Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.90.2.3
      1 /*	$NetBSD: pmap.h,v 1.90.2.3 2007/10/04 15:36:57 yamt Exp $	*/
      2 
      3 /*
      4  *
      5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgment:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * Copyright (c) 2001 Wasabi Systems, Inc.
     37  * All rights reserved.
     38  *
     39  * Written by Frank van der Linden for Wasabi Systems, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. All advertising materials mentioning features or use of this software
     50  *    must display the following acknowledgement:
     51  *      This product includes software developed for the NetBSD Project by
     52  *      Wasabi Systems, Inc.
     53  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     54  *    or promote products derived from this software without specific prior
     55  *    written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     60  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     67  * POSSIBILITY OF SUCH DAMAGE.
     68  */
     69 
     70 /*
     71  * pmap.h: see pmap.c for the history of this pmap module.
     72  */
     73 
     74 #ifndef	_I386_PMAP_H_
     75 #define	_I386_PMAP_H_
     76 
     77 #if defined(_KERNEL_OPT)
     78 #include "opt_user_ldt.h"
     79 #endif
     80 
     81 #include <machine/cpufunc.h>
     82 #include <machine/pte.h>
     83 #include <machine/segments.h>
     84 #include <machine/atomic.h>
     85 
     86 #include <uvm/uvm_object.h>
     87 
     88 /*
     89  * see pte.h for a description of i386 MMU terminology and hardware
     90  * interface.
     91  *
     92  * a pmap describes a processes' 4GB virtual address space.  this
     93  * virtual address space can be broken up into 1024 4MB regions which
     94  * are described by PDEs in the PDP.  the PDEs are defined as follows:
     95  *
     96  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
     97  * (the following assumes that KERNBASE is 0xc0000000)
     98  *
     99  * PDE#s	VA range		usage
    100  * 0->766	0x0 -> 0xbfc00000	user address space
    101  * 767		0xbfc00000->		recursive mapping of PDP (used for
    102  *			0xc0000000	linear mapping of PTPs)
    103  * 768->1023	0xc0000000->		kernel address space (constant
    104  *			0xffc00000	across all pmap's/processes)
    105  * 1023		0xffc00000->		"alternate" recursive PDP mapping
    106  *			<end>		(for other pmaps)
    107  *
    108  *
    109  * note: a recursive PDP mapping provides a way to map all the PTEs for
    110  * a 4GB address space into a linear chunk of virtual memory.  in other
    111  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
    112  * area.  the PTE for page 1 is the second int.  the very last int in the
    113  * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
    114  * address).
    115  *
    116  * all pmap's PD's must have the same values in slots 768->1023 so that
    117  * the kernel is always mapped in every process.  these values are loaded
    118  * into the PD at pmap creation time.
    119  *
    120  * at any one time only one pmap can be active on a processor.  this is
    121  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
    122  * will have all its PTEs mapped into memory at the recursive mapping
    123  * point (slot #767 as show above).  when the pmap code wants to find the
    124  * PTE for a virtual address, all it has to do is the following:
    125  *
    126  * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
    127  *                = 0xbfc00000 + (VA / 4096) * 4
    128  *
    129  * what happens if the pmap layer is asked to perform an operation
    130  * on a pmap that is not the one which is currently active?  in that
    131  * case we take the PA of the PDP of non-active pmap and put it in
    132  * slot 1023 of the active pmap.  this causes the non-active pmap's
    133  * PTEs to get mapped in the final 4MB of the 4GB address space
    134  * (e.g. starting at 0xffc00000).
    135  *
    136  * the following figure shows the effects of the recursive PDP mapping:
    137  *
    138  *   PDP (%cr3)
    139  *   +----+
    140  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    141  *   |    |
    142  *   |    |
    143  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    144  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
    145  *   |    |
    146  *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
    147  *   +----+
    148  *
    149  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    150  * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
    151  *
    152  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    153  * PTP:
    154  *
    155  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    156  *   +----+
    157  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    158  *   |    |
    159  *   |    |
    160  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
    161  *   | 768| -> maps contents of first kernel PTP
    162  *   |    |
    163  *   |1023|
    164  *   +----+
    165  *
    166  * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
    167  * defined as "PDP_BASE".... within that mapping there are two
    168  * defines:
    169  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    170  *      which points back to itself.
    171  *   "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
    172  *      establishes the recursive mapping of the alternate pmap.
    173  *      to set the alternate PDP, one just has to put the correct
    174  *	PA info in *APDP_PDE.
    175  *
    176  * note that in the APTE_BASE space, the APDP appears at VA
    177  * "APDP_BASE" (0xfffff000).
    178  */
    179 /* XXX MP should we allocate one APDP_PDE per processor?? */
    180 
    181 /*
    182  * Mask to get rid of the sign-extended part of addresses.
    183  */
    184 #define VA_SIGN_MASK		0
    185 #define VA_SIGN_NEG(va)		((va) | VA_SIGN_MASK)
    186 /*
    187  * XXXfvdl this one's not right.
    188  */
    189 #define VA_SIGN_POS(va)		((va) & ~VA_SIGN_MASK)
    190 
    191 /*
    192  * the following defines identify the slots used as described above.
    193  */
    194 
    195 #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-1)	/* 767: for recursive PDP map */
    196 #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)	/* 768: start of kernel space */
    197 #define	L2_SLOT_KERNBASE L2_SLOT_KERN
    198 #define L2_SLOT_APTE	1023		/* 1023: alternative recursive slot */
    199 
    200 #define PDIR_SLOT_KERN	L2_SLOT_KERN
    201 #define PDIR_SLOT_PTE	L2_SLOT_PTE
    202 #define PDIR_SLOT_APTE	L2_SLOT_APTE
    203 
    204 /*
    205  * the following defines give the virtual addresses of various MMU
    206  * data structures:
    207  * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
    208  * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
    209  * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
    210  */
    211 
    212 #define PTE_BASE  ((pt_entry_t *) (L2_SLOT_PTE * NBPD_L2))
    213 #define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((L2_SLOT_APTE * NBPD_L2))))
    214 
    215 #define L1_BASE		PTE_BASE
    216 #define AL1_BASE	APTE_BASE
    217 
    218 #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
    219 
    220 #define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L2_SLOT_PTE * NBPD_L1))
    221 
    222 #define PDP_PDE		(L2_BASE + PDIR_SLOT_PTE)
    223 #define APDP_PDE	(L2_BASE + PDIR_SLOT_APTE)
    224 
    225 #define PDP_BASE	L2_BASE
    226 #define APDP_BASE	AL2_BASE
    227 
    228 /* largest value (-1 for APTP space) */
    229 #define NKL2_MAX_ENTRIES	(NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
    230 #define NKL1_MAX_ENTRIES	(unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
    231 
    232 #define NKL2_KIMG_ENTRIES	0	/* XXX unused */
    233 
    234 #define NKL2_START_ENTRIES	0	/* XXX computed on runtime */
    235 #define NKL1_START_ENTRIES	0	/* XXX unused */
    236 
    237 #define NTOPLEVEL_PDES		(PAGE_SIZE / (sizeof (pd_entry_t)))
    238 
    239 #define NPDPG			(PAGE_SIZE / sizeof (pd_entry_t))
    240 
    241 #define ptei(VA)	(((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT)
    242 
    243 /*
    244  * pl*_pi: index in the ptp page for a pde mapping a VA.
    245  * (pl*_i below is the index in the virtual array of all pdes per level)
    246  */
    247 #define pl1_pi(VA)	(((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT)
    248 #define pl2_pi(VA)	(((VA_SIGN_POS(VA)) & L2_MASK) >> L2_SHIFT)
    249 #define pl3_pi(VA)	(((VA_SIGN_POS(VA)) & L3_MASK) >> L3_SHIFT)
    250 #define pl4_pi(VA)	(((VA_SIGN_POS(VA)) & L4_MASK) >> L4_SHIFT)
    251 
    252 /*
    253  * pl*_i: generate index into pde/pte arrays in virtual space
    254  */
    255 #define pl1_i(VA)	(((VA_SIGN_POS(VA)) & L1_FRAME) >> L1_SHIFT)
    256 #define pl2_i(VA)	(((VA_SIGN_POS(VA)) & L2_FRAME) >> L2_SHIFT)
    257 #define pl3_i(VA)	(((VA_SIGN_POS(VA)) & L3_FRAME) >> L3_SHIFT)
    258 #define pl4_i(VA)	(((VA_SIGN_POS(VA)) & L4_FRAME) >> L4_SHIFT)
    259 #define pl_i(va, lvl) \
    260         (((VA_SIGN_POS(va)) & ptp_masks[(lvl)-1]) >> ptp_shifts[(lvl)-1])
    261 
    262 #define PTP_MASK_INITIALIZER	{ L1_FRAME, L2_FRAME }
    263 #define PTP_SHIFT_INITIALIZER	{ L1_SHIFT, L2_SHIFT }
    264 #define NKPTP_INITIALIZER	{ NKL1_START_ENTRIES, NKL2_START_ENTRIES }
    265 #define NKPTPMAX_INITIALIZER	{ NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
    266 #define NBPD_INITIALIZER	{ NBPD_L1, NBPD_L2 }
    267 #define PDES_INITIALIZER	{ L2_BASE }
    268 #define APDES_INITIALIZER	{ AL2_BASE }
    269 
    270 /*
    271  * PTP macros:
    272  *   a PTP's index is the PD index of the PDE that points to it
    273  *   a PTP's offset is the byte-offset in the PTE space that this PTP is at
    274  *   a PTP's VA is the first VA mapped by that PTP
    275  */
    276 
    277 #define ptp_va2o(va, lvl)	(pl_i(va, (lvl)+1) * PAGE_SIZE)
    278 
    279 #define PTP_LEVELS	2
    280 
    281 /*
    282  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    283  */
    284 
    285 #define PG_W		PG_AVAIL1	/* "wired" mapping */
    286 #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
    287 #define PG_X		PG_AVAIL3	/* executable mapping */
    288 
    289 /*
    290  * Number of PTE's per cache line.  4 byte pte, 32-byte cache line
    291  * Used to avoid false sharing of cache lines.
    292  */
    293 #define NPTECL		8
    294 
    295 #ifdef _KERNEL
    296 /*
    297  * pmap data structures: see pmap.c for details of locking.
    298  */
    299 
    300 struct pmap;
    301 typedef struct pmap *pmap_t;
    302 
    303 /*
    304  * we maintain a list of all non-kernel pmaps
    305  */
    306 
    307 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
    308 
    309 /*
    310  * the pmap structure
    311  *
    312  * note that the pm_obj contains the simple_lock, the reference count,
    313  * page list, and number of PTPs within the pmap.
    314  *
    315  * XXX If we ever support processor numbers higher than 31, we'll have
    316  * XXX to rethink the CPU mask.
    317  */
    318 
    319 struct pmap {
    320 	struct uvm_object pm_obj[PTP_LEVELS-1]; /* objects for lvl >= 1) */
    321 #define	pm_lock	pm_obj[0].vmobjlock
    322 #define pm_obj_l1 pm_obj[0]
    323 #define pm_obj_l2 pm_obj[1]
    324 #define pm_obj_l3 pm_obj[2]
    325 	LIST_ENTRY(pmap) pm_list;	/* list (lck by pm_list lock) */
    326 	pd_entry_t *pm_pdir;		/* VA of PD (lck by object lock) */
    327 	paddr_t pm_pdirpa;		/* PA of PD (read-only after create) */
    328 	struct vm_page *pm_ptphint[PTP_LEVELS-1];
    329 					/* pointer to a PTP in our pmap */
    330 	struct pmap_statistics pm_stats;  /* pmap stats (lck by object lock) */
    331 
    332 	vaddr_t pm_hiexec;		/* highest executable mapping */
    333 	int pm_flags;			/* see below */
    334 
    335 	union descriptor *pm_ldt;	/* user-set LDT */
    336 	int pm_ldt_len;			/* number of LDT entries */
    337 	int pm_ldt_sel;			/* LDT selector */
    338 	uint32_t pm_cpus;		/* mask of CPUs using pmap */
    339 	uint32_t pm_kernel_cpus;	/* mask of CPUs using kernel part
    340 					 of pmap */
    341 };
    342 
    343 /* pm_flags */
    344 #define	PMF_USER_LDT	0x01	/* pmap has user-set LDT */
    345 
    346 /*
    347  * for each managed physical page we maintain a list of <PMAP,VA>'s
    348  * which it is mapped at.  the list is headed by a pv_head structure.
    349  * there is one pv_head per managed phys page (allocated at boot time).
    350  * the pv_head structure points to a list of pv_entry structures (each
    351  * describes one mapping).
    352  */
    353 
    354 struct pv_entry {			/* locked by its list's pvh_lock */
    355 	SPLAY_ENTRY(pv_entry) pv_node;	/* splay-tree node */
    356 	struct pmap *pv_pmap;		/* the pmap */
    357 	vaddr_t pv_va;			/* the virtual address */
    358 	struct vm_page *pv_ptp;		/* the vm_page of the PTP */
    359 	struct pmap_cpu *pv_alloc_cpu;	/* CPU allocated from */
    360 };
    361 
    362 /*
    363  * pv_entrys are dynamically allocated in chunks from a single page.
    364  * we keep track of how many pv_entrys are in use for each page and
    365  * we can free pv_entry pages if needed.  there is one lock for the
    366  * entire allocation system.
    367  */
    368 
    369 struct pv_page_info {
    370 	TAILQ_ENTRY(pv_page) pvpi_list;
    371 	struct pv_entry *pvpi_pvfree;
    372 	int pvpi_nfree;
    373 };
    374 
    375 /*
    376  * number of pv_entry's in a pv_page
    377  * (note: won't work on systems where NPBG isn't a constant)
    378  */
    379 
    380 #define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \
    381 			sizeof(struct pv_entry))
    382 
    383 /*
    384  * a pv_page: where pv_entrys are allocated from
    385  */
    386 
    387 struct pv_page {
    388 	struct pv_page_info pvinfo;
    389 	struct pv_entry pvents[PVE_PER_PVPAGE];
    390 };
    391 
    392 /*
    393  * global kernel variables
    394  */
    395 
    396 /* PDPpaddr: is the physical address of the kernel's PDP */
    397 extern u_long PDPpaddr;
    398 
    399 extern struct pmap kernel_pmap_store;	/* kernel pmap */
    400 extern int nkpde;			/* current # of PDEs for kernel */
    401 extern int pmap_pg_g;			/* do we support PG_G? */
    402 extern long nkptp[PTP_LEVELS];
    403 
    404 /*
    405  * macros
    406  */
    407 
    408 #define	pmap_kernel()			(&kernel_pmap_store)
    409 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    410 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    411 
    412 #define pmap_clear_modify(pg)		pmap_clear_attrs(pg, PG_M)
    413 #define pmap_clear_reference(pg)	pmap_clear_attrs(pg, PG_U)
    414 #define pmap_copy(DP,SP,D,L,S)
    415 #define pmap_is_modified(pg)		pmap_test_attrs(pg, PG_M)
    416 #define pmap_is_referenced(pg)		pmap_test_attrs(pg, PG_U)
    417 #define pmap_move(DP,SP,D,L,S)
    418 #define pmap_phys_address(ppn)		x86_ptob(ppn)
    419 #define pmap_valid_entry(E) 		((E) & PG_V) /* is PDE or PTE valid? */
    420 
    421 
    422 /*
    423  * prototypes
    424  */
    425 
    426 void		pmap_activate(struct lwp *);
    427 void		pmap_bootstrap(vaddr_t);
    428 bool		pmap_clear_attrs(struct vm_page *, unsigned);
    429 void		pmap_deactivate(struct lwp *);
    430 void		pmap_page_remove (struct vm_page *);
    431 void		pmap_remove(struct pmap *, vaddr_t, vaddr_t);
    432 bool		pmap_test_attrs(struct vm_page *, unsigned);
    433 void		pmap_write_protect(struct pmap *, vaddr_t, vaddr_t, vm_prot_t);
    434 int		pmap_exec_fixup(struct vm_map *, struct trapframe *,
    435 		    struct pcb *);
    436 void		pmap_load(void);
    437 
    438 vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */
    439 
    440 void	pmap_tlb_shootdown(pmap_t, vaddr_t, vaddr_t, pt_entry_t);
    441 void	pmap_tlb_shootwait(void);
    442 
    443 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    444 
    445 /*
    446  * Do idle page zero'ing uncached to avoid polluting the cache.
    447  */
    448 bool	pmap_pageidlezero(paddr_t);
    449 #define	PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    450 
    451 /*
    452  * inline functions
    453  */
    454 
    455 /*ARGSUSED*/
    456 static __inline void
    457 pmap_remove_all(struct pmap *pmap)
    458 {
    459 	/* Nothing. */
    460 }
    461 
    462 /*
    463  * pmap_update_pg: flush one page from the TLB (or flush the whole thing
    464  *	if hardware doesn't support one-page flushing)
    465  */
    466 
    467 __inline static void __attribute__((__unused__))
    468 pmap_update_pg(vaddr_t va)
    469 {
    470 #if defined(I386_CPU)
    471 	if (cpu_class == CPUCLASS_386)
    472 		tlbflush();
    473 	else
    474 #endif
    475 		invlpg((u_int) va);
    476 }
    477 
    478 /*
    479  * pmap_update_2pg: flush two pages from the TLB
    480  */
    481 
    482 __inline static void __attribute__((__unused__))
    483 pmap_update_2pg(vaddr_t va, vaddr_t vb)
    484 {
    485 #if defined(I386_CPU)
    486 	if (cpu_class == CPUCLASS_386)
    487 		tlbflush();
    488 	else
    489 #endif
    490 	{
    491 		invlpg((u_int) va);
    492 		invlpg((u_int) vb);
    493 	}
    494 }
    495 
    496 /*
    497  * pmap_page_protect: change the protection of all recorded mappings
    498  *	of a managed page
    499  *
    500  * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
    501  * => we only have to worry about making the page more protected.
    502  *	unprotecting a page is done on-demand at fault time.
    503  */
    504 
    505 __inline static void __attribute__((__unused__))
    506 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
    507 {
    508 	if ((prot & VM_PROT_WRITE) == 0) {
    509 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    510 			(void) pmap_clear_attrs(pg, PG_RW);
    511 		} else {
    512 			pmap_page_remove(pg);
    513 		}
    514 	}
    515 }
    516 
    517 /*
    518  * pmap_protect: change the protection of pages in a pmap
    519  *
    520  * => this function is a frontend for pmap_remove/pmap_write_protect
    521  * => we only have to worry about making the page more protected.
    522  *	unprotecting a page is done on-demand at fault time.
    523  */
    524 
    525 __inline static void __attribute__((__unused__))
    526 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
    527 {
    528 	if ((prot & VM_PROT_WRITE) == 0) {
    529 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    530 			pmap_write_protect(pmap, sva, eva, prot);
    531 		} else {
    532 			pmap_remove(pmap, sva, eva);
    533 		}
    534 	}
    535 }
    536 
    537 /*
    538  * various address inlines
    539  *
    540  *  vtopte: return a pointer to the PTE mapping a VA, works only for
    541  *  user and PT addresses
    542  *
    543  *  kvtopte: return a pointer to the PTE mapping a kernel VA
    544  */
    545 
    546 #include <lib/libkern/libkern.h>
    547 
    548 static __inline pt_entry_t * __attribute__((__unused__))
    549 vtopte(vaddr_t va)
    550 {
    551 
    552 	KASSERT(va < (L2_SLOT_KERN * NBPD_L2));
    553 
    554 	return (PTE_BASE + pl1_i(va));
    555 }
    556 
    557 static __inline pt_entry_t * __attribute__((__unused__))
    558 kvtopte(vaddr_t va)
    559 {
    560 	pd_entry_t *pde;
    561 
    562 	KASSERT(va >= (L2_SLOT_KERN * NBPD_L2));
    563 
    564 
    565 	pde = L2_BASE + pl2_i(va);
    566 	if (*pde & PG_PS)
    567 		return ((pt_entry_t *)pde);
    568 
    569 	return (PTE_BASE + pl1_i(va));
    570 }
    571 
    572 #define pmap_pte_set(p, n)		x86_atomic_testset_ul(p, n)
    573 #define pmap_pte_setbits(p, b)		x86_atomic_setbits_l(p, b)
    574 #define pmap_pte_clearbits(p, b)	x86_atomic_clearbits_l(p, b)
    575 #define pmap_cpu_has_pg_n()		(cpu_class != CPUCLASS_386)
    576 #define pmap_cpu_has_invlpg()		(cpu_class != CPUCLASS_386)
    577 
    578 paddr_t vtophys(vaddr_t);
    579 vaddr_t	pmap_map(vaddr_t, paddr_t, paddr_t, vm_prot_t);
    580 void	pmap_ldt_cleanup(struct lwp *);
    581 void	pmap_cpu_init_early(struct cpu_info *);
    582 void	pmap_cpu_init_late(struct cpu_info *);
    583 void	sse2_zero_page(void *);
    584 void	sse2_copy_page(void *, void *);
    585 
    586 /*
    587  * Hooks for the pool allocator.
    588  */
    589 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
    590 
    591 /*
    592  * TLB shootdown mailbox.
    593  */
    594 
    595 struct pmap_mbox {
    596 	volatile void		*mb_pointer;
    597 	volatile uintptr_t	mb_addr1;
    598 	volatile uintptr_t	mb_addr2;
    599 	volatile uintptr_t	mb_head;
    600 	volatile uintptr_t	mb_tail;
    601 	volatile uintptr_t	mb_global;
    602 };
    603 
    604 #endif /* _KERNEL */
    605 #endif	/* _I386_PMAP_H_ */
    606