Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.89.4.3
      1 /*	$NetBSD: pmap.h,v 1.89.4.3 2007/08/18 06:04:12 yamt Exp $	*/
      2 
      3 /*
      4  *
      5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgment:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * pmap.h: see pmap.c for the history of this pmap module.
     37  */
     38 
     39 #ifndef	_I386_PMAP_H_
     40 #define	_I386_PMAP_H_
     41 
     42 #if defined(_KERNEL_OPT)
     43 #include "opt_user_ldt.h"
     44 #include "opt_largepages.h"
     45 #endif
     46 
     47 #include <machine/cpufunc.h>
     48 #include <machine/pte.h>
     49 #include <machine/segments.h>
     50 #include <uvm/uvm_object.h>
     51 
     52 /*
     53  * see pte.h for a description of i386 MMU terminology and hardware
     54  * interface.
     55  *
     56  * a pmap describes a processes' 4GB virtual address space.  this
     57  * virtual address space can be broken up into 1024 4MB regions which
     58  * are described by PDEs in the PDP.  the PDEs are defined as follows:
     59  *
     60  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
     61  * (the following assumes that KERNBASE is 0xc0000000)
     62  *
     63  * PDE#s	VA range		usage
     64  * 0->766	0x0 -> 0xbfc00000	user address space
     65  * 767		0xbfc00000->		recursive mapping of PDP (used for
     66  *			0xc0000000	linear mapping of PTPs)
     67  * 768->1023	0xc0000000->		kernel address space (constant
     68  *			0xffc00000	across all pmap's/processes)
     69  * 1023		0xffc00000->		"alternate" recursive PDP mapping
     70  *			<end>		(for other pmaps)
     71  *
     72  *
     73  * note: a recursive PDP mapping provides a way to map all the PTEs for
     74  * a 4GB address space into a linear chunk of virtual memory.  in other
     75  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
     76  * area.  the PTE for page 1 is the second int.  the very last int in the
     77  * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
     78  * address).
     79  *
     80  * all pmap's PD's must have the same values in slots 768->1023 so that
     81  * the kernel is always mapped in every process.  these values are loaded
     82  * into the PD at pmap creation time.
     83  *
     84  * at any one time only one pmap can be active on a processor.  this is
     85  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
     86  * will have all its PTEs mapped into memory at the recursive mapping
     87  * point (slot #767 as show above).  when the pmap code wants to find the
     88  * PTE for a virtual address, all it has to do is the following:
     89  *
     90  * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
     91  *                = 0xbfc00000 + (VA / 4096) * 4
     92  *
     93  * what happens if the pmap layer is asked to perform an operation
     94  * on a pmap that is not the one which is currently active?  in that
     95  * case we take the PA of the PDP of non-active pmap and put it in
     96  * slot 1023 of the active pmap.  this causes the non-active pmap's
     97  * PTEs to get mapped in the final 4MB of the 4GB address space
     98  * (e.g. starting at 0xffc00000).
     99  *
    100  * the following figure shows the effects of the recursive PDP mapping:
    101  *
    102  *   PDP (%cr3)
    103  *   +----+
    104  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    105  *   |    |
    106  *   |    |
    107  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    108  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
    109  *   |    |
    110  *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
    111  *   +----+
    112  *
    113  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    114  * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
    115  *
    116  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    117  * PTP:
    118  *
    119  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    120  *   +----+
    121  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    122  *   |    |
    123  *   |    |
    124  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
    125  *   | 768| -> maps contents of first kernel PTP
    126  *   |    |
    127  *   |1023|
    128  *   +----+
    129  *
    130  * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
    131  * defined as "PDP_BASE".... within that mapping there are two
    132  * defines:
    133  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    134  *      which points back to itself.
    135  *   "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
    136  *      establishes the recursive mapping of the alternate pmap.
    137  *      to set the alternate PDP, one just has to put the correct
    138  *	PA info in *APDP_PDE.
    139  *
    140  * note that in the APTE_BASE space, the APDP appears at VA
    141  * "APDP_BASE" (0xfffff000).
    142  */
    143 /* XXX MP should we allocate one APDP_PDE per processor?? */
    144 
    145 /*
    146  * the following defines identify the slots used as described above.
    147  */
    148 
    149 #define PDSLOT_PTE	((KERNBASE/NBPD)-1) /* 767: for recursive PDP map */
    150 #define PDSLOT_KERN	(KERNBASE/NBPD)	    /* 768: start of kernel space */
    151 #define PDSLOT_APTE	((unsigned)1023) /* 1023: alternative recursive slot */
    152 
    153 /*
    154  * the following defines give the virtual addresses of various MMU
    155  * data structures:
    156  * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
    157  * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
    158  * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
    159  */
    160 
    161 #define PTE_BASE	((pt_entry_t *)  (PDSLOT_PTE * NBPD) )
    162 #define APTE_BASE	((pt_entry_t *)  (PDSLOT_APTE * NBPD) )
    163 #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * PAGE_SIZE)))
    164 #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * PAGE_SIZE)))
    165 #define PDP_PDE		(PDP_BASE + PDSLOT_PTE)
    166 #define APDP_PDE	(PDP_BASE + PDSLOT_APTE)
    167 
    168 /*
    169  * the follow define determines how many PTPs should be set up for the
    170  * kernel by locore.S at boot time.  this should be large enough to
    171  * get the VM system running.  once the VM system is running, the
    172  * pmap module can add more PTPs to the kernel area on demand.
    173  */
    174 
    175 #ifndef NKPTP
    176 #define NKPTP		0	/* 16MB to start */
    177 #endif
    178 #define NKPTP_MIN	2	/* smallest value we allow */
    179 #define NKPTP_MAX	(1024 - (KERNBASE/NBPD) - 1)
    180 				/* largest value (-1 for APTP space) */
    181 
    182 /*
    183  * pdei/ptei: generate index into PDP/PTP from a VA
    184  */
    185 #define	pdei(VA)	(((VA) & PD_MASK) >> PDSHIFT)
    186 #define	ptei(VA)	(((VA) & PT_MASK) >> PGSHIFT)
    187 
    188 /*
    189  * PTP macros:
    190  *   a PTP's index is the PD index of the PDE that points to it
    191  *   a PTP's offset is the byte-offset in the PTE space that this PTP is at
    192  *   a PTP's VA is the first VA mapped by that PTP
    193  *
    194  * note that PAGE_SIZE == number of bytes in a PTP (4096 bytes == 1024 entries)
    195  *           NBPD == number of bytes a PTP can map (4MB)
    196  */
    197 
    198 #define ptp_i2o(I)	((I) * PAGE_SIZE)	/* index => offset */
    199 #define ptp_o2i(O)	((O) / PAGE_SIZE)	/* offset => index */
    200 #define ptp_i2v(I)	((I) * NBPD)	/* index => VA */
    201 #define ptp_v2i(V)	((V) / NBPD)	/* VA => index (same as pdei) */
    202 
    203 /*
    204  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    205  */
    206 
    207 #define PG_W		PG_AVAIL1	/* "wired" mapping */
    208 #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
    209 #define PG_X		PG_AVAIL3	/* executable mapping */
    210 
    211 /*
    212  * Number of PTE's per cache line.  4 byte pte, 32-byte cache line
    213  * Used to avoid false sharing of cache lines.
    214  */
    215 #define NPTECL			8
    216 
    217 #ifdef _KERNEL
    218 /*
    219  * pmap data structures: see pmap.c for details of locking.
    220  */
    221 
    222 struct pmap;
    223 typedef struct pmap *pmap_t;
    224 
    225 /*
    226  * we maintain a list of all non-kernel pmaps
    227  */
    228 
    229 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
    230 
    231 /*
    232  * the pmap structure
    233  *
    234  * note that the pm_obj contains the simple_lock, the reference count,
    235  * page list, and number of PTPs within the pmap.
    236  *
    237  * XXX If we ever support processor numbers higher than 31, we'll have
    238  * XXX to rethink the CPU mask.
    239  */
    240 
    241 struct pmap {
    242 	struct uvm_object pm_obj;	/* object (lck by object lock) */
    243 #define	pm_lock	pm_obj.vmobjlock
    244 	LIST_ENTRY(pmap) pm_list;	/* list (lck by pm_list lock) */
    245 	pd_entry_t *pm_pdir;		/* VA of PD (lck by object lock) */
    246 	uint32_t pm_pdirpa;		/* PA of PD (read-only after create) */
    247 	struct vm_page *pm_ptphint;	/* pointer to a PTP in our pmap */
    248 	struct pmap_statistics pm_stats;  /* pmap stats (lck by object lock) */
    249 
    250 	vaddr_t pm_hiexec;		/* highest executable mapping */
    251 	int pm_flags;			/* see below */
    252 
    253 	union descriptor *pm_ldt;	/* user-set LDT */
    254 	int pm_ldt_len;			/* number of LDT entries */
    255 	int pm_ldt_sel;			/* LDT selector */
    256 	uint32_t pm_cpus;		/* mask of CPUs using pmap */
    257 	uint32_t pm_kernel_cpus;	/* mask of CPUs using kernel part
    258 					 of pmap */
    259 };
    260 
    261 /* pm_flags */
    262 #define	PMF_USER_LDT	0x01	/* pmap has user-set LDT */
    263 
    264 /*
    265  * for each managed physical page we maintain a list of <PMAP,VA>'s
    266  * which it is mapped at.  the list is headed by a pv_head structure.
    267  * there is one pv_head per managed phys page (allocated at boot time).
    268  * the pv_head structure points to a list of pv_entry structures (each
    269  * describes one mapping).
    270  */
    271 
    272 struct pv_entry {			/* locked by its list's pvh_lock */
    273 	SPLAY_ENTRY(pv_entry) pv_node;	/* splay-tree node */
    274 	struct pmap *pv_pmap;		/* the pmap */
    275 	vaddr_t pv_va;			/* the virtual address */
    276 	struct vm_page *pv_ptp;		/* the vm_page of the PTP */
    277 	struct pmap_cpu *pv_alloc_cpu;	/* CPU allocated from */
    278 };
    279 
    280 /*
    281  * pv_entrys are dynamically allocated in chunks from a single page.
    282  * we keep track of how many pv_entrys are in use for each page and
    283  * we can free pv_entry pages if needed.  there is one lock for the
    284  * entire allocation system.
    285  */
    286 
    287 struct pv_page_info {
    288 	TAILQ_ENTRY(pv_page) pvpi_list;
    289 	struct pv_entry *pvpi_pvfree;
    290 	int pvpi_nfree;
    291 };
    292 
    293 /*
    294  * number of pv_entry's in a pv_page
    295  * (note: won't work on systems where NPBG isn't a constant)
    296  */
    297 
    298 #define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \
    299 			sizeof(struct pv_entry))
    300 
    301 /*
    302  * a pv_page: where pv_entrys are allocated from
    303  */
    304 
    305 struct pv_page {
    306 	struct pv_page_info pvinfo;
    307 	struct pv_entry pvents[PVE_PER_PVPAGE];
    308 };
    309 
    310 /*
    311  * global kernel variables
    312  */
    313 
    314 /* PDPpaddr: is the physical address of the kernel's PDP */
    315 extern u_long PDPpaddr;
    316 
    317 extern struct pmap kernel_pmap_store;	/* kernel pmap */
    318 extern int nkpde;			/* current # of PDEs for kernel */
    319 extern int pmap_pg_g;			/* do we support PG_G? */
    320 
    321 /*
    322  * macros
    323  */
    324 
    325 #define	pmap_kernel()			(&kernel_pmap_store)
    326 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    327 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    328 #define	pmap_update(pmap)		/* nothing (yet) */
    329 
    330 #define pmap_clear_modify(pg)		pmap_clear_attrs(pg, PG_M)
    331 #define pmap_clear_reference(pg)	pmap_clear_attrs(pg, PG_U)
    332 #define pmap_copy(DP,SP,D,L,S)
    333 #define pmap_is_modified(pg)		pmap_test_attrs(pg, PG_M)
    334 #define pmap_is_referenced(pg)		pmap_test_attrs(pg, PG_U)
    335 #define pmap_move(DP,SP,D,L,S)
    336 #define pmap_phys_address(ppn)		x86_ptob(ppn)
    337 #define pmap_valid_entry(E) 		((E) & PG_V) /* is PDE or PTE valid? */
    338 
    339 
    340 /*
    341  * prototypes
    342  */
    343 
    344 void		pmap_activate(struct lwp *);
    345 void		pmap_bootstrap(vaddr_t);
    346 bool		pmap_clear_attrs(struct vm_page *, int);
    347 void		pmap_deactivate(struct lwp *);
    348 void		pmap_deactivate2(struct lwp *);
    349 void		pmap_page_remove (struct vm_page *);
    350 void		pmap_remove(struct pmap *, vaddr_t, vaddr_t);
    351 bool		pmap_test_attrs(struct vm_page *, int);
    352 void		pmap_write_protect(struct pmap *, vaddr_t, vaddr_t, vm_prot_t);
    353 int		pmap_exec_fixup(struct vm_map *, struct trapframe *,
    354 		    struct pcb *);
    355 void		pmap_load(void);
    356 
    357 vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */
    358 
    359 void	pmap_tlb_shootdown(pmap_t, vaddr_t, vaddr_t, pt_entry_t);
    360 void	pmap_tlb_shootwait(void);
    361 
    362 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    363 
    364 /*
    365  * Do idle page zero'ing uncached to avoid polluting the cache.
    366  */
    367 bool	pmap_pageidlezero(paddr_t);
    368 #define	PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    369 
    370 /*
    371  * inline functions
    372  */
    373 
    374 /*ARGSUSED*/
    375 static __inline void
    376 pmap_remove_all(struct pmap *pmap)
    377 {
    378 	/* Nothing. */
    379 }
    380 
    381 /*
    382  * pmap_update_pg: flush one page from the TLB (or flush the whole thing
    383  *	if hardware doesn't support one-page flushing)
    384  */
    385 
    386 __inline static void __attribute__((__unused__))
    387 pmap_update_pg(vaddr_t va)
    388 {
    389 #if defined(I386_CPU)
    390 	if (cpu_class == CPUCLASS_386)
    391 		tlbflush();
    392 	else
    393 #endif
    394 		invlpg((u_int) va);
    395 }
    396 
    397 /*
    398  * pmap_update_2pg: flush two pages from the TLB
    399  */
    400 
    401 __inline static void __attribute__((__unused__))
    402 pmap_update_2pg(vaddr_t va, vaddr_t vb)
    403 {
    404 #if defined(I386_CPU)
    405 	if (cpu_class == CPUCLASS_386)
    406 		tlbflush();
    407 	else
    408 #endif
    409 	{
    410 		invlpg((u_int) va);
    411 		invlpg((u_int) vb);
    412 	}
    413 }
    414 
    415 /*
    416  * pmap_page_protect: change the protection of all recorded mappings
    417  *	of a managed page
    418  *
    419  * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
    420  * => we only have to worry about making the page more protected.
    421  *	unprotecting a page is done on-demand at fault time.
    422  */
    423 
    424 __inline static void __attribute__((__unused__))
    425 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
    426 {
    427 	if ((prot & VM_PROT_WRITE) == 0) {
    428 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    429 			(void) pmap_clear_attrs(pg, PG_RW);
    430 		} else {
    431 			pmap_page_remove(pg);
    432 		}
    433 	}
    434 }
    435 
    436 /*
    437  * pmap_protect: change the protection of pages in a pmap
    438  *
    439  * => this function is a frontend for pmap_remove/pmap_write_protect
    440  * => we only have to worry about making the page more protected.
    441  *	unprotecting a page is done on-demand at fault time.
    442  */
    443 
    444 __inline static void __attribute__((__unused__))
    445 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
    446 {
    447 	if ((prot & VM_PROT_WRITE) == 0) {
    448 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    449 			pmap_write_protect(pmap, sva, eva, prot);
    450 		} else {
    451 			pmap_remove(pmap, sva, eva);
    452 		}
    453 	}
    454 }
    455 
    456 /*
    457  * various address inlines
    458  *
    459  *  vtopte: return a pointer to the PTE mapping a VA, works only for
    460  *  user and PT addresses
    461  *
    462  *  kvtopte: return a pointer to the PTE mapping a kernel VA
    463  */
    464 
    465 #include <lib/libkern/libkern.h>
    466 
    467 static __inline pt_entry_t * __attribute__((__unused__))
    468 vtopte(vaddr_t va)
    469 {
    470 
    471 	KASSERT(va < (PDSLOT_KERN << PDSHIFT));
    472 
    473 	return (PTE_BASE + x86_btop(va));
    474 }
    475 
    476 static __inline pt_entry_t * __attribute__((__unused__))
    477 kvtopte(vaddr_t va)
    478 {
    479 
    480 	KASSERT(va >= (PDSLOT_KERN << PDSHIFT));
    481 
    482 #ifdef LARGEPAGES
    483 	{
    484 		pd_entry_t *pde;
    485 
    486 		pde = PDP_BASE + pdei(va);
    487 		if (*pde & PG_PS)
    488 			return ((pt_entry_t *)pde);
    489 	}
    490 #endif
    491 
    492 	return (PTE_BASE + x86_btop(va));
    493 }
    494 
    495 #define pmap_cpu_has_pg_n()		(cpu_class != CPUCLASS_386)
    496 #define pmap_cpu_has_invlpg()		(cpu_class != CPUCLASS_386)
    497 
    498 paddr_t vtophys(vaddr_t);
    499 vaddr_t	pmap_map(vaddr_t, paddr_t, paddr_t, vm_prot_t);
    500 void	pmap_ldt_cleanup(struct lwp *);
    501 void	pmap_cpu_init_early(struct cpu_info *);
    502 void	pmap_cpu_init_late(struct cpu_info *);
    503 void	sse2_zero_page(void *);
    504 void	sse2_copy_page(void *, void *);
    505 
    506 /*
    507  * Hooks for the pool allocator.
    508  */
    509 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
    510 
    511 /*
    512  * TLB shootdown mailbox.
    513  */
    514 
    515 struct pmap_mbox {
    516 	volatile void		*mb_pointer;
    517 	volatile uintptr_t	mb_addr1;
    518 	volatile uintptr_t	mb_addr2;
    519 	volatile uintptr_t	mb_head;
    520 	volatile uintptr_t	mb_tail;
    521 	volatile uintptr_t	mb_global;
    522 };
    523 
    524 #endif /* _KERNEL */
    525 #endif	/* _I386_PMAP_H_ */
    526