pmap.h revision 1.47 1 /* $NetBSD: pmap.h,v 1.47 2000/09/06 23:32:13 thorpej Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgment:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * pmap.h: see pmap.c for the history of this pmap module.
37 */
38
39 #ifndef _I386_PMAP_H_
40 #define _I386_PMAP_H_
41
42 #if defined(_KERNEL) && !defined(_LKM)
43 #include "opt_user_ldt.h"
44 #endif
45
46 #include <machine/cpufunc.h>
47 #include <machine/pte.h>
48 #include <machine/segments.h>
49 #include <uvm/uvm_object.h>
50
51 /*
52 * see pte.h for a description of i386 MMU terminology and hardware
53 * interface.
54 *
55 * a pmap describes a processes' 4GB virtual address space. this
56 * virtual address space can be broken up into 1024 4MB regions which
57 * are described by PDEs in the PDP. the PDEs are defined as follows:
58 *
59 * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
60 * (the following assumes that KERNBASE is 0xc0000000)
61 *
62 * PDE#s VA range usage
63 * 0->767 0x0 -> 0xbfc00000 user address space, note that the
64 * max user address is 0xbfbfe000
65 * the final two pages in the last 4MB
66 * used to be reserved for the UAREA
67 * but now are no longer used
68 * 768 0xbfc00000-> recursive mapping of PDP (used for
69 * 0xc0000000 linear mapping of PTPs)
70 * 768->1023 0xc0000000-> kernel address space (constant
71 * 0xffc00000 across all pmap's/processes)
72 * 1023 0xffc00000-> "alternate" recursive PDP mapping
73 * <end> (for other pmaps)
74 *
75 *
76 * note: a recursive PDP mapping provides a way to map all the PTEs for
77 * a 4GB address space into a linear chunk of virtual memory. in other
78 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
79 * area. the PTE for page 1 is the second int. the very last int in the
80 * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
81 * address).
82 *
83 * all pmap's PD's must have the same values in slots 768->1023 so that
84 * the kernel is always mapped in every process. these values are loaded
85 * into the PD at pmap creation time.
86 *
87 * at any one time only one pmap can be active on a processor. this is
88 * the pmap whose PDP is pointed to by processor register %cr3. this pmap
89 * will have all its PTEs mapped into memory at the recursive mapping
90 * point (slot #767 as show above). when the pmap code wants to find the
91 * PTE for a virtual address, all it has to do is the following:
92 *
93 * address of PTE = (767 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
94 * = 0xbfc00000 + (VA / 4096) * 4
95 *
96 * what happens if the pmap layer is asked to perform an operation
97 * on a pmap that is not the one which is currently active? in that
98 * case we take the PA of the PDP of non-active pmap and put it in
99 * slot 1023 of the active pmap. this causes the non-active pmap's
100 * PTEs to get mapped in the final 4MB of the 4GB address space
101 * (e.g. starting at 0xffc00000).
102 *
103 * the following figure shows the effects of the recursive PDP mapping:
104 *
105 * PDP (%cr3)
106 * +----+
107 * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
108 * | |
109 * | |
110 * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
111 * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xf0400000)
112 * | |
113 * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
114 * +----+
115 *
116 * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
117 * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
118 *
119 * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
120 * PTP:
121 *
122 * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
123 * +----+
124 * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
125 * | |
126 * | |
127 * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbffbf000
128 * | 768| -> maps contents of first kernel PTP
129 * | |
130 * |1023|
131 * +----+
132 *
133 * note that mapping of the PDP at PTP#959's VA (0xeffbf000) is
134 * defined as "PDP_BASE".... within that mapping there are two
135 * defines:
136 * "PDP_PDE" (0xeffbfefc) is the VA of the PDE in the PDP
137 * which points back to itself.
138 * "APDP_PDE" (0xeffbfffc) is the VA of the PDE in the PDP which
139 * establishes the recursive mapping of the alternate pmap.
140 * to set the alternate PDP, one just has to put the correct
141 * PA info in *APDP_PDE.
142 *
143 * note that in the APTE_BASE space, the APDP appears at VA
144 * "APDP_BASE" (0xfffff000).
145 */
146
147 /*
148 * the following defines identify the slots used as described above.
149 */
150
151 #define PDSLOT_PTE ((KERNBASE/NBPD)-1) /* 767: for recursive PDP map */
152 #define PDSLOT_KERN (KERNBASE/NBPD) /* 768: start of kernel space */
153 #define PDSLOT_APTE ((unsigned)1023) /* 1023: alternative recursive slot */
154
155 /*
156 * the following defines give the virtual addresses of various MMU
157 * data structures:
158 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
159 * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
160 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
161 */
162
163 #define PTE_BASE ((pt_entry_t *) (PDSLOT_PTE * NBPD) )
164 #define APTE_BASE ((pt_entry_t *) (PDSLOT_APTE * NBPD) )
165 #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)))
166 #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)))
167 #define PDP_PDE (PDP_BASE + PDSLOT_PTE)
168 #define APDP_PDE (PDP_BASE + PDSLOT_APTE)
169
170 /*
171 * XXXCDC: tmp xlate from old names:
172 * PTDPTDI -> PDSLOT_PTE
173 * KPTDI -> PDSLOT_KERN
174 * APTDPTDI -> PDSLOT_APTE
175 */
176
177 /*
178 * the follow define determines how many PTPs should be set up for the
179 * kernel by locore.s at boot time. this should be large enough to
180 * get the VM system running. once the VM system is running, the
181 * pmap module can add more PTPs to the kernel area on demand.
182 */
183
184 #ifndef NKPTP
185 #define NKPTP 4 /* 16MB to start */
186 #endif
187 #define NKPTP_MIN 4 /* smallest value we allow */
188 #define NKPTP_MAX (1024 - (KERNBASE/NBPD) - 1)
189 /* largest value (-1 for APTP space) */
190
191 /*
192 * pdei/ptei: generate index into PDP/PTP from a VA
193 */
194 #define pdei(VA) (((VA) & PD_MASK) >> PDSHIFT)
195 #define ptei(VA) (((VA) & PT_MASK) >> PGSHIFT)
196
197 /*
198 * PTP macros:
199 * a PTP's index is the PD index of the PDE that points to it
200 * a PTP's offset is the byte-offset in the PTE space that this PTP is at
201 * a PTP's VA is the first VA mapped by that PTP
202 *
203 * note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
204 * NBPD == number of bytes a PTP can map (4MB)
205 */
206
207 #define ptp_i2o(I) ((I) * NBPG) /* index => offset */
208 #define ptp_o2i(O) ((O) / NBPG) /* offset => index */
209 #define ptp_i2v(I) ((I) * NBPD) /* index => VA */
210 #define ptp_v2i(V) ((V) / NBPD) /* VA => index (same as pdei) */
211
212 /*
213 * PG_AVAIL usage: we make use of the ignored bits of the PTE
214 */
215
216 #define PG_W PG_AVAIL1 /* "wired" mapping */
217 #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
218 /* PG_AVAIL3 not used */
219
220 #ifdef _KERNEL
221 /*
222 * pmap data structures: see pmap.c for details of locking.
223 */
224
225 struct pmap;
226 typedef struct pmap *pmap_t;
227
228 /*
229 * we maintain a list of all non-kernel pmaps
230 */
231
232 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
233
234 /*
235 * the pmap structure
236 *
237 * note that the pm_obj contains the simple_lock, the reference count,
238 * page list, and number of PTPs within the pmap.
239 */
240
241 struct pmap {
242 struct uvm_object pm_obj; /* object (lck by object lock) */
243 #define pm_lock pm_obj.vmobjlock
244 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
245 pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
246 u_int32_t pm_pdirpa; /* PA of PD (read-only after create) */
247 struct vm_page *pm_ptphint; /* pointer to a PTP in our pmap */
248 struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
249
250 int pm_flags; /* see below */
251
252 union descriptor *pm_ldt; /* user-set LDT */
253 int pm_ldt_len; /* number of LDT entries */
254 int pm_ldt_sel; /* LDT selector */
255 };
256
257 /* pm_flags */
258 #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
259
260 /*
261 * for each managed physical page we maintain a list of <PMAP,VA>'s
262 * which it is mapped at. the list is headed by a pv_head structure.
263 * there is one pv_head per managed phys page (allocated at boot time).
264 * the pv_head structure points to a list of pv_entry structures (each
265 * describes one mapping).
266 */
267
268 struct pv_entry;
269
270 struct pv_head {
271 simple_lock_data_t pvh_lock; /* locks every pv on this list */
272 struct pv_entry *pvh_list; /* head of list (locked by pvh_lock) */
273 };
274
275 struct pv_entry { /* locked by its list's pvh_lock */
276 struct pv_entry *pv_next; /* next entry */
277 struct pmap *pv_pmap; /* the pmap */
278 vaddr_t pv_va; /* the virtual address */
279 struct vm_page *pv_ptp; /* the vm_page of the PTP */
280 };
281
282 /*
283 * pv_entrys are dynamically allocated in chunks from a single page.
284 * we keep track of how many pv_entrys are in use for each page and
285 * we can free pv_entry pages if needed. there is one lock for the
286 * entire allocation system.
287 */
288
289 struct pv_page_info {
290 TAILQ_ENTRY(pv_page) pvpi_list;
291 struct pv_entry *pvpi_pvfree;
292 int pvpi_nfree;
293 };
294
295 /*
296 * number of pv_entry's in a pv_page
297 * (note: won't work on systems where NPBG isn't a constant)
298 */
299
300 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
301 sizeof(struct pv_entry))
302
303 /*
304 * a pv_page: where pv_entrys are allocated from
305 */
306
307 struct pv_page {
308 struct pv_page_info pvinfo;
309 struct pv_entry pvents[PVE_PER_PVPAGE];
310 };
311
312 /*
313 * pmap_remove_record: a record of VAs that have been unmapped, used to
314 * flush TLB. if we have more than PMAP_RR_MAX then we stop recording.
315 */
316
317 #define PMAP_RR_MAX 16 /* max of 16 pages (64K) */
318
319 struct pmap_remove_record {
320 int prr_npages;
321 vaddr_t prr_vas[PMAP_RR_MAX];
322 };
323
324 #if 0
325 /*
326 * pmap_transfer_location: used to pass the current location in the
327 * pmap between pmap_transfer and pmap_transfer_ptes [e.g. during
328 * a pmap_copy].
329 */
330
331 struct pmap_transfer_location {
332 vaddr_t addr; /* the address (page-aligned) */
333 pt_entry_t *pte; /* the PTE that maps address */
334 struct vm_page *ptp; /* the PTP that the PTE lives in */
335 };
336 #endif
337
338 /*
339 * global kernel variables
340 */
341
342 /* PTDpaddr: is the physical address of the kernel's PDP */
343 extern u_long PTDpaddr;
344
345 extern struct pmap kernel_pmap_store; /* kernel pmap */
346 extern int nkpde; /* current # of PDEs for kernel */
347 extern int pmap_pg_g; /* do we support PG_G? */
348
349 /*
350 * macros
351 */
352
353 #define pmap_kernel() (&kernel_pmap_store)
354 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
355 #define pmap_update() tlbflush()
356
357 #define pmap_clear_modify(pg) pmap_change_attrs(pg, 0, PG_M)
358 #define pmap_clear_reference(pg) pmap_change_attrs(pg, 0, PG_U)
359 #define pmap_copy(DP,SP,D,L,S)
360 #define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
361 #define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
362 #define pmap_move(DP,SP,D,L,S)
363 #define pmap_phys_address(ppn) i386_ptob(ppn)
364 #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
365
366
367 /*
368 * prototypes
369 */
370
371 void pmap_activate __P((struct proc *));
372 void pmap_bootstrap __P((vaddr_t));
373 boolean_t pmap_change_attrs __P((struct vm_page *, int, int));
374 void pmap_deactivate __P((struct proc *));
375 static void pmap_page_protect __P((struct vm_page *, vm_prot_t));
376 void pmap_page_remove __P((struct vm_page *));
377 static void pmap_protect __P((struct pmap *, vaddr_t,
378 vaddr_t, vm_prot_t));
379 void pmap_remove __P((struct pmap *, vaddr_t, vaddr_t));
380 boolean_t pmap_test_attrs __P((struct vm_page *, int));
381 void pmap_transfer __P((struct pmap *, struct pmap *, vaddr_t,
382 vsize_t, vaddr_t, boolean_t));
383 static void pmap_update_pg __P((vaddr_t));
384 static void pmap_update_2pg __P((vaddr_t,vaddr_t));
385 void pmap_write_protect __P((struct pmap *, vaddr_t,
386 vaddr_t, vm_prot_t));
387
388 vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */
389
390 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
391
392 /*
393 * Do idle page zero'ing uncached to avoid polluting the cache.
394 */
395 void pmap_zero_page_uncached __P((paddr_t));
396 #define PMAP_PAGEIDLEZERO(pa) pmap_zero_page_uncached((pa))
397
398 /*
399 * inline functions
400 */
401
402 /*
403 * pmap_update_pg: flush one page from the TLB (or flush the whole thing
404 * if hardware doesn't support one-page flushing)
405 */
406
407 __inline static void
408 pmap_update_pg(va)
409 vaddr_t va;
410 {
411 #if defined(I386_CPU)
412 if (cpu_class == CPUCLASS_386)
413 pmap_update();
414 else
415 #endif
416 invlpg((u_int) va);
417 }
418
419 /*
420 * pmap_update_2pg: flush two pages from the TLB
421 */
422
423 __inline static void
424 pmap_update_2pg(va, vb)
425 vaddr_t va, vb;
426 {
427 #if defined(I386_CPU)
428 if (cpu_class == CPUCLASS_386)
429 pmap_update();
430 else
431 #endif
432 {
433 invlpg((u_int) va);
434 invlpg((u_int) vb);
435 }
436 }
437
438 /*
439 * pmap_page_protect: change the protection of all recorded mappings
440 * of a managed page
441 *
442 * => this function is a frontend for pmap_page_remove/pmap_change_attrs
443 * => we only have to worry about making the page more protected.
444 * unprotecting a page is done on-demand at fault time.
445 */
446
447 __inline static void
448 pmap_page_protect(pg, prot)
449 struct vm_page *pg;
450 vm_prot_t prot;
451 {
452 if ((prot & VM_PROT_WRITE) == 0) {
453 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
454 (void) pmap_change_attrs(pg, PG_RO, PG_RW);
455 } else {
456 pmap_page_remove(pg);
457 }
458 }
459 }
460
461 /*
462 * pmap_protect: change the protection of pages in a pmap
463 *
464 * => this function is a frontend for pmap_remove/pmap_write_protect
465 * => we only have to worry about making the page more protected.
466 * unprotecting a page is done on-demand at fault time.
467 */
468
469 __inline static void
470 pmap_protect(pmap, sva, eva, prot)
471 struct pmap *pmap;
472 vaddr_t sva, eva;
473 vm_prot_t prot;
474 {
475 if ((prot & VM_PROT_WRITE) == 0) {
476 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
477 pmap_write_protect(pmap, sva, eva, prot);
478 } else {
479 pmap_remove(pmap, sva, eva);
480 }
481 }
482 }
483
484 /*
485 * various address inlines
486 *
487 * vtopte: return a pointer to the PTE mapping a VA, works only for
488 * user and PT addresses
489 *
490 * kvtopte: return a pointer to the PTE mapping a kernel VA
491 */
492
493 #include <lib/libkern/libkern.h>
494
495 static __inline pt_entry_t *
496 vtopte(vaddr_t va)
497 {
498
499 KASSERT(va < (PDSLOT_KERN << PDSHIFT));
500
501 return (PTE_BASE + i386_btop(va));
502 }
503
504 static __inline pt_entry_t *
505 kvtopte(vaddr_t va)
506 {
507
508 KASSERT(va >= (PDSLOT_KERN << PDSHIFT));
509
510 return (PTE_BASE + i386_btop(va));
511 }
512
513 paddr_t vtophys __P((vaddr_t));
514 vaddr_t pmap_map __P((vaddr_t, paddr_t, paddr_t, vm_prot_t));
515
516 #if defined(USER_LDT)
517 void pmap_ldt_cleanup __P((struct proc *));
518 #define PMAP_FORK
519 #endif /* USER_LDT */
520
521 #endif /* _KERNEL */
522 #endif /* _I386_PMAP_H_ */
523