pmap.h revision 1.43.2.10 1 /* $NetBSD: pmap.h,v 1.43.2.10 2001/01/07 22:12:47 sommerfeld Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgment:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * pmap.h: see pmap.c for the history of this pmap module.
37 */
38
39 #ifndef _I386_PMAP_H_
40 #define _I386_PMAP_H_
41
42 #if defined(_KERNEL) && !defined(_LKM)
43 #include "opt_user_ldt.h"
44 #include "opt_largepages.h"
45 #endif
46
47 #include <machine/cpufunc.h>
48 #include <machine/pte.h>
49 #include <machine/segments.h>
50 #include <uvm/uvm_object.h>
51
52 /*
53 * see pte.h for a description of i386 MMU terminology and hardware
54 * interface.
55 *
56 * a pmap describes a processes' 4GB virtual address space. this
57 * virtual address space can be broken up into 1024 4MB regions which
58 * are described by PDEs in the PDP. the PDEs are defined as follows:
59 *
60 * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
61 * (the following assumes that KERNBASE is 0xc0000000)
62 *
63 * PDE#s VA range usage
64 * 0->766 0x0 -> 0xbfc00000 user address space, note that the
65 * max user address is 0xbfbfe000
66 * the final two pages in the last 4MB
67 * used to be reserved for the UAREA
68 * but now are no longer used
69 * 767 0xbfc00000-> recursive mapping of PDP (used for
70 * 0xc0000000 linear mapping of PTPs)
71 * 768->1023 0xc0000000-> kernel address space (constant
72 * 0xffc00000 across all pmap's/processes)
73 * 1023 0xffc00000-> "alternate" recursive PDP mapping
74 * <end> (for other pmaps)
75 *
76 *
77 * note: a recursive PDP mapping provides a way to map all the PTEs for
78 * a 4GB address space into a linear chunk of virtual memory. in other
79 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
80 * area. the PTE for page 1 is the second int. the very last int in the
81 * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
82 * address).
83 *
84 * all pmap's PD's must have the same values in slots 768->1023 so that
85 * the kernel is always mapped in every process. these values are loaded
86 * into the PD at pmap creation time.
87 *
88 * at any one time only one pmap can be active on a processor. this is
89 * the pmap whose PDP is pointed to by processor register %cr3. this pmap
90 * will have all its PTEs mapped into memory at the recursive mapping
91 * point (slot #767 as show above). when the pmap code wants to find the
92 * PTE for a virtual address, all it has to do is the following:
93 *
94 * address of PTE = (767 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
95 * = 0xbfc00000 + (VA / 4096) * 4
96 *
97 * what happens if the pmap layer is asked to perform an operation
98 * on a pmap that is not the one which is currently active? in that
99 * case we take the PA of the PDP of non-active pmap and put it in
100 * slot 1023 of the active pmap. this causes the non-active pmap's
101 * PTEs to get mapped in the final 4MB of the 4GB address space
102 * (e.g. starting at 0xffc00000).
103 *
104 * the following figure shows the effects of the recursive PDP mapping:
105 *
106 * PDP (%cr3)
107 * +----+
108 * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
109 * | |
110 * | |
111 * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
112 * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xf0400000)
113 * | |
114 * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
115 * +----+
116 *
117 * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
118 * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
119 *
120 * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
121 * PTP:
122 *
123 * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
124 * +----+
125 * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
126 * | |
127 * | |
128 * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbffbf000
129 * | 768| -> maps contents of first kernel PTP
130 * | |
131 * |1023|
132 * +----+
133 *
134 * note that mapping of the PDP at PTP#767's VA (0xbffbf000) is
135 * defined as "PDP_BASE".... within that mapping there are two
136 * defines:
137 * "PDP_PDE" (0xbffbfefc) is the VA of the PDE in the PDP
138 * which points back to itself.
139 * "APDP_PDE" (0xbffbfffc) is the VA of the PDE in the PDP which
140 * establishes the recursive mapping of the alternate pmap.
141 * to set the alternate PDP, one just has to put the correct
142 * PA info in *APDP_PDE.
143 *
144 * note that in the APTE_BASE space, the APDP appears at VA
145 * "APDP_BASE" (0xfffff000).
146 */
147 /* XXX MP should we allocate one APDP_PDE per processor?? */
148
149 /*
150 * the following defines identify the slots used as described above.
151 */
152
153 #define PDSLOT_PTE ((KERNBASE/NBPD)-1) /* 767: for recursive PDP map */
154 #define PDSLOT_KERN (KERNBASE/NBPD) /* 768: start of kernel space */
155 #define PDSLOT_APTE ((unsigned)1023) /* 1023: alternative recursive slot */
156
157 /*
158 * the following defines give the virtual addresses of various MMU
159 * data structures:
160 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
161 * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
162 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
163 */
164
165 #define PTE_BASE ((pt_entry_t *) (PDSLOT_PTE * NBPD) )
166 #define APTE_BASE ((pt_entry_t *) (PDSLOT_APTE * NBPD) )
167 #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)))
168 #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)))
169 #define PDP_PDE (PDP_BASE + PDSLOT_PTE)
170 #define APDP_PDE (PDP_BASE + PDSLOT_APTE)
171
172 /*
173 * XXXCDC: tmp xlate from old names:
174 * PTDPTDI -> PDSLOT_PTE
175 * KPTDI -> PDSLOT_KERN
176 * APTDPTDI -> PDSLOT_APTE
177 */
178
179 /*
180 * the follow define determines how many PTPs should be set up for the
181 * kernel by locore.s at boot time. this should be large enough to
182 * get the VM system running. once the VM system is running, the
183 * pmap module can add more PTPs to the kernel area on demand.
184 */
185
186 #ifndef NKPTP
187 #define NKPTP 4 /* 16MB to start */
188 #endif
189 #define NKPTP_MIN 4 /* smallest value we allow */
190 #define NKPTP_MAX (1024 - (KERNBASE/NBPD) - 1)
191 /* largest value (-1 for APTP space) */
192
193 /*
194 * pdei/ptei: generate index into PDP/PTP from a VA
195 */
196 #define pdei(VA) (((VA) & PD_MASK) >> PDSHIFT)
197 #define ptei(VA) (((VA) & PT_MASK) >> PGSHIFT)
198
199 /*
200 * PTP macros:
201 * a PTP's index is the PD index of the PDE that points to it
202 * a PTP's offset is the byte-offset in the PTE space that this PTP is at
203 * a PTP's VA is the first VA mapped by that PTP
204 *
205 * note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
206 * NBPD == number of bytes a PTP can map (4MB)
207 */
208
209 #define ptp_i2o(I) ((I) * NBPG) /* index => offset */
210 #define ptp_o2i(O) ((O) / NBPG) /* offset => index */
211 #define ptp_i2v(I) ((I) * NBPD) /* index => VA */
212 #define ptp_v2i(V) ((V) / NBPD) /* VA => index (same as pdei) */
213
214 /*
215 * PG_AVAIL usage: we make use of the ignored bits of the PTE
216 */
217
218 #define PG_W PG_AVAIL1 /* "wired" mapping */
219 #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
220 /* PG_AVAIL3 not used */
221
222 /*
223 * Number of PTE's per cache line. 4 byte pte, 32-byte cache line
224 * Used to avoid false sharing of cache lines.
225 */
226 #define NPTECL 8
227
228 #ifdef _KERNEL
229 /*
230 * pmap data structures: see pmap.c for details of locking.
231 */
232
233 struct pmap;
234 typedef struct pmap *pmap_t;
235
236 /*
237 * we maintain a list of all non-kernel pmaps
238 */
239
240 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
241
242 /*
243 * the pmap structure
244 *
245 * note that the pm_obj contains the simple_lock, the reference count,
246 * page list, and number of PTPs within the pmap.
247 *
248 * XXX If we ever support processor numbers higher than 31, we'll have
249 * XXX to rethink the CPU mask.
250 */
251
252 struct pmap {
253 struct uvm_object pm_obj; /* object (lck by object lock) */
254 #define pm_lock pm_obj.vmobjlock
255 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
256 pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
257 u_int32_t pm_pdirpa; /* PA of PD (read-only after create) */
258 struct vm_page *pm_ptphint; /* pointer to a PTP in our pmap */
259 struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
260
261 int pm_flags; /* see below */
262
263 union descriptor *pm_ldt; /* user-set LDT */
264 int pm_ldt_len; /* number of LDT entries */
265 int pm_ldt_sel; /* LDT selector */
266 u_int32_t pm_cpus; /* mask of CPUs using pmap */
267 };
268
269 /* pm_flags */
270 #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
271
272 /*
273 * for each managed physical page we maintain a list of <PMAP,VA>'s
274 * which it is mapped at. the list is headed by a pv_head structure.
275 * there is one pv_head per managed phys page (allocated at boot time).
276 * the pv_head structure points to a list of pv_entry structures (each
277 * describes one mapping).
278 */
279
280 struct pv_entry;
281
282 struct pv_head {
283 simple_lock_data_t pvh_lock; /* locks every pv on this list */
284 struct pv_entry *pvh_list; /* head of list (locked by pvh_lock) */
285 };
286
287 struct pv_entry { /* locked by its list's pvh_lock */
288 struct pv_entry *pv_next; /* next entry */
289 struct pmap *pv_pmap; /* the pmap */
290 vaddr_t pv_va; /* the virtual address */
291 struct vm_page *pv_ptp; /* the vm_page of the PTP */
292 };
293
294 /*
295 * pv_entrys are dynamically allocated in chunks from a single page.
296 * we keep track of how many pv_entrys are in use for each page and
297 * we can free pv_entry pages if needed. there is one lock for the
298 * entire allocation system.
299 */
300
301 struct pv_page_info {
302 TAILQ_ENTRY(pv_page) pvpi_list;
303 struct pv_entry *pvpi_pvfree;
304 int pvpi_nfree;
305 };
306
307 /*
308 * number of pv_entry's in a pv_page
309 * (note: won't work on systems where NPBG isn't a constant)
310 */
311
312 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
313 sizeof(struct pv_entry))
314
315 /*
316 * a pv_page: where pv_entrys are allocated from
317 */
318
319 struct pv_page {
320 struct pv_page_info pvinfo;
321 struct pv_entry pvents[PVE_PER_PVPAGE];
322 };
323
324 /*
325 * global kernel variables
326 */
327
328 /* PTDpaddr: is the physical address of the kernel's PDP */
329 extern u_long PTDpaddr;
330
331 extern struct pmap kernel_pmap_store; /* kernel pmap */
332 extern int nkpde; /* current # of PDEs for kernel */
333 extern int pmap_pg_g; /* do we support PG_G? */
334
335 /*
336 * macros
337 */
338
339 #define pmap_kernel() (&kernel_pmap_store)
340 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
341 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
342 #define pmap_update() /* nothing (yet) */
343
344 #define pmap_clear_modify(pg) pmap_clear_attrs(pg, PG_M)
345 #define pmap_clear_reference(pg) pmap_clear_attrs(pg, PG_U)
346 #define pmap_copy(DP,SP,D,L,S)
347 #define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
348 #define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
349 #define pmap_move(DP,SP,D,L,S)
350 #define pmap_phys_address(ppn) i386_ptob(ppn)
351 #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
352
353
354 /*
355 * prototypes
356 */
357
358 void pmap_activate __P((struct proc *));
359 void pmap_bootstrap __P((vaddr_t));
360 boolean_t pmap_clear_attrs __P((struct vm_page *, int));
361 void pmap_deactivate __P((struct proc *));
362 static void pmap_page_protect __P((struct vm_page *, vm_prot_t));
363 void pmap_page_remove __P((struct vm_page *));
364 static void pmap_protect __P((struct pmap *, vaddr_t,
365 vaddr_t, vm_prot_t));
366 void pmap_remove __P((struct pmap *, vaddr_t, vaddr_t));
367 boolean_t pmap_test_attrs __P((struct vm_page *, int));
368 static void pmap_update_pg __P((vaddr_t));
369 static void pmap_update_2pg __P((vaddr_t,vaddr_t));
370 void pmap_write_protect __P((struct pmap *, vaddr_t,
371 vaddr_t, vm_prot_t));
372
373 vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */
374
375 void pmap_tlb_shootdown __P((pmap_t, vaddr_t, pt_entry_t, int32_t *));
376 void pmap_tlb_shootnow __P((int32_t));
377 void pmap_do_tlb_shootdown __P((struct cpu_info *));
378
379 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
380
381 /*
382 * Do idle page zero'ing uncached to avoid polluting the cache.
383 */
384 boolean_t pmap_zero_page_uncached __P((paddr_t));
385 #define PMAP_PAGEIDLEZERO(pa) pmap_zero_page_uncached((pa))
386
387 /*
388 * inline functions
389 */
390
391 /*
392 * pmap_update_pg: flush one page from the TLB (or flush the whole thing
393 * if hardware doesn't support one-page flushing)
394 */
395
396 __inline static void
397 pmap_update_pg(va)
398 vaddr_t va;
399 {
400 #if defined(I386_CPU)
401 if (cpu_class == CPUCLASS_386)
402 tlbflush();
403 else
404 #endif
405 invlpg((u_int) va);
406 }
407
408 /*
409 * pmap_update_2pg: flush two pages from the TLB
410 */
411
412 __inline static void
413 pmap_update_2pg(va, vb)
414 vaddr_t va, vb;
415 {
416 #if defined(I386_CPU)
417 if (cpu_class == CPUCLASS_386)
418 tlbflush();
419 else
420 #endif
421 {
422 invlpg((u_int) va);
423 invlpg((u_int) vb);
424 }
425 }
426
427 /*
428 * pmap_page_protect: change the protection of all recorded mappings
429 * of a managed page
430 *
431 * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
432 * => we only have to worry about making the page more protected.
433 * unprotecting a page is done on-demand at fault time.
434 */
435
436 __inline static void
437 pmap_page_protect(pg, prot)
438 struct vm_page *pg;
439 vm_prot_t prot;
440 {
441 if ((prot & VM_PROT_WRITE) == 0) {
442 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
443 (void) pmap_clear_attrs(pg, PG_RW);
444 } else {
445 pmap_page_remove(pg);
446 }
447 }
448 }
449
450 /*
451 * pmap_protect: change the protection of pages in a pmap
452 *
453 * => this function is a frontend for pmap_remove/pmap_write_protect
454 * => we only have to worry about making the page more protected.
455 * unprotecting a page is done on-demand at fault time.
456 */
457
458 __inline static void
459 pmap_protect(pmap, sva, eva, prot)
460 struct pmap *pmap;
461 vaddr_t sva, eva;
462 vm_prot_t prot;
463 {
464 if ((prot & VM_PROT_WRITE) == 0) {
465 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
466 pmap_write_protect(pmap, sva, eva, prot);
467 } else {
468 pmap_remove(pmap, sva, eva);
469 }
470 }
471 }
472
473 /*
474 * various address inlines
475 *
476 * vtopte: return a pointer to the PTE mapping a VA, works only for
477 * user and PT addresses
478 *
479 * kvtopte: return a pointer to the PTE mapping a kernel VA
480 */
481
482 #include <lib/libkern/libkern.h>
483
484 static __inline pt_entry_t *
485 vtopte(vaddr_t va)
486 {
487
488 KASSERT(va < (PDSLOT_KERN << PDSHIFT));
489
490 return (PTE_BASE + i386_btop(va));
491 }
492
493 static __inline pt_entry_t *
494 kvtopte(vaddr_t va)
495 {
496
497 KASSERT(va >= (PDSLOT_KERN << PDSHIFT));
498
499 #ifdef LARGEPAGES
500 {
501 pd_entry_t *pde;
502
503 pde = PDP_BASE + pdei(va);
504 if (*pde & PG_PS)
505 return ((pt_entry_t *)pde);
506 }
507 #endif
508
509 return (PTE_BASE + i386_btop(va));
510 }
511
512 paddr_t vtophys __P((vaddr_t));
513 vaddr_t pmap_map __P((vaddr_t, paddr_t, paddr_t, vm_prot_t));
514
515 #if defined(USER_LDT)
516 void pmap_ldt_cleanup __P((struct proc *));
517 #define PMAP_FORK
518 #endif /* USER_LDT */
519
520 #endif /* _KERNEL */
521 #endif /* _I386_PMAP_H_ */
522