pmap.h revision 1.43.2.5 1 /* $NetBSD: pmap.h,v 1.43.2.5 2000/09/06 03:28:35 sommerfeld Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgment:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * pmap.h: see pmap.c for the history of this pmap module.
37 */
38
39 #ifndef _I386_PMAP_H_
40 #define _I386_PMAP_H_
41
42 #if defined(_KERNEL) && !defined(_LKM)
43 #include "opt_user_ldt.h"
44 #endif
45
46 #include <machine/cpufunc.h>
47 #include <machine/pte.h>
48 #include <machine/segments.h>
49 #include <uvm/uvm_object.h>
50
51 /*
52 * see pte.h for a description of i386 MMU terminology and hardware
53 * interface.
54 *
55 * a pmap describes a processes' 4GB virtual address space. this
56 * virtual address space can be broken up into 1024 4MB regions which
57 * are described by PDEs in the PDP. the PDEs are defined as follows:
58 *
59 * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
60 * (the following assumes that KERNBASE is 0xc0000000)
61 *
62 * PDE#s VA range usage
63 * 0->766 0x0 -> 0xbfc00000 user address space, note that the
64 * max user address is 0xbfbfe000
65 * the final two pages in the last 4MB
66 * used to be reserved for the UAREA
67 * but now are no longer used
68 * 767 0xbfc00000-> recursive mapping of PDP (used for
69 * 0xc0000000 linear mapping of PTPs)
70 * 768->1023 0xc0000000-> kernel address space (constant
71 * 0xffc00000 across all pmap's/processes)
72 * 1023 0xffc00000-> "alternate" recursive PDP mapping
73 * <end> (for other pmaps)
74 *
75 *
76 * note: a recursive PDP mapping provides a way to map all the PTEs for
77 * a 4GB address space into a linear chunk of virtual memory. in other
78 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
79 * area. the PTE for page 1 is the second int. the very last int in the
80 * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
81 * address).
82 *
83 * all pmap's PD's must have the same values in slots 768->1023 so that
84 * the kernel is always mapped in every process. these values are loaded
85 * into the PD at pmap creation time.
86 *
87 * at any one time only one pmap can be active on a processor. this is
88 * the pmap whose PDP is pointed to by processor register %cr3. this pmap
89 * will have all its PTEs mapped into memory at the recursive mapping
90 * point (slot #767 as show above). when the pmap code wants to find the
91 * PTE for a virtual address, all it has to do is the following:
92 *
93 * address of PTE = (767 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
94 * = 0xbfc00000 + (VA / 4096) * 4
95 *
96 * what happens if the pmap layer is asked to perform an operation
97 * on a pmap that is not the one which is currently active? in that
98 * case we take the PA of the PDP of non-active pmap and put it in
99 * slot 1023 of the active pmap. this causes the non-active pmap's
100 * PTEs to get mapped in the final 4MB of the 4GB address space
101 * (e.g. starting at 0xffc00000).
102 *
103 * the following figure shows the effects of the recursive PDP mapping:
104 *
105 * PDP (%cr3)
106 * +----+
107 * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
108 * | |
109 * | |
110 * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
111 * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xf0400000)
112 * | |
113 * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
114 * +----+
115 *
116 * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
117 * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
118 *
119 * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
120 * PTP:
121 *
122 * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
123 * +----+
124 * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
125 * | |
126 * | |
127 * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbffbf000
128 * | 768| -> maps contents of first kernel PTP
129 * | |
130 * |1023|
131 * +----+
132 *
133 * note that mapping of the PDP at PTP#959's VA (0xeffbf000) is
134 * defined as "PDP_BASE".... within that mapping there are two
135 * defines:
136 * "PDP_PDE" (0xeffbfefc) is the VA of the PDE in the PDP
137 * which points back to itself.
138 * "APDP_PDE" (0xeffbfffc) is the VA of the PDE in the PDP which
139 * establishes the recursive mapping of the alternate pmap.
140 * to set the alternate PDP, one just has to put the correct
141 * PA info in *APDP_PDE.
142 *
143 * note that in the APTE_BASE space, the APDP appears at VA
144 * "APDP_BASE" (0xfffff000).
145 */
146 /* XXX MP should we allocate one APDP_PDE per processor?? */
147
148 /*
149 * the following defines identify the slots used as described above.
150 */
151
152 #define PDSLOT_PTE ((KERNBASE/NBPD)-1) /* 767: for recursive PDP map */
153 #define PDSLOT_KERN (KERNBASE/NBPD) /* 768: start of kernel space */
154 #define PDSLOT_APTE ((unsigned)1023) /* 1023: alternative recursive slot */
155
156 /*
157 * the following defines give the virtual addresses of various MMU
158 * data structures:
159 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
160 * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
161 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
162 */
163
164 #define PTE_BASE ((pt_entry_t *) (PDSLOT_PTE * NBPD) )
165 #define APTE_BASE ((pt_entry_t *) (PDSLOT_APTE * NBPD) )
166 #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)))
167 #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)))
168 #define PDP_PDE (PDP_BASE + PDSLOT_PTE)
169 #define APDP_PDE (PDP_BASE + PDSLOT_APTE)
170
171 /*
172 * XXXCDC: tmp xlate from old names:
173 * PTDPTDI -> PDSLOT_PTE
174 * KPTDI -> PDSLOT_KERN
175 * APTDPTDI -> PDSLOT_APTE
176 */
177
178 /*
179 * the follow define determines how many PTPs should be set up for the
180 * kernel by locore.s at boot time. this should be large enough to
181 * get the VM system running. once the VM system is running, the
182 * pmap module can add more PTPs to the kernel area on demand.
183 */
184
185 #ifndef NKPTP
186 #define NKPTP 4 /* 16MB to start */
187 #endif
188 #define NKPTP_MIN 4 /* smallest value we allow */
189 #define NKPTP_MAX (1024 - (KERNBASE/NBPD) - 1)
190 /* largest value (-1 for APTP space) */
191
192 /*
193 * various address macros
194 *
195 * vtopte: return a pointer to the PTE mapping a VA
196 * kvtopte: same as above (takes a KVA, but doesn't matter with this pmap)
197 * ptetov: given a pointer to a PTE, return the VA that it maps
198 * vtophys: translate a VA to the PA mapped to it
199 *
200 * plus alternative versions of the above
201 */
202
203 #define vtopte(VA) (PTE_BASE + i386_btop(VA))
204 #define kvtopte(VA) vtopte(VA)
205 #define ptetov(PT) (i386_ptob(PT - PTE_BASE))
206 #define vtophys(VA) ((*vtopte(VA) & PG_FRAME) | \
207 ((unsigned)(VA) & ~PG_FRAME))
208 #define avtopte(VA) (APTE_BASE + i386_btop(VA))
209 #define ptetoav(PT) (i386_ptob(PT - APTE_BASE))
210 #define avtophys(VA) ((*avtopte(VA) & PG_FRAME) | \
211 ((unsigned)(VA) & ~PG_FRAME))
212
213 /*
214 * pdei/ptei: generate index into PDP/PTP from a VA
215 */
216 #define pdei(VA) (((VA) & PD_MASK) >> PDSHIFT)
217 #define ptei(VA) (((VA) & PT_MASK) >> PGSHIFT)
218
219 /*
220 * PTP macros:
221 * a PTP's index is the PD index of the PDE that points to it
222 * a PTP's offset is the byte-offset in the PTE space that this PTP is at
223 * a PTP's VA is the first VA mapped by that PTP
224 *
225 * note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
226 * NBPD == number of bytes a PTP can map (4MB)
227 */
228
229 #define ptp_i2o(I) ((I) * NBPG) /* index => offset */
230 #define ptp_o2i(O) ((O) / NBPG) /* offset => index */
231 #define ptp_i2v(I) ((I) * NBPD) /* index => VA */
232 #define ptp_v2i(V) ((V) / NBPD) /* VA => index (same as pdei) */
233
234 /*
235 * PG_AVAIL usage: we make use of the ignored bits of the PTE
236 */
237
238 #define PG_W PG_AVAIL1 /* "wired" mapping */
239 #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
240 /* PG_AVAIL3 not used */
241
242 /*
243 * Number of PTE's per cache line. 4 byte pte, 32-byte cache line
244 * Used to avoid false sharing of cache lines.
245 */
246 #define NPTECL 8
247
248 #ifdef _KERNEL
249 /*
250 * pmap data structures: see pmap.c for details of locking.
251 */
252
253 struct pmap;
254 typedef struct pmap *pmap_t;
255
256 /*
257 * we maintain a list of all non-kernel pmaps
258 */
259
260 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
261
262 /*
263 * the pmap structure
264 *
265 * note that the pm_obj contains the simple_lock, the reference count,
266 * page list, and number of PTPs within the pmap.
267 */
268
269 struct pmap {
270 struct uvm_object pm_obj; /* object (lck by object lock) */
271 #define pm_lock pm_obj.vmobjlock
272 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
273 pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
274 u_int32_t pm_pdirpa; /* PA of PD (read-only after create) */
275 struct vm_page *pm_ptphint; /* pointer to a PTP in our pmap */
276 struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
277
278 int pm_flags; /* see below */
279
280 union descriptor *pm_ldt; /* user-set LDT */
281 int pm_ldt_len; /* number of LDT entries */
282 int pm_ldt_sel; /* LDT selector */
283 };
284
285 /* pm_flags */
286 #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
287
288 /*
289 * for each managed physical page we maintain a list of <PMAP,VA>'s
290 * which it is mapped at. the list is headed by a pv_head structure.
291 * there is one pv_head per managed phys page (allocated at boot time).
292 * the pv_head structure points to a list of pv_entry structures (each
293 * describes one mapping).
294 */
295
296 struct pv_entry;
297
298 struct pv_head {
299 simple_lock_data_t pvh_lock; /* locks every pv on this list */
300 struct pv_entry *pvh_list; /* head of list (locked by pvh_lock) */
301 };
302
303 struct pv_entry { /* locked by its list's pvh_lock */
304 struct pv_entry *pv_next; /* next entry */
305 struct pmap *pv_pmap; /* the pmap */
306 vaddr_t pv_va; /* the virtual address */
307 struct vm_page *pv_ptp; /* the vm_page of the PTP */
308 };
309
310 /*
311 * pv_entrys are dynamically allocated in chunks from a single page.
312 * we keep track of how many pv_entrys are in use for each page and
313 * we can free pv_entry pages if needed. there is one lock for the
314 * entire allocation system.
315 */
316
317 struct pv_page_info {
318 TAILQ_ENTRY(pv_page) pvpi_list;
319 struct pv_entry *pvpi_pvfree;
320 int pvpi_nfree;
321 };
322
323 /*
324 * number of pv_entry's in a pv_page
325 * (note: won't work on systems where NPBG isn't a constant)
326 */
327
328 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
329 sizeof(struct pv_entry))
330
331 /*
332 * a pv_page: where pv_entrys are allocated from
333 */
334
335 struct pv_page {
336 struct pv_page_info pvinfo;
337 struct pv_entry pvents[PVE_PER_PVPAGE];
338 };
339
340 /*
341 * pmap_remove_record: a record of VAs that have been unmapped, used to
342 * flush TLB. if we have more than PMAP_RR_MAX then we stop recording.
343 */
344
345 #define PMAP_RR_MAX 16 /* max of 16 pages (64K) */
346 #if 0
347 struct pmap_remove_record {
348 int prr_npages;
349 vaddr_t prr_vas[PMAP_RR_MAX];
350 };
351 #endif
352
353 #if 0
354 /*
355 * pmap_transfer_location: used to pass the current location in the
356 * pmap between pmap_transfer and pmap_transfer_ptes [e.g. during
357 * a pmap_copy].
358 */
359
360 struct pmap_transfer_location {
361 vaddr_t addr; /* the address (page-aligned) */
362 pt_entry_t *pte; /* the PTE that maps address */
363 struct vm_page *ptp; /* the PTP that the PTE lives in */
364 };
365 #endif
366
367 /*
368 * global kernel variables
369 */
370
371 /* PTDpaddr: is the physical address of the kernel's PDP */
372 extern u_long PTDpaddr;
373
374 extern struct pmap kernel_pmap_store; /* kernel pmap */
375 extern int nkpde; /* current # of PDEs for kernel */
376 extern int pmap_pg_g; /* do we support PG_G? */
377
378 /*
379 * macros
380 */
381
382 #define pmap_kernel() (&kernel_pmap_store)
383 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
384 #define pmap_update() tlbflush()
385
386 #define pmap_clear_modify(pg) pmap_change_attrs(pg, 0, PG_M)
387 #define pmap_clear_reference(pg) pmap_change_attrs(pg, 0, PG_U)
388 #define pmap_copy(DP,SP,D,L,S)
389 #define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
390 #define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
391 #define pmap_move(DP,SP,D,L,S)
392 #define pmap_phys_address(ppn) i386_ptob(ppn)
393 #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
394
395
396 /*
397 * prototypes
398 */
399
400 void pmap_activate __P((struct proc *));
401 void pmap_bootstrap __P((vaddr_t));
402 boolean_t pmap_change_attrs __P((struct vm_page *, int, int));
403 void pmap_deactivate __P((struct proc *));
404 static void pmap_page_protect __P((struct vm_page *, vm_prot_t));
405 void pmap_page_remove __P((struct vm_page *));
406 static void pmap_protect __P((struct pmap *, vaddr_t,
407 vaddr_t, vm_prot_t));
408 void pmap_remove __P((struct pmap *, vaddr_t, vaddr_t));
409 boolean_t pmap_test_attrs __P((struct vm_page *, int));
410 void pmap_transfer __P((struct pmap *, struct pmap *, vaddr_t,
411 vsize_t, vaddr_t, boolean_t));
412 static void pmap_update_pg __P((vaddr_t));
413 static void pmap_update_2pg __P((vaddr_t,vaddr_t));
414 void pmap_write_protect __P((struct pmap *, vaddr_t,
415 vaddr_t, vm_prot_t));
416
417 vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */
418
419 #if defined(MULTIPROCESSOR)
420 void pmap_tlb_shootdown __P((pmap_t, vaddr_t, pt_entry_t));
421 #endif /* MULTIPROCESSOR */
422 void pmap_tlb_dshootdown __P((pmap_t, vaddr_t, pt_entry_t));
423 void pmap_do_tlb_shootdown __P((struct cpu_info *));
424
425 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
426
427 /*
428 * Do idle page zero'ing uncached to avoid polluting the cache.
429 */
430 void pmap_zero_page_uncached __P((paddr_t));
431 #define PMAP_PAGEIDLEZERO(pa) pmap_zero_page_uncached((pa))
432
433 /*
434 * inline functions
435 */
436
437 /*
438 * pmap_update_pg: flush one page from the TLB (or flush the whole thing
439 * if hardware doesn't support one-page flushing)
440 */
441
442 __inline static void
443 pmap_update_pg(va)
444 vaddr_t va;
445 {
446 #if defined(I386_CPU)
447 if (cpu_class == CPUCLASS_386)
448 pmap_update();
449 else
450 #endif
451 invlpg((u_int) va);
452 }
453
454 /*
455 * pmap_update_2pg: flush two pages from the TLB
456 */
457
458 __inline static void
459 pmap_update_2pg(va, vb)
460 vaddr_t va, vb;
461 {
462 #if defined(I386_CPU)
463 if (cpu_class == CPUCLASS_386)
464 pmap_update();
465 else
466 #endif
467 {
468 invlpg((u_int) va);
469 invlpg((u_int) vb);
470 }
471 }
472
473 /*
474 * pmap_page_protect: change the protection of all recorded mappings
475 * of a managed page
476 *
477 * => this function is a frontend for pmap_page_remove/pmap_change_attrs
478 * => we only have to worry about making the page more protected.
479 * unprotecting a page is done on-demand at fault time.
480 */
481
482 __inline static void
483 pmap_page_protect(pg, prot)
484 struct vm_page *pg;
485 vm_prot_t prot;
486 {
487 if ((prot & VM_PROT_WRITE) == 0) {
488 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
489 (void) pmap_change_attrs(pg, PG_RO, PG_RW);
490 } else {
491 pmap_page_remove(pg);
492 }
493 }
494 }
495
496 /*
497 * pmap_protect: change the protection of pages in a pmap
498 *
499 * => this function is a frontend for pmap_remove/pmap_write_protect
500 * => we only have to worry about making the page more protected.
501 * unprotecting a page is done on-demand at fault time.
502 */
503
504 __inline static void
505 pmap_protect(pmap, sva, eva, prot)
506 struct pmap *pmap;
507 vaddr_t sva, eva;
508 vm_prot_t prot;
509 {
510 if ((prot & VM_PROT_WRITE) == 0) {
511 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
512 pmap_write_protect(pmap, sva, eva, prot);
513 } else {
514 pmap_remove(pmap, sva, eva);
515 }
516 }
517 }
518
519 vaddr_t pmap_map __P((vaddr_t, paddr_t, paddr_t, vm_prot_t));
520
521 #if defined(USER_LDT)
522 void pmap_ldt_cleanup __P((struct proc *));
523 #define PMAP_FORK
524 #endif /* USER_LDT */
525
526 #endif /* _KERNEL */
527 #endif /* _I386_PMAP_H_ */
528