pmap.h revision 1.53.2.6 1 /* $NetBSD: pmap.h,v 1.53.2.6 2002/01/08 00:25:33 nathanw Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgment:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * pmap.h: see pmap.c for the history of this pmap module.
37 */
38
39 #ifndef _I386_PMAP_H_
40 #define _I386_PMAP_H_
41
42 #if defined(_KERNEL_OPT)
43 #include "opt_user_ldt.h"
44 #include "opt_largepages.h"
45 #endif
46
47 #include <machine/cpufunc.h>
48 #include <machine/pte.h>
49 #include <machine/segments.h>
50 #include <uvm/uvm_object.h>
51
52 /*
53 * see pte.h for a description of i386 MMU terminology and hardware
54 * interface.
55 *
56 * a pmap describes a processes' 4GB virtual address space. this
57 * virtual address space can be broken up into 1024 4MB regions which
58 * are described by PDEs in the PDP. the PDEs are defined as follows:
59 *
60 * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
61 * (the following assumes that KERNBASE is 0xc0000000)
62 *
63 * PDE#s VA range usage
64 * 0->767 0x0 -> 0xbfc00000 user address space, note that the
65 * max user address is 0xbfbfe000
66 * the final two pages in the last 4MB
67 * used to be reserved for the UAREA
68 * but now are no longer used
69 * 767 0xbfc00000-> recursive mapping of PDP (used for
70 * 0xc0000000 linear mapping of PTPs)
71 * 768->1023 0xc0000000-> kernel address space (constant
72 * 0xffc00000 across all pmap's/processes)
73 * 1023 0xffc00000-> "alternate" recursive PDP mapping
74 * <end> (for other pmaps)
75 *
76 *
77 * note: a recursive PDP mapping provides a way to map all the PTEs for
78 * a 4GB address space into a linear chunk of virtual memory. in other
79 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
80 * area. the PTE for page 1 is the second int. the very last int in the
81 * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
82 * address).
83 *
84 * all pmap's PD's must have the same values in slots 768->1023 so that
85 * the kernel is always mapped in every process. these values are loaded
86 * into the PD at pmap creation time.
87 *
88 * at any one time only one pmap can be active on a processor. this is
89 * the pmap whose PDP is pointed to by processor register %cr3. this pmap
90 * will have all its PTEs mapped into memory at the recursive mapping
91 * point (slot #767 as show above). when the pmap code wants to find the
92 * PTE for a virtual address, all it has to do is the following:
93 *
94 * address of PTE = (767 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
95 * = 0xbfc00000 + (VA / 4096) * 4
96 *
97 * what happens if the pmap layer is asked to perform an operation
98 * on a pmap that is not the one which is currently active? in that
99 * case we take the PA of the PDP of non-active pmap and put it in
100 * slot 1023 of the active pmap. this causes the non-active pmap's
101 * PTEs to get mapped in the final 4MB of the 4GB address space
102 * (e.g. starting at 0xffc00000).
103 *
104 * the following figure shows the effects of the recursive PDP mapping:
105 *
106 * PDP (%cr3)
107 * +----+
108 * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
109 * | |
110 * | |
111 * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
112 * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xf0400000)
113 * | |
114 * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
115 * +----+
116 *
117 * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
118 * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
119 *
120 * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
121 * PTP:
122 *
123 * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
124 * +----+
125 * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
126 * | |
127 * | |
128 * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbffbf000
129 * | 768| -> maps contents of first kernel PTP
130 * | |
131 * |1023|
132 * +----+
133 *
134 * note that mapping of the PDP at PTP#959's VA (0xeffbf000) is
135 * defined as "PDP_BASE".... within that mapping there are two
136 * defines:
137 * "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
138 * which points back to itself.
139 * "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
140 * establishes the recursive mapping of the alternate pmap.
141 * to set the alternate PDP, one just has to put the correct
142 * PA info in *APDP_PDE.
143 *
144 * note that in the APTE_BASE space, the APDP appears at VA
145 * "APDP_BASE" (0xfffff000).
146 */
147
148 /*
149 * the following defines identify the slots used as described above.
150 */
151
152 #define PDSLOT_PTE ((KERNBASE/NBPD)-1) /* 767: for recursive PDP map */
153 #define PDSLOT_KERN (KERNBASE/NBPD) /* 768: start of kernel space */
154 #define PDSLOT_APTE ((unsigned)1023) /* 1023: alternative recursive slot */
155
156 /*
157 * the following defines give the virtual addresses of various MMU
158 * data structures:
159 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
160 * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
161 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
162 */
163
164 #define PTE_BASE ((pt_entry_t *) (PDSLOT_PTE * NBPD) )
165 #define APTE_BASE ((pt_entry_t *) (PDSLOT_APTE * NBPD) )
166 #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)))
167 #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)))
168 #define PDP_PDE (PDP_BASE + PDSLOT_PTE)
169 #define APDP_PDE (PDP_BASE + PDSLOT_APTE)
170
171 /*
172 * the follow define determines how many PTPs should be set up for the
173 * kernel by locore.s at boot time. this should be large enough to
174 * get the VM system running. once the VM system is running, the
175 * pmap module can add more PTPs to the kernel area on demand.
176 */
177
178 #ifndef NKPTP
179 #define NKPTP 4 /* 16MB to start */
180 #endif
181 #define NKPTP_MIN 4 /* smallest value we allow */
182 #define NKPTP_MAX (1024 - (KERNBASE/NBPD) - 1)
183 /* largest value (-1 for APTP space) */
184
185 /*
186 * pdei/ptei: generate index into PDP/PTP from a VA
187 */
188 #define pdei(VA) (((VA) & PD_MASK) >> PDSHIFT)
189 #define ptei(VA) (((VA) & PT_MASK) >> PGSHIFT)
190
191 /*
192 * PTP macros:
193 * a PTP's index is the PD index of the PDE that points to it
194 * a PTP's offset is the byte-offset in the PTE space that this PTP is at
195 * a PTP's VA is the first VA mapped by that PTP
196 *
197 * note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
198 * NBPD == number of bytes a PTP can map (4MB)
199 */
200
201 #define ptp_i2o(I) ((I) * NBPG) /* index => offset */
202 #define ptp_o2i(O) ((O) / NBPG) /* offset => index */
203 #define ptp_i2v(I) ((I) * NBPD) /* index => VA */
204 #define ptp_v2i(V) ((V) / NBPD) /* VA => index (same as pdei) */
205
206 /*
207 * PG_AVAIL usage: we make use of the ignored bits of the PTE
208 */
209
210 #define PG_W PG_AVAIL1 /* "wired" mapping */
211 #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
212 /* PG_AVAIL3 not used */
213
214 #ifdef _KERNEL
215 /*
216 * pmap data structures: see pmap.c for details of locking.
217 */
218
219 struct pmap;
220 typedef struct pmap *pmap_t;
221
222 /*
223 * we maintain a list of all non-kernel pmaps
224 */
225
226 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
227
228 /*
229 * the pmap structure
230 *
231 * note that the pm_obj contains the simple_lock, the reference count,
232 * page list, and number of PTPs within the pmap.
233 */
234
235 struct pmap {
236 struct uvm_object pm_obj; /* object (lck by object lock) */
237 #define pm_lock pm_obj.vmobjlock
238 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
239 pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
240 u_int32_t pm_pdirpa; /* PA of PD (read-only after create) */
241 struct vm_page *pm_ptphint; /* pointer to a PTP in our pmap */
242 struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
243
244 int pm_flags; /* see below */
245
246 union descriptor *pm_ldt; /* user-set LDT */
247 int pm_ldt_len; /* number of LDT entries */
248 int pm_ldt_sel; /* LDT selector */
249 };
250
251 /* pm_flags */
252 #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
253
254 /*
255 * for each managed physical page we maintain a list of <PMAP,VA>'s
256 * which it is mapped at. the list is headed by a pv_head structure.
257 * there is one pv_head per managed phys page (allocated at boot time).
258 * the pv_head structure points to a list of pv_entry structures (each
259 * describes one mapping).
260 */
261
262 struct pv_entry;
263
264 struct pv_head {
265 struct simplelock pvh_lock; /* locks every pv on this list */
266 struct pv_entry *pvh_list; /* head of list (locked by pvh_lock) */
267 };
268
269 struct pv_entry { /* locked by its list's pvh_lock */
270 struct pv_entry *pv_next; /* next entry */
271 struct pmap *pv_pmap; /* the pmap */
272 vaddr_t pv_va; /* the virtual address */
273 struct vm_page *pv_ptp; /* the vm_page of the PTP */
274 };
275
276 /*
277 * pv_entrys are dynamically allocated in chunks from a single page.
278 * we keep track of how many pv_entrys are in use for each page and
279 * we can free pv_entry pages if needed. there is one lock for the
280 * entire allocation system.
281 */
282
283 struct pv_page_info {
284 TAILQ_ENTRY(pv_page) pvpi_list;
285 struct pv_entry *pvpi_pvfree;
286 int pvpi_nfree;
287 };
288
289 /*
290 * number of pv_entry's in a pv_page
291 * (note: won't work on systems where NPBG isn't a constant)
292 */
293
294 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
295 sizeof(struct pv_entry))
296
297 /*
298 * a pv_page: where pv_entrys are allocated from
299 */
300
301 struct pv_page {
302 struct pv_page_info pvinfo;
303 struct pv_entry pvents[PVE_PER_PVPAGE];
304 };
305
306 /*
307 * pmap_remove_record: a record of VAs that have been unmapped, used to
308 * flush TLB. if we have more than PMAP_RR_MAX then we stop recording.
309 */
310
311 #define PMAP_RR_MAX 16 /* max of 16 pages (64K) */
312
313 struct pmap_remove_record {
314 int prr_npages;
315 vaddr_t prr_vas[PMAP_RR_MAX];
316 };
317
318 /*
319 * global kernel variables
320 */
321
322 /* PTDpaddr: is the physical address of the kernel's PDP */
323 extern u_long PTDpaddr;
324
325 extern struct pmap kernel_pmap_store; /* kernel pmap */
326 extern int nkpde; /* current # of PDEs for kernel */
327 extern int pmap_pg_g; /* do we support PG_G? */
328
329 /*
330 * macros
331 */
332
333 #define pmap_kernel() (&kernel_pmap_store)
334 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
335 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
336 #define pmap_update(pmap) /* nothing (yet) */
337
338 #define pmap_clear_modify(pg) pmap_change_attrs(pg, 0, PG_M)
339 #define pmap_clear_reference(pg) pmap_change_attrs(pg, 0, PG_U)
340 #define pmap_copy(DP,SP,D,L,S)
341 #define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
342 #define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
343 #define pmap_move(DP,SP,D,L,S)
344 #define pmap_phys_address(ppn) i386_ptob(ppn)
345 #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
346
347
348 /*
349 * prototypes
350 */
351
352 void pmap_activate __P((struct lwp *));
353 void pmap_bootstrap __P((vaddr_t));
354 boolean_t pmap_change_attrs __P((struct vm_page *, int, int));
355 void pmap_deactivate __P((struct lwp *));
356 void pmap_page_remove __P((struct vm_page *));
357 void pmap_remove __P((struct pmap *, vaddr_t, vaddr_t));
358 boolean_t pmap_test_attrs __P((struct vm_page *, int));
359 void pmap_write_protect __P((struct pmap *, vaddr_t,
360 vaddr_t, vm_prot_t));
361
362 vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */
363
364 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
365
366 /*
367 * Do idle page zero'ing uncached to avoid polluting the cache.
368 */
369 boolean_t pmap_pageidlezero __P((paddr_t));
370 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
371
372 /*
373 * inline functions
374 */
375
376 /*
377 * pmap_update_pg: flush one page from the TLB (or flush the whole thing
378 * if hardware doesn't support one-page flushing)
379 */
380
381 __inline static void __attribute__((__unused__))
382 pmap_update_pg(vaddr_t va)
383 {
384 #if defined(I386_CPU)
385 if (cpu_class == CPUCLASS_386)
386 tlbflush();
387 else
388 #endif
389 invlpg((u_int) va);
390 }
391
392 /*
393 * pmap_update_2pg: flush two pages from the TLB
394 */
395
396 __inline static void __attribute__((__unused__))
397 pmap_update_2pg(vaddr_t va, vaddr_t vb)
398 {
399 #if defined(I386_CPU)
400 if (cpu_class == CPUCLASS_386)
401 tlbflush();
402 else
403 #endif
404 {
405 invlpg((u_int) va);
406 invlpg((u_int) vb);
407 }
408 }
409
410 /*
411 * pmap_page_protect: change the protection of all recorded mappings
412 * of a managed page
413 *
414 * => this function is a frontend for pmap_page_remove/pmap_change_attrs
415 * => we only have to worry about making the page more protected.
416 * unprotecting a page is done on-demand at fault time.
417 */
418
419 __inline static void __attribute__((__unused__))
420 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
421 {
422 if ((prot & VM_PROT_WRITE) == 0) {
423 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
424 (void) pmap_change_attrs(pg, PG_RO, PG_RW);
425 } else {
426 pmap_page_remove(pg);
427 }
428 }
429 }
430
431 /*
432 * pmap_protect: change the protection of pages in a pmap
433 *
434 * => this function is a frontend for pmap_remove/pmap_write_protect
435 * => we only have to worry about making the page more protected.
436 * unprotecting a page is done on-demand at fault time.
437 */
438
439 __inline static void __attribute__((__unused__))
440 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
441 {
442 if ((prot & VM_PROT_WRITE) == 0) {
443 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
444 pmap_write_protect(pmap, sva, eva, prot);
445 } else {
446 pmap_remove(pmap, sva, eva);
447 }
448 }
449 }
450
451 /*
452 * various address inlines
453 *
454 * vtopte: return a pointer to the PTE mapping a VA, works only for
455 * user and PT addresses
456 *
457 * kvtopte: return a pointer to the PTE mapping a kernel VA
458 */
459
460 #include <lib/libkern/libkern.h>
461
462 static __inline pt_entry_t * __attribute__((__unused__))
463 vtopte(vaddr_t va)
464 {
465
466 KASSERT(va < (PDSLOT_KERN << PDSHIFT));
467
468 return (PTE_BASE + i386_btop(va));
469 }
470
471 static __inline pt_entry_t * __attribute__((__unused__))
472 kvtopte(vaddr_t va)
473 {
474
475 KASSERT(va >= (PDSLOT_KERN << PDSHIFT));
476
477 #ifdef LARGEPAGES
478 {
479 pd_entry_t *pde;
480
481 pde = PDP_BASE + pdei(va);
482 if (*pde & PG_PS)
483 return ((pt_entry_t *)pde);
484 }
485 #endif
486
487 return (PTE_BASE + i386_btop(va));
488 }
489
490 paddr_t vtophys __P((vaddr_t));
491 vaddr_t pmap_map __P((vaddr_t, paddr_t, paddr_t, vm_prot_t));
492
493 #if defined(USER_LDT)
494 void pmap_ldt_cleanup __P((struct lwp *));
495 #define PMAP_FORK
496 #endif /* USER_LDT */
497
498 #endif /* _KERNEL */
499 #endif /* _I386_PMAP_H_ */
500