Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.85
      1 /*	$NetBSD: pmap.h,v 1.85 2005/12/26 19:23:59 perry Exp $	*/
      2 
      3 /*
      4  *
      5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgment:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * pmap.h: see pmap.c for the history of this pmap module.
     37  */
     38 
     39 #ifndef	_I386_PMAP_H_
     40 #define	_I386_PMAP_H_
     41 
     42 #if defined(_KERNEL_OPT)
     43 #include "opt_user_ldt.h"
     44 #include "opt_largepages.h"
     45 #endif
     46 
     47 #include <machine/cpufunc.h>
     48 #include <machine/pte.h>
     49 #include <machine/segments.h>
     50 #include <uvm/uvm_object.h>
     51 
     52 /*
     53  * see pte.h for a description of i386 MMU terminology and hardware
     54  * interface.
     55  *
     56  * a pmap describes a processes' 4GB virtual address space.  this
     57  * virtual address space can be broken up into 1024 4MB regions which
     58  * are described by PDEs in the PDP.  the PDEs are defined as follows:
     59  *
     60  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
     61  * (the following assumes that KERNBASE is 0xc0000000)
     62  *
     63  * PDE#s	VA range		usage
     64  * 0->766	0x0 -> 0xbfc00000	user address space
     65  * 767		0xbfc00000->		recursive mapping of PDP (used for
     66  *			0xc0000000	linear mapping of PTPs)
     67  * 768->1023	0xc0000000->		kernel address space (constant
     68  *			0xffc00000	across all pmap's/processes)
     69  * 1023		0xffc00000->		"alternate" recursive PDP mapping
     70  *			<end>		(for other pmaps)
     71  *
     72  *
     73  * note: a recursive PDP mapping provides a way to map all the PTEs for
     74  * a 4GB address space into a linear chunk of virtual memory.  in other
     75  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
     76  * area.  the PTE for page 1 is the second int.  the very last int in the
     77  * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
     78  * address).
     79  *
     80  * all pmap's PD's must have the same values in slots 768->1023 so that
     81  * the kernel is always mapped in every process.  these values are loaded
     82  * into the PD at pmap creation time.
     83  *
     84  * at any one time only one pmap can be active on a processor.  this is
     85  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
     86  * will have all its PTEs mapped into memory at the recursive mapping
     87  * point (slot #767 as show above).  when the pmap code wants to find the
     88  * PTE for a virtual address, all it has to do is the following:
     89  *
     90  * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
     91  *                = 0xbfc00000 + (VA / 4096) * 4
     92  *
     93  * what happens if the pmap layer is asked to perform an operation
     94  * on a pmap that is not the one which is currently active?  in that
     95  * case we take the PA of the PDP of non-active pmap and put it in
     96  * slot 1023 of the active pmap.  this causes the non-active pmap's
     97  * PTEs to get mapped in the final 4MB of the 4GB address space
     98  * (e.g. starting at 0xffc00000).
     99  *
    100  * the following figure shows the effects of the recursive PDP mapping:
    101  *
    102  *   PDP (%cr3)
    103  *   +----+
    104  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    105  *   |    |
    106  *   |    |
    107  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    108  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
    109  *   |    |
    110  *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
    111  *   +----+
    112  *
    113  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    114  * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
    115  *
    116  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    117  * PTP:
    118  *
    119  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    120  *   +----+
    121  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    122  *   |    |
    123  *   |    |
    124  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
    125  *   | 768| -> maps contents of first kernel PTP
    126  *   |    |
    127  *   |1023|
    128  *   +----+
    129  *
    130  * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
    131  * defined as "PDP_BASE".... within that mapping there are two
    132  * defines:
    133  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    134  *      which points back to itself.
    135  *   "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
    136  *      establishes the recursive mapping of the alternate pmap.
    137  *      to set the alternate PDP, one just has to put the correct
    138  *	PA info in *APDP_PDE.
    139  *
    140  * note that in the APTE_BASE space, the APDP appears at VA
    141  * "APDP_BASE" (0xfffff000).
    142  */
    143 /* XXX MP should we allocate one APDP_PDE per processor?? */
    144 
    145 /*
    146  * the following defines identify the slots used as described above.
    147  */
    148 
    149 #define PDSLOT_PTE	((KERNBASE/NBPD)-1) /* 767: for recursive PDP map */
    150 #define PDSLOT_KERN	(KERNBASE/NBPD)	    /* 768: start of kernel space */
    151 #define PDSLOT_APTE	((unsigned)1023) /* 1023: alternative recursive slot */
    152 
    153 /*
    154  * the following defines give the virtual addresses of various MMU
    155  * data structures:
    156  * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
    157  * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
    158  * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
    159  */
    160 
    161 #define PTE_BASE	((pt_entry_t *)  (PDSLOT_PTE * NBPD) )
    162 #define APTE_BASE	((pt_entry_t *)  (PDSLOT_APTE * NBPD) )
    163 #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * PAGE_SIZE)))
    164 #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * PAGE_SIZE)))
    165 #define PDP_PDE		(PDP_BASE + PDSLOT_PTE)
    166 #define APDP_PDE	(PDP_BASE + PDSLOT_APTE)
    167 
    168 /*
    169  * the follow define determines how many PTPs should be set up for the
    170  * kernel by locore.S at boot time.  this should be large enough to
    171  * get the VM system running.  once the VM system is running, the
    172  * pmap module can add more PTPs to the kernel area on demand.
    173  */
    174 
    175 #ifndef NKPTP
    176 #define NKPTP		0	/* 16MB to start */
    177 #endif
    178 #define NKPTP_MIN	2	/* smallest value we allow */
    179 #define NKPTP_MAX	(1024 - (KERNBASE/NBPD) - 1)
    180 				/* largest value (-1 for APTP space) */
    181 
    182 /*
    183  * pdei/ptei: generate index into PDP/PTP from a VA
    184  */
    185 #define	pdei(VA)	(((VA) & PD_MASK) >> PDSHIFT)
    186 #define	ptei(VA)	(((VA) & PT_MASK) >> PGSHIFT)
    187 
    188 /*
    189  * PTP macros:
    190  *   a PTP's index is the PD index of the PDE that points to it
    191  *   a PTP's offset is the byte-offset in the PTE space that this PTP is at
    192  *   a PTP's VA is the first VA mapped by that PTP
    193  *
    194  * note that PAGE_SIZE == number of bytes in a PTP (4096 bytes == 1024 entries)
    195  *           NBPD == number of bytes a PTP can map (4MB)
    196  */
    197 
    198 #define ptp_i2o(I)	((I) * PAGE_SIZE)	/* index => offset */
    199 #define ptp_o2i(O)	((O) / PAGE_SIZE)	/* offset => index */
    200 #define ptp_i2v(I)	((I) * NBPD)	/* index => VA */
    201 #define ptp_v2i(V)	((V) / NBPD)	/* VA => index (same as pdei) */
    202 
    203 /*
    204  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    205  */
    206 
    207 #define PG_W		PG_AVAIL1	/* "wired" mapping */
    208 #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
    209 #define PG_X		PG_AVAIL3	/* executable mapping */
    210 
    211 /*
    212  * Number of PTE's per cache line.  4 byte pte, 32-byte cache line
    213  * Used to avoid false sharing of cache lines.
    214  */
    215 #define NPTECL			8
    216 
    217 #ifdef _KERNEL
    218 /*
    219  * pmap data structures: see pmap.c for details of locking.
    220  */
    221 
    222 struct pmap;
    223 typedef struct pmap *pmap_t;
    224 
    225 /*
    226  * we maintain a list of all non-kernel pmaps
    227  */
    228 
    229 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
    230 
    231 /*
    232  * the pmap structure
    233  *
    234  * note that the pm_obj contains the simple_lock, the reference count,
    235  * page list, and number of PTPs within the pmap.
    236  *
    237  * XXX If we ever support processor numbers higher than 31, we'll have
    238  * XXX to rethink the CPU mask.
    239  */
    240 
    241 struct pmap {
    242 	struct uvm_object pm_obj;	/* object (lck by object lock) */
    243 #define	pm_lock	pm_obj.vmobjlock
    244 	LIST_ENTRY(pmap) pm_list;	/* list (lck by pm_list lock) */
    245 	pd_entry_t *pm_pdir;		/* VA of PD (lck by object lock) */
    246 	uint32_t pm_pdirpa;		/* PA of PD (read-only after create) */
    247 	struct vm_page *pm_ptphint;	/* pointer to a PTP in our pmap */
    248 	struct pmap_statistics pm_stats;  /* pmap stats (lck by object lock) */
    249 
    250 	vaddr_t pm_hiexec;		/* highest executable mapping */
    251 	int pm_flags;			/* see below */
    252 
    253 	union descriptor *pm_ldt;	/* user-set LDT */
    254 	int pm_ldt_len;			/* number of LDT entries */
    255 	int pm_ldt_sel;			/* LDT selector */
    256 	uint32_t pm_cpus;		/* mask of CPUs using pmap */
    257 };
    258 
    259 /* pm_flags */
    260 #define	PMF_USER_LDT	0x01	/* pmap has user-set LDT */
    261 
    262 /*
    263  * for each managed physical page we maintain a list of <PMAP,VA>'s
    264  * which it is mapped at.  the list is headed by a pv_head structure.
    265  * there is one pv_head per managed phys page (allocated at boot time).
    266  * the pv_head structure points to a list of pv_entry structures (each
    267  * describes one mapping).
    268  */
    269 
    270 struct pv_entry {			/* locked by its list's pvh_lock */
    271 	SPLAY_ENTRY(pv_entry) pv_node;	/* splay-tree node */
    272 	struct pmap *pv_pmap;		/* the pmap */
    273 	vaddr_t pv_va;			/* the virtual address */
    274 	struct vm_page *pv_ptp;		/* the vm_page of the PTP */
    275 };
    276 
    277 /*
    278  * pv_entrys are dynamically allocated in chunks from a single page.
    279  * we keep track of how many pv_entrys are in use for each page and
    280  * we can free pv_entry pages if needed.  there is one lock for the
    281  * entire allocation system.
    282  */
    283 
    284 struct pv_page_info {
    285 	TAILQ_ENTRY(pv_page) pvpi_list;
    286 	struct pv_entry *pvpi_pvfree;
    287 	int pvpi_nfree;
    288 };
    289 
    290 /*
    291  * number of pv_entry's in a pv_page
    292  * (note: won't work on systems where NPBG isn't a constant)
    293  */
    294 
    295 #define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \
    296 			sizeof(struct pv_entry))
    297 
    298 /*
    299  * a pv_page: where pv_entrys are allocated from
    300  */
    301 
    302 struct pv_page {
    303 	struct pv_page_info pvinfo;
    304 	struct pv_entry pvents[PVE_PER_PVPAGE];
    305 };
    306 
    307 /*
    308  * global kernel variables
    309  */
    310 
    311 /* PDPpaddr: is the physical address of the kernel's PDP */
    312 extern u_long PDPpaddr;
    313 
    314 extern struct pmap kernel_pmap_store;	/* kernel pmap */
    315 extern int nkpde;			/* current # of PDEs for kernel */
    316 extern int pmap_pg_g;			/* do we support PG_G? */
    317 
    318 /*
    319  * macros
    320  */
    321 
    322 #define	pmap_kernel()			(&kernel_pmap_store)
    323 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    324 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    325 #define	pmap_update(pmap)		/* nothing (yet) */
    326 
    327 #define pmap_clear_modify(pg)		pmap_clear_attrs(pg, PG_M)
    328 #define pmap_clear_reference(pg)	pmap_clear_attrs(pg, PG_U)
    329 #define pmap_copy(DP,SP,D,L,S)
    330 #define pmap_is_modified(pg)		pmap_test_attrs(pg, PG_M)
    331 #define pmap_is_referenced(pg)		pmap_test_attrs(pg, PG_U)
    332 #define pmap_move(DP,SP,D,L,S)
    333 #define pmap_phys_address(ppn)		x86_ptob(ppn)
    334 #define pmap_valid_entry(E) 		((E) & PG_V) /* is PDE or PTE valid? */
    335 
    336 
    337 /*
    338  * prototypes
    339  */
    340 
    341 void		pmap_activate(struct lwp *);
    342 void		pmap_bootstrap(vaddr_t);
    343 boolean_t	pmap_clear_attrs(struct vm_page *, int);
    344 void		pmap_deactivate(struct lwp *);
    345 void		pmap_deactivate2(struct lwp *);
    346 void		pmap_page_remove (struct vm_page *);
    347 void		pmap_remove(struct pmap *, vaddr_t, vaddr_t);
    348 boolean_t	pmap_test_attrs(struct vm_page *, int);
    349 void		pmap_write_protect(struct pmap *, vaddr_t, vaddr_t, vm_prot_t);
    350 int		pmap_exec_fixup(struct vm_map *, struct trapframe *,
    351 		    struct pcb *);
    352 void		pmap_load(void);
    353 
    354 vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */
    355 
    356 void	pmap_tlb_shootdown(pmap_t, vaddr_t, pt_entry_t, int32_t *);
    357 void	pmap_tlb_shootnow(int32_t);
    358 void	pmap_do_tlb_shootdown(struct cpu_info *);
    359 
    360 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    361 
    362 /*
    363  * Do idle page zero'ing uncached to avoid polluting the cache.
    364  */
    365 boolean_t			pmap_pageidlezero(paddr_t);
    366 #define	PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    367 
    368 /*
    369  * inline functions
    370  */
    371 
    372 /*ARGSUSED*/
    373 static inline void
    374 pmap_remove_all(struct pmap *pmap)
    375 {
    376 	/* Nothing. */
    377 }
    378 
    379 /*
    380  * pmap_update_pg: flush one page from the TLB (or flush the whole thing
    381  *	if hardware doesn't support one-page flushing)
    382  */
    383 
    384 inline static void __attribute__((__unused__))
    385 pmap_update_pg(vaddr_t va)
    386 {
    387 #if defined(I386_CPU)
    388 	if (cpu_class == CPUCLASS_386)
    389 		tlbflush();
    390 	else
    391 #endif
    392 		invlpg((u_int) va);
    393 }
    394 
    395 /*
    396  * pmap_update_2pg: flush two pages from the TLB
    397  */
    398 
    399 inline static void __attribute__((__unused__))
    400 pmap_update_2pg(vaddr_t va, vaddr_t vb)
    401 {
    402 #if defined(I386_CPU)
    403 	if (cpu_class == CPUCLASS_386)
    404 		tlbflush();
    405 	else
    406 #endif
    407 	{
    408 		invlpg((u_int) va);
    409 		invlpg((u_int) vb);
    410 	}
    411 }
    412 
    413 /*
    414  * pmap_page_protect: change the protection of all recorded mappings
    415  *	of a managed page
    416  *
    417  * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
    418  * => we only have to worry about making the page more protected.
    419  *	unprotecting a page is done on-demand at fault time.
    420  */
    421 
    422 inline static void __attribute__((__unused__))
    423 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
    424 {
    425 	if ((prot & VM_PROT_WRITE) == 0) {
    426 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    427 			(void) pmap_clear_attrs(pg, PG_RW);
    428 		} else {
    429 			pmap_page_remove(pg);
    430 		}
    431 	}
    432 }
    433 
    434 /*
    435  * pmap_protect: change the protection of pages in a pmap
    436  *
    437  * => this function is a frontend for pmap_remove/pmap_write_protect
    438  * => we only have to worry about making the page more protected.
    439  *	unprotecting a page is done on-demand at fault time.
    440  */
    441 
    442 inline static void __attribute__((__unused__))
    443 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
    444 {
    445 	if ((prot & VM_PROT_WRITE) == 0) {
    446 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    447 			pmap_write_protect(pmap, sva, eva, prot);
    448 		} else {
    449 			pmap_remove(pmap, sva, eva);
    450 		}
    451 	}
    452 }
    453 
    454 /*
    455  * various address inlines
    456  *
    457  *  vtopte: return a pointer to the PTE mapping a VA, works only for
    458  *  user and PT addresses
    459  *
    460  *  kvtopte: return a pointer to the PTE mapping a kernel VA
    461  */
    462 
    463 #include <lib/libkern/libkern.h>
    464 
    465 static inline pt_entry_t * __attribute__((__unused__))
    466 vtopte(vaddr_t va)
    467 {
    468 
    469 	KASSERT(va < (PDSLOT_KERN << PDSHIFT));
    470 
    471 	return (PTE_BASE + x86_btop(va));
    472 }
    473 
    474 static inline pt_entry_t * __attribute__((__unused__))
    475 kvtopte(vaddr_t va)
    476 {
    477 
    478 	KASSERT(va >= (PDSLOT_KERN << PDSHIFT));
    479 
    480 #ifdef LARGEPAGES
    481 	{
    482 		pd_entry_t *pde;
    483 
    484 		pde = PDP_BASE + pdei(va);
    485 		if (*pde & PG_PS)
    486 			return ((pt_entry_t *)pde);
    487 	}
    488 #endif
    489 
    490 	return (PTE_BASE + x86_btop(va));
    491 }
    492 
    493 #define pmap_cpu_has_pg_n()		(cpu_class != CPUCLASS_386)
    494 #define pmap_cpu_has_invlpg()		(cpu_class != CPUCLASS_386)
    495 
    496 paddr_t vtophys(vaddr_t);
    497 vaddr_t	pmap_map(vaddr_t, paddr_t, paddr_t, vm_prot_t);
    498 
    499 #if defined(USER_LDT)
    500 void	pmap_ldt_cleanup(struct lwp *);
    501 #define	PMAP_FORK
    502 #endif /* USER_LDT */
    503 
    504 /*
    505  * Hooks for the pool allocator.
    506  */
    507 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
    508 
    509 #endif /* _KERNEL */
    510 #endif	/* _I386_PMAP_H_ */
    511