pmap.h revision 1.82.12.3 1 /* $NetBSD: pmap.h,v 1.82.12.3 2007/09/03 14:26:48 yamt Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgment:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * pmap.h: see pmap.c for the history of this pmap module.
37 */
38
39 #ifndef _I386_PMAP_H_
40 #define _I386_PMAP_H_
41
42 #if defined(_KERNEL_OPT)
43 #include "opt_user_ldt.h"
44 #include "opt_largepages.h"
45 #endif
46
47 #include <machine/cpufunc.h>
48 #include <machine/pte.h>
49 #include <machine/segments.h>
50 #include <machine/atomic.h>
51
52 #include <uvm/uvm_object.h>
53
54 /*
55 * see pte.h for a description of i386 MMU terminology and hardware
56 * interface.
57 *
58 * a pmap describes a processes' 4GB virtual address space. this
59 * virtual address space can be broken up into 1024 4MB regions which
60 * are described by PDEs in the PDP. the PDEs are defined as follows:
61 *
62 * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
63 * (the following assumes that KERNBASE is 0xc0000000)
64 *
65 * PDE#s VA range usage
66 * 0->766 0x0 -> 0xbfc00000 user address space
67 * 767 0xbfc00000-> recursive mapping of PDP (used for
68 * 0xc0000000 linear mapping of PTPs)
69 * 768->1023 0xc0000000-> kernel address space (constant
70 * 0xffc00000 across all pmap's/processes)
71 * 1023 0xffc00000-> "alternate" recursive PDP mapping
72 * <end> (for other pmaps)
73 *
74 *
75 * note: a recursive PDP mapping provides a way to map all the PTEs for
76 * a 4GB address space into a linear chunk of virtual memory. in other
77 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
78 * area. the PTE for page 1 is the second int. the very last int in the
79 * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
80 * address).
81 *
82 * all pmap's PD's must have the same values in slots 768->1023 so that
83 * the kernel is always mapped in every process. these values are loaded
84 * into the PD at pmap creation time.
85 *
86 * at any one time only one pmap can be active on a processor. this is
87 * the pmap whose PDP is pointed to by processor register %cr3. this pmap
88 * will have all its PTEs mapped into memory at the recursive mapping
89 * point (slot #767 as show above). when the pmap code wants to find the
90 * PTE for a virtual address, all it has to do is the following:
91 *
92 * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
93 * = 0xbfc00000 + (VA / 4096) * 4
94 *
95 * what happens if the pmap layer is asked to perform an operation
96 * on a pmap that is not the one which is currently active? in that
97 * case we take the PA of the PDP of non-active pmap and put it in
98 * slot 1023 of the active pmap. this causes the non-active pmap's
99 * PTEs to get mapped in the final 4MB of the 4GB address space
100 * (e.g. starting at 0xffc00000).
101 *
102 * the following figure shows the effects of the recursive PDP mapping:
103 *
104 * PDP (%cr3)
105 * +----+
106 * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
107 * | |
108 * | |
109 * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
110 * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
111 * | |
112 * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
113 * +----+
114 *
115 * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
116 * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
117 *
118 * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
119 * PTP:
120 *
121 * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
122 * +----+
123 * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
124 * | |
125 * | |
126 * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
127 * | 768| -> maps contents of first kernel PTP
128 * | |
129 * |1023|
130 * +----+
131 *
132 * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
133 * defined as "PDP_BASE".... within that mapping there are two
134 * defines:
135 * "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
136 * which points back to itself.
137 * "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
138 * establishes the recursive mapping of the alternate pmap.
139 * to set the alternate PDP, one just has to put the correct
140 * PA info in *APDP_PDE.
141 *
142 * note that in the APTE_BASE space, the APDP appears at VA
143 * "APDP_BASE" (0xfffff000).
144 */
145 /* XXX MP should we allocate one APDP_PDE per processor?? */
146
147 /*
148 * the following defines identify the slots used as described above.
149 */
150
151 #define PDSLOT_PTE ((KERNBASE/NBPD)-1) /* 767: for recursive PDP map */
152 #define PDSLOT_KERN (KERNBASE/NBPD) /* 768: start of kernel space */
153 #define PDSLOT_APTE ((unsigned)1023) /* 1023: alternative recursive slot */
154
155 /*
156 * the following defines give the virtual addresses of various MMU
157 * data structures:
158 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
159 * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
160 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
161 */
162
163 #define PTE_BASE ((pt_entry_t *) (PDSLOT_PTE * NBPD) )
164 #define APTE_BASE ((pt_entry_t *) (PDSLOT_APTE * NBPD) )
165 #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * PAGE_SIZE)))
166 #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * PAGE_SIZE)))
167 #define PDP_PDE (PDP_BASE + PDSLOT_PTE)
168 #define APDP_PDE (PDP_BASE + PDSLOT_APTE)
169
170 /*
171 * the follow define determines how many PTPs should be set up for the
172 * kernel by locore.S at boot time. this should be large enough to
173 * get the VM system running. once the VM system is running, the
174 * pmap module can add more PTPs to the kernel area on demand.
175 */
176
177 #ifndef NKPTP
178 #define NKPTP 0 /* 16MB to start */
179 #endif
180 #define NKPTP_MIN 2 /* smallest value we allow */
181 #define NKPTP_MAX (1024 - (KERNBASE/NBPD) - 1)
182 /* largest value (-1 for APTP space) */
183
184 /*
185 * pdei/ptei: generate index into PDP/PTP from a VA
186 */
187 #define pdei(VA) (((VA) & PD_MASK) >> PDSHIFT)
188 #define ptei(VA) (((VA) & PT_MASK) >> PGSHIFT)
189
190 /*
191 * PTP macros:
192 * a PTP's index is the PD index of the PDE that points to it
193 * a PTP's offset is the byte-offset in the PTE space that this PTP is at
194 * a PTP's VA is the first VA mapped by that PTP
195 *
196 * note that PAGE_SIZE == number of bytes in a PTP (4096 bytes == 1024 entries)
197 * NBPD == number of bytes a PTP can map (4MB)
198 */
199
200 #define ptp_i2o(I) ((I) * PAGE_SIZE) /* index => offset */
201 #define ptp_o2i(O) ((O) / PAGE_SIZE) /* offset => index */
202 #define ptp_i2v(I) ((I) * NBPD) /* index => VA */
203 #define ptp_v2i(V) ((V) / NBPD) /* VA => index (same as pdei) */
204
205 /*
206 * PG_AVAIL usage: we make use of the ignored bits of the PTE
207 */
208
209 #define PG_W PG_AVAIL1 /* "wired" mapping */
210 #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
211 #define PG_X PG_AVAIL3 /* executable mapping */
212
213 /*
214 * Number of PTE's per cache line. 4 byte pte, 32-byte cache line
215 * Used to avoid false sharing of cache lines.
216 */
217 #define NPTECL 8
218
219 #ifdef _KERNEL
220 /*
221 * pmap data structures: see pmap.c for details of locking.
222 */
223
224 struct pmap;
225 typedef struct pmap *pmap_t;
226
227 /*
228 * we maintain a list of all non-kernel pmaps
229 */
230
231 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
232
233 /*
234 * the pmap structure
235 *
236 * note that the pm_obj contains the simple_lock, the reference count,
237 * page list, and number of PTPs within the pmap.
238 *
239 * XXX If we ever support processor numbers higher than 31, we'll have
240 * XXX to rethink the CPU mask.
241 */
242
243 struct pmap {
244 struct uvm_object pm_obj; /* object (lck by object lock) */
245 #define pm_lock pm_obj.vmobjlock
246 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
247 pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
248 uint32_t pm_pdirpa; /* PA of PD (read-only after create) */
249 struct vm_page *pm_ptphint; /* pointer to a PTP in our pmap */
250 struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
251
252 vaddr_t pm_hiexec; /* highest executable mapping */
253 int pm_flags; /* see below */
254
255 union descriptor *pm_ldt; /* user-set LDT */
256 int pm_ldt_len; /* number of LDT entries */
257 int pm_ldt_sel; /* LDT selector */
258 uint32_t pm_cpus; /* mask of CPUs using pmap */
259 uint32_t pm_kernel_cpus; /* mask of CPUs using kernel part
260 of pmap */
261 };
262
263 /* pm_flags */
264 #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
265
266 /*
267 * for each managed physical page we maintain a list of <PMAP,VA>'s
268 * which it is mapped at. the list is headed by a pv_head structure.
269 * there is one pv_head per managed phys page (allocated at boot time).
270 * the pv_head structure points to a list of pv_entry structures (each
271 * describes one mapping).
272 */
273
274 struct pv_entry { /* locked by its list's pvh_lock */
275 SPLAY_ENTRY(pv_entry) pv_node; /* splay-tree node */
276 struct pmap *pv_pmap; /* the pmap */
277 vaddr_t pv_va; /* the virtual address */
278 struct vm_page *pv_ptp; /* the vm_page of the PTP */
279 struct pmap_cpu *pv_alloc_cpu; /* CPU allocated from */
280 };
281
282 /*
283 * pv_entrys are dynamically allocated in chunks from a single page.
284 * we keep track of how many pv_entrys are in use for each page and
285 * we can free pv_entry pages if needed. there is one lock for the
286 * entire allocation system.
287 */
288
289 struct pv_page_info {
290 TAILQ_ENTRY(pv_page) pvpi_list;
291 struct pv_entry *pvpi_pvfree;
292 int pvpi_nfree;
293 };
294
295 /*
296 * number of pv_entry's in a pv_page
297 * (note: won't work on systems where NPBG isn't a constant)
298 */
299
300 #define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \
301 sizeof(struct pv_entry))
302
303 /*
304 * a pv_page: where pv_entrys are allocated from
305 */
306
307 struct pv_page {
308 struct pv_page_info pvinfo;
309 struct pv_entry pvents[PVE_PER_PVPAGE];
310 };
311
312 /*
313 * global kernel variables
314 */
315
316 /* PDPpaddr: is the physical address of the kernel's PDP */
317 extern u_long PDPpaddr;
318
319 extern struct pmap kernel_pmap_store; /* kernel pmap */
320 extern int nkpde; /* current # of PDEs for kernel */
321 extern int pmap_pg_g; /* do we support PG_G? */
322
323 /*
324 * macros
325 */
326
327 #define pmap_kernel() (&kernel_pmap_store)
328 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
329 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
330
331 #define pmap_clear_modify(pg) pmap_clear_attrs(pg, PG_M)
332 #define pmap_clear_reference(pg) pmap_clear_attrs(pg, PG_U)
333 #define pmap_copy(DP,SP,D,L,S)
334 #define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
335 #define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
336 #define pmap_move(DP,SP,D,L,S)
337 #define pmap_phys_address(ppn) x86_ptob(ppn)
338 #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
339
340
341 /*
342 * prototypes
343 */
344
345 void pmap_activate(struct lwp *);
346 void pmap_bootstrap(vaddr_t);
347 bool pmap_clear_attrs(struct vm_page *, int);
348 void pmap_deactivate(struct lwp *);
349 void pmap_deactivate2(struct lwp *);
350 void pmap_page_remove (struct vm_page *);
351 void pmap_remove(struct pmap *, vaddr_t, vaddr_t);
352 bool pmap_test_attrs(struct vm_page *, int);
353 void pmap_write_protect(struct pmap *, vaddr_t, vaddr_t, vm_prot_t);
354 int pmap_exec_fixup(struct vm_map *, struct trapframe *,
355 struct pcb *);
356 void pmap_load(void);
357
358 vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */
359
360 void pmap_tlb_shootdown(pmap_t, vaddr_t, vaddr_t, pt_entry_t);
361 void pmap_tlb_shootwait(void);
362
363 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
364
365 /*
366 * Do idle page zero'ing uncached to avoid polluting the cache.
367 */
368 bool pmap_pageidlezero(paddr_t);
369 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
370
371 /*
372 * inline functions
373 */
374
375 /*ARGSUSED*/
376 static __inline void
377 pmap_remove_all(struct pmap *pmap)
378 {
379 /* Nothing. */
380 }
381
382 /*
383 * pmap_update_pg: flush one page from the TLB (or flush the whole thing
384 * if hardware doesn't support one-page flushing)
385 */
386
387 __inline static void __attribute__((__unused__))
388 pmap_update_pg(vaddr_t va)
389 {
390 #if defined(I386_CPU)
391 if (cpu_class == CPUCLASS_386)
392 tlbflush();
393 else
394 #endif
395 invlpg((u_int) va);
396 }
397
398 /*
399 * pmap_update_2pg: flush two pages from the TLB
400 */
401
402 __inline static void __attribute__((__unused__))
403 pmap_update_2pg(vaddr_t va, vaddr_t vb)
404 {
405 #if defined(I386_CPU)
406 if (cpu_class == CPUCLASS_386)
407 tlbflush();
408 else
409 #endif
410 {
411 invlpg((u_int) va);
412 invlpg((u_int) vb);
413 }
414 }
415
416 /*
417 * pmap_page_protect: change the protection of all recorded mappings
418 * of a managed page
419 *
420 * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
421 * => we only have to worry about making the page more protected.
422 * unprotecting a page is done on-demand at fault time.
423 */
424
425 __inline static void __attribute__((__unused__))
426 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
427 {
428 if ((prot & VM_PROT_WRITE) == 0) {
429 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
430 (void) pmap_clear_attrs(pg, PG_RW);
431 } else {
432 pmap_page_remove(pg);
433 }
434 }
435 }
436
437 /*
438 * pmap_protect: change the protection of pages in a pmap
439 *
440 * => this function is a frontend for pmap_remove/pmap_write_protect
441 * => we only have to worry about making the page more protected.
442 * unprotecting a page is done on-demand at fault time.
443 */
444
445 __inline static void __attribute__((__unused__))
446 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
447 {
448 if ((prot & VM_PROT_WRITE) == 0) {
449 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
450 pmap_write_protect(pmap, sva, eva, prot);
451 } else {
452 pmap_remove(pmap, sva, eva);
453 }
454 }
455 }
456
457 /*
458 * various address inlines
459 *
460 * vtopte: return a pointer to the PTE mapping a VA, works only for
461 * user and PT addresses
462 *
463 * kvtopte: return a pointer to the PTE mapping a kernel VA
464 */
465
466 #include <lib/libkern/libkern.h>
467
468 static __inline pt_entry_t * __attribute__((__unused__))
469 vtopte(vaddr_t va)
470 {
471
472 KASSERT(va < (PDSLOT_KERN << PDSHIFT));
473
474 return (PTE_BASE + x86_btop(va));
475 }
476
477 static __inline pt_entry_t * __attribute__((__unused__))
478 kvtopte(vaddr_t va)
479 {
480
481 KASSERT(va >= (PDSLOT_KERN << PDSHIFT));
482
483 #ifdef LARGEPAGES
484 {
485 pd_entry_t *pde;
486
487 pde = PDP_BASE + pdei(va);
488 if (*pde & PG_PS)
489 return ((pt_entry_t *)pde);
490 }
491 #endif
492
493 return (PTE_BASE + x86_btop(va));
494 }
495
496 #define pmap_pte_set(p, n) x86_atomic_testset_ul(p, n)
497 #define pmap_pte_setbits(p, b) x86_atomic_setbits_l(p, b)
498 #define pmap_pte_clearbits(p, b) x86_atomic_clearbits_l(p, b)
499 #define pmap_cpu_has_pg_n() (cpu_class != CPUCLASS_386)
500 #define pmap_cpu_has_invlpg() (cpu_class != CPUCLASS_386)
501
502 paddr_t vtophys(vaddr_t);
503 vaddr_t pmap_map(vaddr_t, paddr_t, paddr_t, vm_prot_t);
504 void pmap_ldt_cleanup(struct lwp *);
505 void pmap_cpu_init_early(struct cpu_info *);
506 void pmap_cpu_init_late(struct cpu_info *);
507 void sse2_zero_page(void *);
508 void sse2_copy_page(void *, void *);
509
510 /*
511 * Hooks for the pool allocator.
512 */
513 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
514
515 /*
516 * TLB shootdown mailbox.
517 */
518
519 struct pmap_mbox {
520 volatile void *mb_pointer;
521 volatile uintptr_t mb_addr1;
522 volatile uintptr_t mb_addr2;
523 volatile uintptr_t mb_head;
524 volatile uintptr_t mb_tail;
525 volatile uintptr_t mb_global;
526 };
527
528 #endif /* _KERNEL */
529 #endif /* _I386_PMAP_H_ */
530