunc.h>
     82 #include <xen/xenpmap.h>
     83 #endif /* XEN */
     84 
     85 /*
     86  * see pte.h for a description of i386 MMU terminology and hardware
     87  * interface.
     88  *
     89  * a pmap describes a processes' 4GB virtual address space.  when PAE
     90  * is not in use, this virtual address space can be broken up into 1024 4MB
     91  * regions which are described by PDEs in the PDP.  the PDEs are defined as
     92  * follows:
     93  *
     94  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
     95  * (the following assumes that KERNBASE is 0xc0000000)
     96  *
     97  * PDE#s	VA range		usage
     98  * 0->766	0x0 -> 0xbfc00000	user address space
     99  * 767		0xbfc00000->		recursive mapping of PDP (used for
    100  *			0xc0000000	linear mapping of PTPs)
    101  * 768->1023	0xc0000000->		kernel address space (constant
    102  *			0xffc00000	across all pmap's/processes)
    103  *			<end>
    104  *
    105  *
    106  * note: a recursive PDP mapping provides a way to map all the PTEs for
    107  * a 4GB address space into a linear chunk of virtual memory.  in other
    108  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
    109  * area.  the PTE for page 1 is the second int.  the very last int in the
    110  * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
    111  * address).
    112  *
    113  * all pmap's PD's must have the same values in slots 768->1023 so that
    114  * the kernel is always mapped in every process.  these values are loaded
    115  * into the PD at pmap creation time.
    116  *
    117  * at any one time only one pmap can be active on a processor.  this is
    118  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
    119  * will have all its PTEs mapped into memory at the recursive mapping
    120  * point (slot #767 as show above).  when the pmap code wants to find the
    121  * PTE for a virtual address, all it has to do is the following:
    122  *
    123  * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
    124  *                = 0xbfc00000 + (VA / 4096) * 4
    125  *
    126  * what happens if the pmap layer is asked to perform an operation
    127  * on a pmap that is not the one which is currently active?  in that
    128  * case we temporarily load this pmap, perform the operation, and mark
    129  * the currently active one as pending lazy reload.
    130  *
    131  * the following figure shows the effects of the recursive PDP mapping:
    132  *
    133  *   PDP (%cr3)
    134  *   +----+
    135  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    136  *   |    |
    137  *   |    |
    138  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    139  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
    140  *   |    |
    141  *   +----+
    142  *
    143  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    144  *
    145  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    146  * PTP:
    147  *
    148  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    149  *   +----+
    150  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    151  *   |    |
    152  *   |    |
    153  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
    154  *   | 768| -> maps contents of first kernel PTP
    155  *   |    |
    156  *   |1023|
    157  *   +----+
    158  *
    159  * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
    160  * defined as "PDP_BASE".... within that mapping there are two
    161  * defines:
    162  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    163  *      which points back to itself.
    164  *
    165  * - PAE support -
    166  * ---------------
    167  *
    168  * PAE adds another layer of indirection during address translation, breaking
    169  * up the translation process in 3 different levels:
    170  * - L3 page directory, containing 4 * 64-bits addresses (index determined by
    171  * bits [31:30] from the virtual address). This breaks up the address space
    172  * in 4 1GB regions.
    173  * - the PD (L2), containing 512 64-bits addresses, breaking each L3 region
    174  * in 512 * 2MB regions.
    175  * - the PT (L1), also containing 512 64-bits addresses (at L1, the size of
    176  * the pages is still 4K).
    177  *
    178  * The kernel virtual space is mapped by the last entry in the L3 page,
    179  * the first 3 entries mapping the user VA space.
    180  *
    181  * Because the L3 has only 4 entries of 1GB each, we can't use recursive
    182  * mappings at this level for PDP_PDE (this would eat up 2 of the 4GB
    183  * virtual space). There are also restrictions imposed by Xen on the
    184  * last entry of the L3 PD (reference count to this page cannot be
    185  * bigger than 1), which makes it hard to use one L3 page per pmap to
    186  * switch between pmaps using %cr3.
    187  *
    188  * As such, each CPU gets its own L3 page that is always loaded into its %cr3
    189  * (ci_pae_l3_pd in the associated cpu_info struct). We claim that the VM has
    190  * only a 2-level PTP (similar to the non-PAE case). L2 PD is now 4 contiguous
    191  * pages long (corresponding to the 4 entries of the L3), and the different
    192  * index/slots (like PDP_PDE) are adapted accordingly.
    193  *
    194  * Kernel space remains in L3[3], L3[0-2] maps the user VA space. Switching
    195  * between pmaps consists in modifying the first 3 entries of the CPU's L3 page.
    196  *
    197  * PTE_BASE will need 4 entries in the L2 PD pages to map the L2 pages
    198  * recursively.
    199  *
    200  * In addition, for Xen, we can't recursively map L3[3] (Xen wants the ref
    201  * count on this page to be exactly one), so we use a shadow PD page for
    202  * the last L2 PD. The shadow page could be static too, but to make pm_pdir[]
    203  * contiguous we'll allocate/copy one page per pmap.
    204  */
    205 
    206 /*
    207  * Mask to get rid of the sign-extended part of addresses.
    208  */
    209 #define VA_SIGN_MASK		0
    210 #define VA_SIGN_NEG(va)		((va) | VA_SIGN_MASK)
    211 /*
    212  * XXXfvdl this one's not right.
    213  */
    214 #define VA_SIGN_POS(va)		((va) & ~VA_SIGN_MASK)
    215 
    216 /*
    217  * the following defines identify the slots used as described above.
    218  */
    219 #ifdef PAE
    220 #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-4) /* 1532: for recursive PDP map */
    221 #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)   /* 1536: start of kernel space */
    222 #else /* PAE */
    223 #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */
    224 #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)   /* 768: start of kernel space */
    225 #endif /* PAE */
    226 
    227 #define	L2_SLOT_KERNBASE L2_SLOT_KERN
    228 
    229 #define PDIR_SLOT_KERN	L2_SLOT_KERN
    230 #define PDIR_SLOT_PTE	L2_SLOT_PTE
    231 
    232 /*
    233  * the following defines give the virtual addresses of various MMU
    234  * data structures:
    235  * PTE_BASE: the base VA of the linear PTE mappings
    236  * PDP_BASE: the base VA of the recursive mapping of the PDP
    237  * PDP_PDE: the VA of the PDE that points back to the PDP
    238  */
    239 
    240 #define PTE_BASE  ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2))
    241 
    242 #define L1_BASE		PTE_BASE
    243 
    244 #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
    245 
    246 #define PDP_PDE		(L2_BASE + PDIR_SLOT_PTE)
    247 
    248 #define PDP_BASE	L2_BASE
    249 
    250 /* largest value (-1 for APTP space) */
    251 #define NKL2_MAX_ENTRIES	(NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
    252 #define NKL1_MAX_ENTRIES	(unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
    253 
    254 #define NKL2_KIMG_ENTRIES	0	/* XXX unused */
    255 
    256 #define NKL2_START_ENTRIES	0	/* XXX computed on runtime */
    257 #define NKL1_START_ENTRIES	0	/* XXX unused */
    258 
    259 #ifndef XEN
    260 #define NTOPLEVEL_PDES		(PAGE_SIZE * PDP_SIZE / (sizeof (pd_entry_t)))
    261 #else	/* !XEN */
    262 #ifdef  PAE
    263 #define NTOPLEVEL_PDES		1964	/* 1964-2047 reserved by Xen */
    264 #else	/* PAE */
    265 #define NTOPLEVEL_PDES		1008	/* 1008-1023 reserved by Xen */
    266 #endif	/* PAE */
    267 #endif  /* !XEN */
    268 #define NPDPG			(PAGE_SIZE / sizeof (pd_entry_t))
    269 
    270 #define PTP_MASK_INITIALIZER	{ L1_FRAME, L2_FRAME }
    271 #define PTP_SHIFT_INITIALIZER	{ L1_SHIFT, L2_SHIFT }
    272 #define NKPTP_INITIALIZER	{ NKL1_START_ENTRIES, NKL2_START_ENTRIES }
    273 #define NKPTPMAX_INITIALIZER	{ NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
    274 #define NBPD_INITIALIZER	{ NBPD_L1, NBPD_L2 }
    275 #define PDES_INITIALIZER	{ L2_BASE }
    276 
    277 #define PTP_LEVELS	2
    278 
    279 /*
    280  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    281  */
    282 
    283 #define PG_W		PG_AVAIL1	/* "wired" mapping */
    284 #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
    285 #define PG_X		PG_AVAIL3	/* executable mapping */
    286 
    287 /*
    288  * Number of PTE's per cache line.  4 byte pte, 32-byte cache line
    289  * Used to avoid false sharing of cache lines.
    290  */
    291 #ifdef PAE
    292 #define NPTECL		4
    293 #else
    294 #define NPTECL		8
    295 #endif
    296 
    297 #include <x86/pmap.h>
    298 
    299 #ifndef XEN
    300 #define pmap_pa2pte(a)			(a)
    301 #define pmap_pte2pa(a)			((a) & PG_FRAME)
    302 #define pmap_pte_set(p, n)		do { *(p) = (n); } while (0)
    303 #define pmap_pte_flush()		/* nothing */
    304 
    305 #ifdef PAE
    306 #define pmap_pte_cas(p, o, n)		atomic_cas_64((p), (o), (n))
    307 #define pmap_pte_testset(p, n)		\
    308     atomic_swap_64((volatile uint64_t *)p, n)
    309 #define pmap_pte_setbits(p, b)		\
    310     atomic_or_64((volatile uint64_t *)p, b)
    311 #define pmap_pte_clearbits(p, b)	\
    312     atomic_and_64((volatile uint64_t *)p, ~(b))
    313 #else /* PAE */
    314 #define pmap_pte_cas(p, o, n)		atomic_cas_32((p), (o), (n))
    315 #define pmap_pte_testset(p, n)		\
    316     atomic_swap_ulong((volatile unsigned long *)p, n)
    317 #define pmap_pte_setbits(p, b)		\
    318     atomic_or_ulong((volatile unsigned long *)p, b)
    319 #define pmap_pte_clearbits(p, b)	\
    320     atomic_and_ulong((volatile unsigned long *)p, ~(b))
    321 #endif /* PAE */
    322 
    323 #else /* XEN */
    324 extern kmutex_t pte_lock;
    325 
    326 static __inline pt_entry_t
    327 pmap_pa2pte(paddr_t pa)
    328 {
    329 	return (pt_entry_t)xpmap_ptom_masked(pa);
    330 }
    331 
    332 static __inline paddr_t
    333 pmap_pte2pa(pt_entry_t pte)
    334 {
    335 	return xpmap_mtop_masked(pte & PG_FRAME);
    336 }
    337 static __inline void
    338 pmap_pte_set(pt_entry_t *pte, pt_entry_t npte)
    339 {
    340 	int s = splvm();
    341 	xpq_queue_pte_update(xpmap_ptetomach(pte), npte);
    342 	splx(s);
    343 }
    344 
    345 static __inline pt_entry_t
    346 pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n)
    347 {
    348 	pt_entry_t opte;
    349 
    350 	mutex_enter(&pte_lock);
    351 	opte = *ptep;
    352 	if (opte == o) {
    353 		xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n);
    354 		xpq_flush_queue();
    355 	}
    356 	mutex_exit(&pte_lock);
    357 	return opte;
    358 }
    359 
    360 static __inline pt_entry_t
    361 pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte)
    362 {
    363 	pt_entry_t opte;
    364 
    365 	mutex_enter(&pte_lock);
    366 	opte = *pte;
    367 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    368 	    npte);
    369 	xpq_flush_queue();
    370 	mutex_exit(&pte_lock);
    371 	return opte;
    372 }
    373 
    374 static __inline void
    375 pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits)
    376 {
    377 	mutex_enter(&pte_lock);
    378 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits);
    379 	xpq_flush_queue();
    380 	mutex_exit(&pte_lock);
    381 }
    382 
    383 static __inline void
    384 pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits)
    385 {
    386 	mutex_enter(&pte_lock);
    387 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    388 	    (*pte) & ~bits);
    389 	xpq_flush_queue();
    390 	mutex_exit(&pte_lock);
    391 }
    392 
    393 static __inline void
    394 pmap_pte_flush(void)
    395 {
    396 	int s = splvm();
    397 	xpq_flush_queue();
    398 	splx(s);
    399 }
    400 
    401 #endif
    402 
    403 struct vm_map;
    404 struct trapframe;
    405 struct pcb;
    406 
    407 int	pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *);
    408 
    409 #include <x86/pmap_pv.h>
    410 
    411 #define	__HAVE_VM_PAGE_MD
    412 #define	VM_MDPAGE_INIT(pg) \
    413 	memset(&(pg)->mdpage, 0, sizeof((pg)->mdpage)); \
    414 	PMAP_PAGE_INIT(&(pg)->mdpage.mp_pp)
    415 
    416 struct vm_page_md {
    417 	struct pmap_page mp_pp;
    418 };
    419 
    420 #endif	/* _I386_PMAP_H_ */
    421