pmap.h revision 1.40 1 /* $NetBSD: pmap.h,v 1.40 1999/06/17 00:12:12 thorpej Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgment:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * pmap.h: see pmap.c for the history of this pmap module.
37 */
38
39 #ifndef _I386_PMAP_H_
40 #define _I386_PMAP_H_
41
42 #if defined(_KERNEL) && !defined(_LKM)
43 #include "opt_user_ldt.h"
44 #endif
45
46 #include <machine/cpufunc.h>
47 #include <machine/pte.h>
48 #include <machine/segments.h>
49 #include <uvm/uvm_object.h>
50
51 /*
52 * see pte.h for a description of i386 MMU terminology and hardware
53 * interface.
54 *
55 * a pmap describes a processes' 4GB virtual address space. this
56 * virtual address space can be broken up into 1024 4MB regions which
57 * are described by PDEs in the PDP. the PDEs are defined as follows:
58 *
59 * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
60 * (the following assumes that KERNBASE is 0xf0000000)
61 *
62 * PDE#s VA range usage
63 * 0->959 0x0 -> 0xefc00000 user address space, note that the
64 * max user address is 0xefbfe000
65 * the final two pages in the last 4MB
66 * used to be reserved for the UAREA
67 * but now are no longer used
68 * 959 0xefc00000-> recursive mapping of PDP (used for
69 * 0xf0000000 linear mapping of PTPs)
70 * 960->1023 0xf0000000-> kernel address space (constant
71 * 0xffc00000 across all pmap's/processes)
72 * 1023 0xffc00000-> "alternate" recursive PDP mapping
73 * <end> (for other pmaps)
74 *
75 *
76 * note: a recursive PDP mapping provides a way to map all the PTEs for
77 * a 4GB address space into a linear chunk of virtual memory. in other
78 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
79 * area. the PTE for page 1 is the second int. the very last int in the
80 * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
81 * address).
82 *
83 * all pmap's PD's must have the same values in slots 960->1023 so that
84 * the kernel is always mapped in every process. these values are loaded
85 * into the PD at pmap creation time.
86 *
87 * at any one time only one pmap can be active on a processor. this is
88 * the pmap whose PDP is pointed to by processor register %cr3. this pmap
89 * will have all its PTEs mapped into memory at the recursive mapping
90 * point (slot #959 as show above). when the pmap code wants to find the
91 * PTE for a virtual address, all it has to do is the following:
92 *
93 * address of PTE = (959 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
94 * = 0xefc00000 + (VA /4096) * 4
95 *
96 * what happens if the pmap layer is asked to perform an operation
97 * on a pmap that is not the one which is currently active? in that
98 * case we take the PA of the PDP of non-active pmap and put it in
99 * slot 1023 of the active pmap. this causes the non-active pmap's
100 * PTEs to get mapped in the final 4MB of the 4GB address space
101 * (e.g. starting at 0xffc00000).
102 *
103 * the following figure shows the effects of the recursive PDP mapping:
104 *
105 * PDP (%cr3)
106 * +----+
107 * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
108 * | |
109 * | |
110 * | 959| -> points back to PDP (%cr3) mapping VA 0xefc00000 -> 0xf0000000
111 * | 960| -> first kernel PTP (maps 0xf0000000 -> 0xf0400000)
112 * | |
113 * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
114 * +----+
115 *
116 * note that the PDE#959 VA (0xefc00000) is defined as "PTE_BASE"
117 * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
118 *
119 * starting at VA 0xefc00000 the current active PDP (%cr3) acts as a
120 * PTP:
121 *
122 * PTP#959 == PDP(%cr3) => maps VA 0xefc00000 -> 0xf0000000
123 * +----+
124 * | 0| -> maps the contents of PTP#0 at VA 0xefc00000->0xefc01000
125 * | |
126 * | |
127 * | 959| -> maps contents of PTP#959 (the PDP) at VA 0xeffbf000
128 * | 960| -> maps contents of first kernel PTP
129 * | |
130 * |1023|
131 * +----+
132 *
133 * note that mapping of the PDP at PTP#959's VA (0xeffbf000) is
134 * defined as "PDP_BASE".... within that mapping there are two
135 * defines:
136 * "PDP_PDE" (0xeffbfefc) is the VA of the PDE in the PDP
137 * which points back to itself.
138 * "APDP_PDE" (0xeffbfffc) is the VA of the PDE in the PDP which
139 * establishes the recursive mapping of the alternate pmap.
140 * to set the alternate PDP, one just has to put the correct
141 * PA info in *APDP_PDE.
142 *
143 * note that in the APTE_BASE space, the APDP appears at VA
144 * "APDP_BASE" (0xfffff000).
145 */
146
147 /*
148 * the following defines identify the slots used as described above.
149 */
150
151 #define PDSLOT_PTE ((KERNBASE/NBPD)-1) /* 959: for recursive PDP map */
152 #define PDSLOT_KERN (KERNBASE/NBPD) /* 960: start of kernel space */
153 #define PDSLOT_APTE ((unsigned)1023) /* 1023: alternative recursive slot */
154
155 /*
156 * the following defines give the virtual addresses of various MMU
157 * data structures:
158 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
159 * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
160 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
161 */
162
163 #define PTE_BASE ((pt_entry_t *) (PDSLOT_PTE * NBPD) )
164 #define APTE_BASE ((pt_entry_t *) (PDSLOT_APTE * NBPD) )
165 #define PDP_BASE ((pd_entry_t *) (((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)) )
166 #define APDP_BASE ((pd_entry_t *) (((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)) )
167 #define PDP_PDE (PDP_BASE + PDSLOT_PTE)
168 #define APDP_PDE (PDP_BASE + PDSLOT_APTE)
169
170 /*
171 * XXXCDC: tmp xlate from old names:
172 * PTDPTDI -> PDSLOT_PTE
173 * KPTDI -> PDSLOT_KERN
174 * APTDPTDI -> PDSLOT_APTE
175 */
176
177 /*
178 * the follow define determines how many PTPs should be set up for the
179 * kernel by locore.s at boot time. this should be large enough to
180 * get the VM system running. once the VM system is running, the
181 * pmap module can add more PTPs to the kernel area on demand.
182 */
183
184 #ifndef NKPTP
185 #define NKPTP 4 /* 16MB to start */
186 #endif
187 #define NKPTP_MIN 4 /* smallest value we allow */
188 #define NKPTP_MAX (1024 - (KERNBASE/NBPD) - 1)
189 /* largest value (-1 for APTP space) */
190
191 /*
192 * various address macros
193 *
194 * vtopte: return a pointer to the PTE mapping a VA
195 * kvtopte: same as above (takes a KVA, but doesn't matter with this pmap)
196 * ptetov: given a pointer to a PTE, return the VA that it maps
197 * vtophys: translate a VA to the PA mapped to it
198 *
199 * plus alternative versions of the above
200 */
201
202 #define vtopte(VA) (PTE_BASE + i386_btop(VA))
203 #define kvtopte(VA) vtopte(VA)
204 #define ptetov(PT) (i386_ptob(PT - PTE_BASE))
205 #define vtophys(VA) ((*vtopte(VA) & PG_FRAME) | ((unsigned)(VA) & ~PG_FRAME))
206 #define avtopte(VA) (APTE_BASE + i386_btop(VA))
207 #define ptetoav(PT) (i386_ptob(PT - APTE_BASE))
208 #define avtophys(VA) ((*avtopte(VA) & PG_FRAME) | ((unsigned)(VA) & ~PG_FRAME))
209
210 /*
211 * pdei/ptei: generate index into PDP/PTP from a VA
212 */
213 #define pdei(VA) (((VA) & PD_MASK) >> PDSHIFT)
214 #define ptei(VA) (((VA) & PT_MASK) >> PGSHIFT)
215
216 /*
217 * PTP macros:
218 * a PTP's index is the PD index of the PDE that points to it
219 * a PTP's offset is the byte-offset in the PTE space that this PTP is at
220 * a PTP's VA is the first VA mapped by that PTP
221 *
222 * note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
223 * NBPD == number of bytes a PTP can map (4MB)
224 */
225
226 #define ptp_i2o(I) ((I) * NBPG) /* index => offset */
227 #define ptp_o2i(O) ((O) / NBPG) /* offset => index */
228 #define ptp_i2v(I) ((I) * NBPD) /* index => VA */
229 #define ptp_v2i(V) ((V) / NBPD) /* VA => index (same as pdei) */
230
231 /*
232 * PG_AVAIL usage: we make use of the ignored bits of the PTE
233 */
234
235 #define PG_W PG_AVAIL1 /* "wired" mapping */
236 #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
237 /* PG_AVAIL3 not used */
238
239 #ifdef _KERNEL
240 /*
241 * pmap data structures: see pmap.c for details of locking.
242 */
243
244 struct pmap;
245 typedef struct pmap *pmap_t;
246
247 /*
248 * we maintain a list of all non-kernel pmaps
249 */
250
251 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
252
253 /*
254 * the pmap structure
255 *
256 * note that the pm_obj contains the simple_lock, the reference count,
257 * page list, and number of PTPs within the pmap.
258 */
259
260 struct pmap {
261 struct uvm_object pm_obj; /* object (lck by object lock) */
262 #define pm_lock pm_obj.vmobjlock
263 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
264 pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
265 u_int32_t pm_pdirpa; /* PA of PD (read-only after create) */
266 struct vm_page *pm_ptphint; /* pointer to a random PTP in our pmap */
267 struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
268
269 int pm_flags; /* see below */
270
271 union descriptor *pm_ldt; /* user-set LDT */
272 int pm_ldt_len; /* number of LDT entries */
273 int pm_ldt_sel; /* LDT selector */
274 };
275
276 /* pm_flags */
277 #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
278
279 /*
280 * for each managed physical page we maintain a list of <PMAP,VA>'s
281 * which it is mapped at. the list is headed by a pv_head structure.
282 * there is one pv_head per managed phys page (allocated at boot time).
283 * the pv_head structure points to a list of pv_entry structures (each
284 * describes one mapping).
285 */
286
287 struct pv_entry;
288
289 struct pv_head {
290 simple_lock_data_t pvh_lock; /* locks every pv on this list */
291 struct pv_entry *pvh_list; /* head of list (locked by pvh_lock) */
292 };
293
294 struct pv_entry { /* all fields locked by their pvh_lock */
295 struct pv_entry *pv_next; /* next entry */
296 struct pmap *pv_pmap; /* the pmap */
297 vaddr_t pv_va; /* the virtual address */
298 struct vm_page *pv_ptp; /* the vm_page of the PTP */
299 };
300
301 /*
302 * pv_entrys are dynamically allocated in chunks from a single page.
303 * we keep track of how many pv_entrys are in use for each page and
304 * we can free pv_entry pages if needed. there is one lock for the
305 * entire allocation system.
306 */
307
308 struct pv_page_info {
309 TAILQ_ENTRY(pv_page) pvpi_list;
310 struct pv_entry *pvpi_pvfree;
311 int pvpi_nfree;
312 };
313
314 /*
315 * number of pv_entry's in a pv_page
316 * (note: won't work on systems where NPBG isn't a constant)
317 */
318
319 #define PVE_PER_PVPAGE ( (NBPG - sizeof(struct pv_page_info)) / \
320 sizeof(struct pv_entry) )
321
322 /*
323 * a pv_page: where pv_entrys are allocated from
324 */
325
326 struct pv_page {
327 struct pv_page_info pvinfo;
328 struct pv_entry pvents[PVE_PER_PVPAGE];
329 };
330
331 /*
332 * pmap_remove_record: a record of VAs that have been unmapped, used to
333 * flush TLB. if we have more than PMAP_RR_MAX then we stop recording.
334 */
335
336 #define PMAP_RR_MAX 16 /* max of 16 pages (64K) */
337
338 struct pmap_remove_record {
339 int prr_npages;
340 vaddr_t prr_vas[PMAP_RR_MAX];
341 };
342
343 /*
344 * pmap_transfer_location: used to pass the current location in the
345 * pmap between pmap_transfer and pmap_transfer_ptes [e.g. during
346 * a pmap_copy].
347 */
348
349 struct pmap_transfer_location {
350 vaddr_t addr; /* the address (page-aligned) */
351 pt_entry_t *pte; /* the PTE that maps address */
352 struct vm_page *ptp; /* the PTP that the PTE lives in */
353 };
354
355 /*
356 * global kernel variables
357 */
358
359 /* PTDpaddr: is the physical address of the kernel's PDP */
360 extern u_long PTDpaddr;
361
362 extern struct pmap kernel_pmap_store; /* kernel pmap */
363 extern int nkpde; /* current # of PDEs for kernel */
364 extern int pmap_pg_g; /* do we support PG_G? */
365
366 /*
367 * macros
368 */
369
370 #define pmap_kernel() (&kernel_pmap_store)
371 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
372 #define pmap_update() tlbflush()
373
374 #define pmap_clear_modify(pg) pmap_change_attrs(pg, 0, PG_M)
375 #define pmap_clear_reference(pg) pmap_change_attrs(pg, 0, PG_U)
376 #define pmap_copy(DP,SP,D,L,S) pmap_transfer(DP,SP,D,L,S, FALSE)
377 #define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
378 #define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
379 #define pmap_move(DP,SP,D,L,S) pmap_transfer(DP,SP,D,L,S, TRUE)
380 #define pmap_phys_address(ppn) i386_ptob(ppn)
381 #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
382
383
384 /*
385 * prototypes
386 */
387
388 void pmap_activate __P((struct proc *));
389 void pmap_bootstrap __P((vaddr_t));
390 boolean_t pmap_change_attrs __P((struct vm_page *, int, int));
391 void pmap_deactivate __P((struct proc *));
392 static void pmap_kenter_pa __P((vaddr_t, paddr_t, vm_prot_t));
393 static void pmap_page_protect __P((struct vm_page *, vm_prot_t));
394 void pmap_page_remove __P((struct vm_page *));
395 static void pmap_protect __P((struct pmap *, vaddr_t,
396 vaddr_t, vm_prot_t));
397 void pmap_remove __P((struct pmap *, vaddr_t, vaddr_t));
398 boolean_t pmap_test_attrs __P((struct vm_page *, int));
399 void pmap_transfer __P((struct pmap *, struct pmap *, vaddr_t,
400 vsize_t, vaddr_t, boolean_t));
401 static void pmap_update_pg __P((vaddr_t));
402 static void pmap_update_2pg __P((vaddr_t,vaddr_t));
403 void pmap_write_protect __P((struct pmap *, vaddr_t,
404 vaddr_t, vm_prot_t));
405
406 vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */
407
408 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
409
410 /*
411 * inline functions
412 */
413
414 /*
415 * pmap_update_pg: flush one page from the TLB (or flush the whole thing
416 * if hardware doesn't support one-page flushing)
417 */
418
419 __inline static void pmap_update_pg(va)
420
421 vaddr_t va;
422
423 {
424 #if defined(I386_CPU)
425 if (cpu_class == CPUCLASS_386)
426 pmap_update();
427 else
428 #endif
429 invlpg((u_int) va);
430 }
431
432 /*
433 * pmap_update_2pg: flush two pages from the TLB
434 */
435
436 __inline static void pmap_update_2pg(va, vb)
437
438 vaddr_t va, vb;
439
440 {
441 #if defined(I386_CPU)
442 if (cpu_class == CPUCLASS_386)
443 pmap_update();
444 else
445 #endif
446 {
447 invlpg((u_int) va);
448 invlpg((u_int) vb);
449 }
450 }
451
452 /*
453 * pmap_page_protect: change the protection of all recorded mappings
454 * of a managed page
455 *
456 * => this function is a frontend for pmap_page_remove/pmap_change_attrs
457 * => we only have to worry about making the page more protected.
458 * unprotecting a page is done on-demand at fault time.
459 */
460
461 __inline static void pmap_page_protect(pg, prot)
462
463 struct vm_page *pg;
464 vm_prot_t prot;
465
466 {
467 if ((prot & VM_PROT_WRITE) == 0) {
468 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
469 (void) pmap_change_attrs(pg, PG_RO, PG_RW);
470 } else {
471 pmap_page_remove(pg);
472 }
473 }
474 }
475
476 /*
477 * pmap_protect: change the protection of pages in a pmap
478 *
479 * => this function is a frontend for pmap_remove/pmap_write_protect
480 * => we only have to worry about making the page more protected.
481 * unprotecting a page is done on-demand at fault time.
482 */
483
484 __inline static void pmap_protect(pmap, sva, eva, prot)
485
486 struct pmap *pmap;
487 vaddr_t sva, eva;
488 vm_prot_t prot;
489
490 {
491 if ((prot & VM_PROT_WRITE) == 0) {
492 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
493 pmap_write_protect(pmap, sva, eva, prot);
494 } else {
495 pmap_remove(pmap, sva, eva);
496 }
497 }
498 }
499
500 /*
501 * pmap_kenter_pa: enter a kernel mapping without R/M (pv_entry) tracking
502 *
503 * => no need to lock anything, assume va is already allocated
504 * => should be faster than normal pmap enter function
505 */
506
507 __inline static void pmap_kenter_pa(va, pa, prot)
508
509 vaddr_t va;
510 paddr_t pa;
511 vm_prot_t prot;
512
513 {
514 struct pmap *pm = pmap_kernel();
515 pt_entry_t *pte, opte;
516 int s;
517
518 s = splimp();
519 simple_lock(&pm->pm_obj.vmobjlock);
520 pm->pm_stats.resident_count++;
521 pm->pm_stats.wired_count++;
522 simple_unlock(&pm->pm_obj.vmobjlock);
523 splx(s);
524
525 pte = vtopte(va);
526 opte = *pte;
527 *pte = pa | ((prot & VM_PROT_WRITE)? PG_RW : PG_RO) |
528 PG_V | pmap_pg_g; /* zap! */
529 if (pmap_valid_entry(opte))
530 pmap_update_pg(va);
531 }
532
533 vaddr_t pmap_map __P((vaddr_t, paddr_t, paddr_t, int));
534
535 #if defined(USER_LDT)
536 void pmap_ldt_cleanup __P((struct proc *));
537 #define PMAP_FORK
538 #endif /* USER_LDT */
539
540 #endif /* _KERNEL */
541 #endif /* _I386_PMAP_H_ */
542