pmap.h revision 1.48 1 /* $NetBSD: pmap.h,v 1.48 2000/09/07 17:20:59 thorpej Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgment:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * pmap.h: see pmap.c for the history of this pmap module.
37 */
38
39 #ifndef _I386_PMAP_H_
40 #define _I386_PMAP_H_
41
42 #if defined(_KERNEL) && !defined(_LKM)
43 #include "opt_user_ldt.h"
44 #include "opt_largepages.h"
45 #endif
46
47 #include <machine/cpufunc.h>
48 #include <machine/pte.h>
49 #include <machine/segments.h>
50 #include <uvm/uvm_object.h>
51
52 /*
53 * see pte.h for a description of i386 MMU terminology and hardware
54 * interface.
55 *
56 * a pmap describes a processes' 4GB virtual address space. this
57 * virtual address space can be broken up into 1024 4MB regions which
58 * are described by PDEs in the PDP. the PDEs are defined as follows:
59 *
60 * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
61 * (the following assumes that KERNBASE is 0xc0000000)
62 *
63 * PDE#s VA range usage
64 * 0->767 0x0 -> 0xbfc00000 user address space, note that the
65 * max user address is 0xbfbfe000
66 * the final two pages in the last 4MB
67 * used to be reserved for the UAREA
68 * but now are no longer used
69 * 768 0xbfc00000-> recursive mapping of PDP (used for
70 * 0xc0000000 linear mapping of PTPs)
71 * 768->1023 0xc0000000-> kernel address space (constant
72 * 0xffc00000 across all pmap's/processes)
73 * 1023 0xffc00000-> "alternate" recursive PDP mapping
74 * <end> (for other pmaps)
75 *
76 *
77 * note: a recursive PDP mapping provides a way to map all the PTEs for
78 * a 4GB address space into a linear chunk of virtual memory. in other
79 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
80 * area. the PTE for page 1 is the second int. the very last int in the
81 * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
82 * address).
83 *
84 * all pmap's PD's must have the same values in slots 768->1023 so that
85 * the kernel is always mapped in every process. these values are loaded
86 * into the PD at pmap creation time.
87 *
88 * at any one time only one pmap can be active on a processor. this is
89 * the pmap whose PDP is pointed to by processor register %cr3. this pmap
90 * will have all its PTEs mapped into memory at the recursive mapping
91 * point (slot #767 as show above). when the pmap code wants to find the
92 * PTE for a virtual address, all it has to do is the following:
93 *
94 * address of PTE = (767 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
95 * = 0xbfc00000 + (VA / 4096) * 4
96 *
97 * what happens if the pmap layer is asked to perform an operation
98 * on a pmap that is not the one which is currently active? in that
99 * case we take the PA of the PDP of non-active pmap and put it in
100 * slot 1023 of the active pmap. this causes the non-active pmap's
101 * PTEs to get mapped in the final 4MB of the 4GB address space
102 * (e.g. starting at 0xffc00000).
103 *
104 * the following figure shows the effects of the recursive PDP mapping:
105 *
106 * PDP (%cr3)
107 * +----+
108 * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
109 * | |
110 * | |
111 * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
112 * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xf0400000)
113 * | |
114 * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
115 * +----+
116 *
117 * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
118 * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
119 *
120 * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
121 * PTP:
122 *
123 * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
124 * +----+
125 * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
126 * | |
127 * | |
128 * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbffbf000
129 * | 768| -> maps contents of first kernel PTP
130 * | |
131 * |1023|
132 * +----+
133 *
134 * note that mapping of the PDP at PTP#959's VA (0xeffbf000) is
135 * defined as "PDP_BASE".... within that mapping there are two
136 * defines:
137 * "PDP_PDE" (0xeffbfefc) is the VA of the PDE in the PDP
138 * which points back to itself.
139 * "APDP_PDE" (0xeffbfffc) is the VA of the PDE in the PDP which
140 * establishes the recursive mapping of the alternate pmap.
141 * to set the alternate PDP, one just has to put the correct
142 * PA info in *APDP_PDE.
143 *
144 * note that in the APTE_BASE space, the APDP appears at VA
145 * "APDP_BASE" (0xfffff000).
146 */
147
148 /*
149 * the following defines identify the slots used as described above.
150 */
151
152 #define PDSLOT_PTE ((KERNBASE/NBPD)-1) /* 767: for recursive PDP map */
153 #define PDSLOT_KERN (KERNBASE/NBPD) /* 768: start of kernel space */
154 #define PDSLOT_APTE ((unsigned)1023) /* 1023: alternative recursive slot */
155
156 /*
157 * the following defines give the virtual addresses of various MMU
158 * data structures:
159 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
160 * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
161 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
162 */
163
164 #define PTE_BASE ((pt_entry_t *) (PDSLOT_PTE * NBPD) )
165 #define APTE_BASE ((pt_entry_t *) (PDSLOT_APTE * NBPD) )
166 #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)))
167 #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)))
168 #define PDP_PDE (PDP_BASE + PDSLOT_PTE)
169 #define APDP_PDE (PDP_BASE + PDSLOT_APTE)
170
171 /*
172 * XXXCDC: tmp xlate from old names:
173 * PTDPTDI -> PDSLOT_PTE
174 * KPTDI -> PDSLOT_KERN
175 * APTDPTDI -> PDSLOT_APTE
176 */
177
178 /*
179 * the follow define determines how many PTPs should be set up for the
180 * kernel by locore.s at boot time. this should be large enough to
181 * get the VM system running. once the VM system is running, the
182 * pmap module can add more PTPs to the kernel area on demand.
183 */
184
185 #ifndef NKPTP
186 #define NKPTP 4 /* 16MB to start */
187 #endif
188 #define NKPTP_MIN 4 /* smallest value we allow */
189 #define NKPTP_MAX (1024 - (KERNBASE/NBPD) - 1)
190 /* largest value (-1 for APTP space) */
191
192 /*
193 * pdei/ptei: generate index into PDP/PTP from a VA
194 */
195 #define pdei(VA) (((VA) & PD_MASK) >> PDSHIFT)
196 #define ptei(VA) (((VA) & PT_MASK) >> PGSHIFT)
197
198 /*
199 * PTP macros:
200 * a PTP's index is the PD index of the PDE that points to it
201 * a PTP's offset is the byte-offset in the PTE space that this PTP is at
202 * a PTP's VA is the first VA mapped by that PTP
203 *
204 * note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
205 * NBPD == number of bytes a PTP can map (4MB)
206 */
207
208 #define ptp_i2o(I) ((I) * NBPG) /* index => offset */
209 #define ptp_o2i(O) ((O) / NBPG) /* offset => index */
210 #define ptp_i2v(I) ((I) * NBPD) /* index => VA */
211 #define ptp_v2i(V) ((V) / NBPD) /* VA => index (same as pdei) */
212
213 /*
214 * PG_AVAIL usage: we make use of the ignored bits of the PTE
215 */
216
217 #define PG_W PG_AVAIL1 /* "wired" mapping */
218 #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
219 /* PG_AVAIL3 not used */
220
221 #ifdef _KERNEL
222 /*
223 * pmap data structures: see pmap.c for details of locking.
224 */
225
226 struct pmap;
227 typedef struct pmap *pmap_t;
228
229 /*
230 * we maintain a list of all non-kernel pmaps
231 */
232
233 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
234
235 /*
236 * the pmap structure
237 *
238 * note that the pm_obj contains the simple_lock, the reference count,
239 * page list, and number of PTPs within the pmap.
240 */
241
242 struct pmap {
243 struct uvm_object pm_obj; /* object (lck by object lock) */
244 #define pm_lock pm_obj.vmobjlock
245 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
246 pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
247 u_int32_t pm_pdirpa; /* PA of PD (read-only after create) */
248 struct vm_page *pm_ptphint; /* pointer to a PTP in our pmap */
249 struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
250
251 int pm_flags; /* see below */
252
253 union descriptor *pm_ldt; /* user-set LDT */
254 int pm_ldt_len; /* number of LDT entries */
255 int pm_ldt_sel; /* LDT selector */
256 };
257
258 /* pm_flags */
259 #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
260
261 /*
262 * for each managed physical page we maintain a list of <PMAP,VA>'s
263 * which it is mapped at. the list is headed by a pv_head structure.
264 * there is one pv_head per managed phys page (allocated at boot time).
265 * the pv_head structure points to a list of pv_entry structures (each
266 * describes one mapping).
267 */
268
269 struct pv_entry;
270
271 struct pv_head {
272 simple_lock_data_t pvh_lock; /* locks every pv on this list */
273 struct pv_entry *pvh_list; /* head of list (locked by pvh_lock) */
274 };
275
276 struct pv_entry { /* locked by its list's pvh_lock */
277 struct pv_entry *pv_next; /* next entry */
278 struct pmap *pv_pmap; /* the pmap */
279 vaddr_t pv_va; /* the virtual address */
280 struct vm_page *pv_ptp; /* the vm_page of the PTP */
281 };
282
283 /*
284 * pv_entrys are dynamically allocated in chunks from a single page.
285 * we keep track of how many pv_entrys are in use for each page and
286 * we can free pv_entry pages if needed. there is one lock for the
287 * entire allocation system.
288 */
289
290 struct pv_page_info {
291 TAILQ_ENTRY(pv_page) pvpi_list;
292 struct pv_entry *pvpi_pvfree;
293 int pvpi_nfree;
294 };
295
296 /*
297 * number of pv_entry's in a pv_page
298 * (note: won't work on systems where NPBG isn't a constant)
299 */
300
301 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
302 sizeof(struct pv_entry))
303
304 /*
305 * a pv_page: where pv_entrys are allocated from
306 */
307
308 struct pv_page {
309 struct pv_page_info pvinfo;
310 struct pv_entry pvents[PVE_PER_PVPAGE];
311 };
312
313 /*
314 * pmap_remove_record: a record of VAs that have been unmapped, used to
315 * flush TLB. if we have more than PMAP_RR_MAX then we stop recording.
316 */
317
318 #define PMAP_RR_MAX 16 /* max of 16 pages (64K) */
319
320 struct pmap_remove_record {
321 int prr_npages;
322 vaddr_t prr_vas[PMAP_RR_MAX];
323 };
324
325 #if 0
326 /*
327 * pmap_transfer_location: used to pass the current location in the
328 * pmap between pmap_transfer and pmap_transfer_ptes [e.g. during
329 * a pmap_copy].
330 */
331
332 struct pmap_transfer_location {
333 vaddr_t addr; /* the address (page-aligned) */
334 pt_entry_t *pte; /* the PTE that maps address */
335 struct vm_page *ptp; /* the PTP that the PTE lives in */
336 };
337 #endif
338
339 /*
340 * global kernel variables
341 */
342
343 /* PTDpaddr: is the physical address of the kernel's PDP */
344 extern u_long PTDpaddr;
345
346 extern struct pmap kernel_pmap_store; /* kernel pmap */
347 extern int nkpde; /* current # of PDEs for kernel */
348 extern int pmap_pg_g; /* do we support PG_G? */
349
350 /*
351 * macros
352 */
353
354 #define pmap_kernel() (&kernel_pmap_store)
355 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
356 #define pmap_update() tlbflush()
357
358 #define pmap_clear_modify(pg) pmap_change_attrs(pg, 0, PG_M)
359 #define pmap_clear_reference(pg) pmap_change_attrs(pg, 0, PG_U)
360 #define pmap_copy(DP,SP,D,L,S)
361 #define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
362 #define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
363 #define pmap_move(DP,SP,D,L,S)
364 #define pmap_phys_address(ppn) i386_ptob(ppn)
365 #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
366
367
368 /*
369 * prototypes
370 */
371
372 void pmap_activate __P((struct proc *));
373 void pmap_bootstrap __P((vaddr_t));
374 boolean_t pmap_change_attrs __P((struct vm_page *, int, int));
375 void pmap_deactivate __P((struct proc *));
376 static void pmap_page_protect __P((struct vm_page *, vm_prot_t));
377 void pmap_page_remove __P((struct vm_page *));
378 static void pmap_protect __P((struct pmap *, vaddr_t,
379 vaddr_t, vm_prot_t));
380 void pmap_remove __P((struct pmap *, vaddr_t, vaddr_t));
381 boolean_t pmap_test_attrs __P((struct vm_page *, int));
382 void pmap_transfer __P((struct pmap *, struct pmap *, vaddr_t,
383 vsize_t, vaddr_t, boolean_t));
384 static void pmap_update_pg __P((vaddr_t));
385 static void pmap_update_2pg __P((vaddr_t,vaddr_t));
386 void pmap_write_protect __P((struct pmap *, vaddr_t,
387 vaddr_t, vm_prot_t));
388
389 vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */
390
391 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
392
393 /*
394 * Do idle page zero'ing uncached to avoid polluting the cache.
395 */
396 void pmap_zero_page_uncached __P((paddr_t));
397 #define PMAP_PAGEIDLEZERO(pa) pmap_zero_page_uncached((pa))
398
399 /*
400 * inline functions
401 */
402
403 /*
404 * pmap_update_pg: flush one page from the TLB (or flush the whole thing
405 * if hardware doesn't support one-page flushing)
406 */
407
408 __inline static void
409 pmap_update_pg(va)
410 vaddr_t va;
411 {
412 #if defined(I386_CPU)
413 if (cpu_class == CPUCLASS_386)
414 pmap_update();
415 else
416 #endif
417 invlpg((u_int) va);
418 }
419
420 /*
421 * pmap_update_2pg: flush two pages from the TLB
422 */
423
424 __inline static void
425 pmap_update_2pg(va, vb)
426 vaddr_t va, vb;
427 {
428 #if defined(I386_CPU)
429 if (cpu_class == CPUCLASS_386)
430 pmap_update();
431 else
432 #endif
433 {
434 invlpg((u_int) va);
435 invlpg((u_int) vb);
436 }
437 }
438
439 /*
440 * pmap_page_protect: change the protection of all recorded mappings
441 * of a managed page
442 *
443 * => this function is a frontend for pmap_page_remove/pmap_change_attrs
444 * => we only have to worry about making the page more protected.
445 * unprotecting a page is done on-demand at fault time.
446 */
447
448 __inline static void
449 pmap_page_protect(pg, prot)
450 struct vm_page *pg;
451 vm_prot_t prot;
452 {
453 if ((prot & VM_PROT_WRITE) == 0) {
454 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
455 (void) pmap_change_attrs(pg, PG_RO, PG_RW);
456 } else {
457 pmap_page_remove(pg);
458 }
459 }
460 }
461
462 /*
463 * pmap_protect: change the protection of pages in a pmap
464 *
465 * => this function is a frontend for pmap_remove/pmap_write_protect
466 * => we only have to worry about making the page more protected.
467 * unprotecting a page is done on-demand at fault time.
468 */
469
470 __inline static void
471 pmap_protect(pmap, sva, eva, prot)
472 struct pmap *pmap;
473 vaddr_t sva, eva;
474 vm_prot_t prot;
475 {
476 if ((prot & VM_PROT_WRITE) == 0) {
477 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
478 pmap_write_protect(pmap, sva, eva, prot);
479 } else {
480 pmap_remove(pmap, sva, eva);
481 }
482 }
483 }
484
485 /*
486 * various address inlines
487 *
488 * vtopte: return a pointer to the PTE mapping a VA, works only for
489 * user and PT addresses
490 *
491 * kvtopte: return a pointer to the PTE mapping a kernel VA
492 */
493
494 #include <lib/libkern/libkern.h>
495
496 static __inline pt_entry_t *
497 vtopte(vaddr_t va)
498 {
499
500 KASSERT(va < (PDSLOT_KERN << PDSHIFT));
501
502 return (PTE_BASE + i386_btop(va));
503 }
504
505 static __inline pt_entry_t *
506 kvtopte(vaddr_t va)
507 {
508
509 KASSERT(va >= (PDSLOT_KERN << PDSHIFT));
510
511 #ifdef LARGEPAGES
512 {
513 pd_entry_t *pde;
514
515 pde = &pmap_kernel()->pm_pdir[pdei(va)];
516 if (*pde & PG_PS)
517 return ((pt_entry_t *)pde);
518 }
519 #endif
520
521 return (PTE_BASE + i386_btop(va));
522 }
523
524 paddr_t vtophys __P((vaddr_t));
525 vaddr_t pmap_map __P((vaddr_t, paddr_t, paddr_t, vm_prot_t));
526
527 #if defined(USER_LDT)
528 void pmap_ldt_cleanup __P((struct proc *));
529 #define PMAP_FORK
530 #endif /* USER_LDT */
531
532 #endif /* _KERNEL */
533 #endif /* _I386_PMAP_H_ */
534