pmap.h revision 1.76 1 /* $NetBSD: pmap.h,v 1.76 2003/10/23 03:03:20 provos Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgment:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * pmap.h: see pmap.c for the history of this pmap module.
37 */
38
39 #ifndef _I386_PMAP_H_
40 #define _I386_PMAP_H_
41
42 #if defined(_KERNEL_OPT)
43 #include "opt_user_ldt.h"
44 #include "opt_largepages.h"
45 #endif
46
47 #include <machine/cpufunc.h>
48 #include <machine/pte.h>
49 #include <machine/segments.h>
50 #include <uvm/uvm_object.h>
51
52 /*
53 * see pte.h for a description of i386 MMU terminology and hardware
54 * interface.
55 *
56 * a pmap describes a processes' 4GB virtual address space. this
57 * virtual address space can be broken up into 1024 4MB regions which
58 * are described by PDEs in the PDP. the PDEs are defined as follows:
59 *
60 * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
61 * (the following assumes that KERNBASE is 0xc0000000)
62 *
63 * PDE#s VA range usage
64 * 0->766 0x0 -> 0xbfc00000 user address space
65 * 767 0xbfc00000-> recursive mapping of PDP (used for
66 * 0xc0000000 linear mapping of PTPs)
67 * 768->1023 0xc0000000-> kernel address space (constant
68 * 0xffc00000 across all pmap's/processes)
69 * 1023 0xffc00000-> "alternate" recursive PDP mapping
70 * <end> (for other pmaps)
71 *
72 *
73 * note: a recursive PDP mapping provides a way to map all the PTEs for
74 * a 4GB address space into a linear chunk of virtual memory. in other
75 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
76 * area. the PTE for page 1 is the second int. the very last int in the
77 * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
78 * address).
79 *
80 * all pmap's PD's must have the same values in slots 768->1023 so that
81 * the kernel is always mapped in every process. these values are loaded
82 * into the PD at pmap creation time.
83 *
84 * at any one time only one pmap can be active on a processor. this is
85 * the pmap whose PDP is pointed to by processor register %cr3. this pmap
86 * will have all its PTEs mapped into memory at the recursive mapping
87 * point (slot #767 as show above). when the pmap code wants to find the
88 * PTE for a virtual address, all it has to do is the following:
89 *
90 * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
91 * = 0xbfc00000 + (VA / 4096) * 4
92 *
93 * what happens if the pmap layer is asked to perform an operation
94 * on a pmap that is not the one which is currently active? in that
95 * case we take the PA of the PDP of non-active pmap and put it in
96 * slot 1023 of the active pmap. this causes the non-active pmap's
97 * PTEs to get mapped in the final 4MB of the 4GB address space
98 * (e.g. starting at 0xffc00000).
99 *
100 * the following figure shows the effects of the recursive PDP mapping:
101 *
102 * PDP (%cr3)
103 * +----+
104 * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
105 * | |
106 * | |
107 * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
108 * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xf0400000)
109 * | |
110 * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
111 * +----+
112 *
113 * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
114 * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
115 *
116 * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
117 * PTP:
118 *
119 * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
120 * +----+
121 * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
122 * | |
123 * | |
124 * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbffbf000
125 * | 768| -> maps contents of first kernel PTP
126 * | |
127 * |1023|
128 * +----+
129 *
130 * note that mapping of the PDP at PTP#767's VA (0xbffbf000) is
131 * defined as "PDP_BASE".... within that mapping there are two
132 * defines:
133 * "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
134 * which points back to itself.
135 * "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
136 * establishes the recursive mapping of the alternate pmap.
137 * to set the alternate PDP, one just has to put the correct
138 * PA info in *APDP_PDE.
139 *
140 * note that in the APTE_BASE space, the APDP appears at VA
141 * "APDP_BASE" (0xfffff000).
142 */
143 /* XXX MP should we allocate one APDP_PDE per processor?? */
144
145 /*
146 * the following defines identify the slots used as described above.
147 */
148
149 #define PDSLOT_PTE ((KERNBASE/NBPD)-1) /* 767: for recursive PDP map */
150 #define PDSLOT_KERN (KERNBASE/NBPD) /* 768: start of kernel space */
151 #define PDSLOT_APTE ((unsigned)1023) /* 1023: alternative recursive slot */
152
153 /*
154 * the following defines give the virtual addresses of various MMU
155 * data structures:
156 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
157 * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
158 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
159 */
160
161 #define PTE_BASE ((pt_entry_t *) (PDSLOT_PTE * NBPD) )
162 #define APTE_BASE ((pt_entry_t *) (PDSLOT_APTE * NBPD) )
163 #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * PAGE_SIZE)))
164 #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * PAGE_SIZE)))
165 #define PDP_PDE (PDP_BASE + PDSLOT_PTE)
166 #define APDP_PDE (PDP_BASE + PDSLOT_APTE)
167
168 /*
169 * the follow define determines how many PTPs should be set up for the
170 * kernel by locore.s at boot time. this should be large enough to
171 * get the VM system running. once the VM system is running, the
172 * pmap module can add more PTPs to the kernel area on demand.
173 */
174
175 #ifndef NKPTP
176 #define NKPTP 4 /* 16MB to start */
177 #endif
178 #define NKPTP_MIN 4 /* smallest value we allow */
179 #define NKPTP_MAX (1024 - (KERNBASE/NBPD) - 1)
180 /* largest value (-1 for APTP space) */
181
182 /*
183 * pdei/ptei: generate index into PDP/PTP from a VA
184 */
185 #define pdei(VA) (((VA) & PD_MASK) >> PDSHIFT)
186 #define ptei(VA) (((VA) & PT_MASK) >> PGSHIFT)
187
188 /*
189 * PTP macros:
190 * a PTP's index is the PD index of the PDE that points to it
191 * a PTP's offset is the byte-offset in the PTE space that this PTP is at
192 * a PTP's VA is the first VA mapped by that PTP
193 *
194 * note that PAGE_SIZE == number of bytes in a PTP (4096 bytes == 1024 entries)
195 * NBPD == number of bytes a PTP can map (4MB)
196 */
197
198 #define ptp_i2o(I) ((I) * PAGE_SIZE) /* index => offset */
199 #define ptp_o2i(O) ((O) / PAGE_SIZE) /* offset => index */
200 #define ptp_i2v(I) ((I) * NBPD) /* index => VA */
201 #define ptp_v2i(V) ((V) / NBPD) /* VA => index (same as pdei) */
202
203 /*
204 * PG_AVAIL usage: we make use of the ignored bits of the PTE
205 */
206
207 #define PG_W PG_AVAIL1 /* "wired" mapping */
208 #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
209 #define PG_X PG_AVAIL3 /* executable mapping */
210
211 /*
212 * Number of PTE's per cache line. 4 byte pte, 32-byte cache line
213 * Used to avoid false sharing of cache lines.
214 */
215 #define NPTECL 8
216
217 #ifdef _KERNEL
218 /*
219 * pmap data structures: see pmap.c for details of locking.
220 */
221
222 struct pmap;
223 typedef struct pmap *pmap_t;
224
225 /*
226 * we maintain a list of all non-kernel pmaps
227 */
228
229 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
230
231 /*
232 * the pmap structure
233 *
234 * note that the pm_obj contains the simple_lock, the reference count,
235 * page list, and number of PTPs within the pmap.
236 *
237 * XXX If we ever support processor numbers higher than 31, we'll have
238 * XXX to rethink the CPU mask.
239 */
240
241 struct pmap {
242 struct uvm_object pm_obj; /* object (lck by object lock) */
243 #define pm_lock pm_obj.vmobjlock
244 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
245 pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
246 u_int32_t pm_pdirpa; /* PA of PD (read-only after create) */
247 struct vm_page *pm_ptphint; /* pointer to a PTP in our pmap */
248 struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
249
250 vaddr_t pm_hiexec; /* highest executable mapping */
251 int pm_flags; /* see below */
252
253 union descriptor *pm_ldt; /* user-set LDT */
254 int pm_ldt_len; /* number of LDT entries */
255 int pm_ldt_sel; /* LDT selector */
256 u_int32_t pm_cpus; /* mask of CPUs using pmap */
257 };
258
259 /* pm_flags */
260 #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
261
262 /*
263 * for each managed physical page we maintain a list of <PMAP,VA>'s
264 * which it is mapped at. the list is headed by a pv_head structure.
265 * there is one pv_head per managed phys page (allocated at boot time).
266 * the pv_head structure points to a list of pv_entry structures (each
267 * describes one mapping).
268 */
269
270 struct pv_entry { /* locked by its list's pvh_lock */
271 SPLAY_ENTRY(pv_entry) pv_next; /* next entry */
272 struct pmap *pv_pmap; /* the pmap */
273 vaddr_t pv_va; /* the virtual address */
274 struct vm_page *pv_ptp; /* the vm_page of the PTP */
275 };
276
277 /*
278 * pv_entrys are dynamically allocated in chunks from a single page.
279 * we keep track of how many pv_entrys are in use for each page and
280 * we can free pv_entry pages if needed. there is one lock for the
281 * entire allocation system.
282 */
283
284 struct pv_page_info {
285 TAILQ_ENTRY(pv_page) pvpi_list;
286 struct pv_entry *pvpi_pvfree;
287 int pvpi_nfree;
288 };
289
290 /*
291 * number of pv_entry's in a pv_page
292 * (note: won't work on systems where NPBG isn't a constant)
293 */
294
295 #define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \
296 sizeof(struct pv_entry))
297
298 /*
299 * a pv_page: where pv_entrys are allocated from
300 */
301
302 struct pv_page {
303 struct pv_page_info pvinfo;
304 struct pv_entry pvents[PVE_PER_PVPAGE];
305 };
306
307 /*
308 * global kernel variables
309 */
310
311 /* PTDpaddr: is the physical address of the kernel's PDP */
312 extern u_long PTDpaddr;
313
314 extern struct pmap kernel_pmap_store; /* kernel pmap */
315 extern int nkpde; /* current # of PDEs for kernel */
316 extern int pmap_pg_g; /* do we support PG_G? */
317
318 /*
319 * macros
320 */
321
322 #define pmap_kernel() (&kernel_pmap_store)
323 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
324 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
325 #define pmap_update(pmap) /* nothing (yet) */
326
327 #define pmap_clear_modify(pg) pmap_clear_attrs(pg, PG_M)
328 #define pmap_clear_reference(pg) pmap_clear_attrs(pg, PG_U)
329 #define pmap_copy(DP,SP,D,L,S)
330 #define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
331 #define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
332 #define pmap_move(DP,SP,D,L,S)
333 #define pmap_phys_address(ppn) x86_ptob(ppn)
334 #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
335
336
337 /*
338 * prototypes
339 */
340
341 void pmap_activate __P((struct lwp *));
342 void pmap_bootstrap __P((vaddr_t));
343 boolean_t pmap_clear_attrs __P((struct vm_page *, int));
344 void pmap_deactivate __P((struct lwp *));
345 void pmap_page_remove __P((struct vm_page *));
346 void pmap_remove __P((struct pmap *, vaddr_t, vaddr_t));
347 boolean_t pmap_test_attrs __P((struct vm_page *, int));
348 void pmap_write_protect __P((struct pmap *, vaddr_t,
349 vaddr_t, vm_prot_t));
350 int pmap_exec_fixup(struct vm_map *, struct trapframe *,
351 struct pcb *);
352
353 vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */
354
355 void pmap_tlb_shootdown __P((pmap_t, vaddr_t, pt_entry_t, int32_t *));
356 void pmap_tlb_shootnow __P((int32_t));
357 void pmap_do_tlb_shootdown __P((struct cpu_info *));
358
359 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
360
361 /*
362 * Do idle page zero'ing uncached to avoid polluting the cache.
363 */
364 boolean_t pmap_pageidlezero __P((paddr_t));
365 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
366
367 /*
368 * inline functions
369 */
370
371 /*ARGSUSED*/
372 static __inline void
373 pmap_remove_all(struct pmap *pmap)
374 {
375 /* Nothing. */
376 }
377
378 /*
379 * pmap_update_pg: flush one page from the TLB (or flush the whole thing
380 * if hardware doesn't support one-page flushing)
381 */
382
383 __inline static void __attribute__((__unused__))
384 pmap_update_pg(vaddr_t va)
385 {
386 #if defined(I386_CPU)
387 if (cpu_class == CPUCLASS_386)
388 tlbflush();
389 else
390 #endif
391 invlpg((u_int) va);
392 }
393
394 /*
395 * pmap_update_2pg: flush two pages from the TLB
396 */
397
398 __inline static void __attribute__((__unused__))
399 pmap_update_2pg(vaddr_t va, vaddr_t vb)
400 {
401 #if defined(I386_CPU)
402 if (cpu_class == CPUCLASS_386)
403 tlbflush();
404 else
405 #endif
406 {
407 invlpg((u_int) va);
408 invlpg((u_int) vb);
409 }
410 }
411
412 /*
413 * pmap_page_protect: change the protection of all recorded mappings
414 * of a managed page
415 *
416 * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
417 * => we only have to worry about making the page more protected.
418 * unprotecting a page is done on-demand at fault time.
419 */
420
421 __inline static void __attribute__((__unused__))
422 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
423 {
424 if ((prot & VM_PROT_WRITE) == 0) {
425 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
426 (void) pmap_clear_attrs(pg, PG_RW);
427 } else {
428 pmap_page_remove(pg);
429 }
430 }
431 }
432
433 /*
434 * pmap_protect: change the protection of pages in a pmap
435 *
436 * => this function is a frontend for pmap_remove/pmap_write_protect
437 * => we only have to worry about making the page more protected.
438 * unprotecting a page is done on-demand at fault time.
439 */
440
441 __inline static void __attribute__((__unused__))
442 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
443 {
444 if ((prot & VM_PROT_WRITE) == 0) {
445 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
446 pmap_write_protect(pmap, sva, eva, prot);
447 } else {
448 pmap_remove(pmap, sva, eva);
449 }
450 }
451 }
452
453 /*
454 * various address inlines
455 *
456 * vtopte: return a pointer to the PTE mapping a VA, works only for
457 * user and PT addresses
458 *
459 * kvtopte: return a pointer to the PTE mapping a kernel VA
460 */
461
462 #include <lib/libkern/libkern.h>
463
464 static __inline pt_entry_t * __attribute__((__unused__))
465 vtopte(vaddr_t va)
466 {
467
468 KASSERT(va < (PDSLOT_KERN << PDSHIFT));
469
470 return (PTE_BASE + x86_btop(va));
471 }
472
473 static __inline pt_entry_t * __attribute__((__unused__))
474 kvtopte(vaddr_t va)
475 {
476
477 KASSERT(va >= (PDSLOT_KERN << PDSHIFT));
478
479 #ifdef LARGEPAGES
480 {
481 pd_entry_t *pde;
482
483 pde = PDP_BASE + pdei(va);
484 if (*pde & PG_PS)
485 return ((pt_entry_t *)pde);
486 }
487 #endif
488
489 return (PTE_BASE + x86_btop(va));
490 }
491
492 #define pmap_cpu_has_pg_n() (cpu_class != CPUCLASS_386)
493 #define pmap_cpu_has_invlpg() (cpu_class != CPUCLASS_386)
494
495 paddr_t vtophys __P((vaddr_t));
496 vaddr_t pmap_map __P((vaddr_t, paddr_t, paddr_t, vm_prot_t));
497
498 #if defined(USER_LDT)
499 void pmap_ldt_cleanup __P((struct lwp *));
500 #define PMAP_FORK
501 #endif /* USER_LDT */
502
503 /*
504 * Hooks for the pool allocator.
505 */
506 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
507
508 #endif /* _KERNEL */
509 #endif /* _I386_PMAP_H_ */
510