pmap.h revision 1.90.2.3 1 /* $NetBSD: pmap.h,v 1.90.2.3 2007/10/04 15:36:57 yamt Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgment:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Copyright (c) 2001 Wasabi Systems, Inc.
37 * All rights reserved.
38 *
39 * Written by Frank van der Linden for Wasabi Systems, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 * must display the following acknowledgement:
51 * This product includes software developed for the NetBSD Project by
52 * Wasabi Systems, Inc.
53 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
54 * or promote products derived from this software without specific prior
55 * written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
60 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 * POSSIBILITY OF SUCH DAMAGE.
68 */
69
70 /*
71 * pmap.h: see pmap.c for the history of this pmap module.
72 */
73
74 #ifndef _I386_PMAP_H_
75 #define _I386_PMAP_H_
76
77 #if defined(_KERNEL_OPT)
78 #include "opt_user_ldt.h"
79 #endif
80
81 #include <machine/cpufunc.h>
82 #include <machine/pte.h>
83 #include <machine/segments.h>
84 #include <machine/atomic.h>
85
86 #include <uvm/uvm_object.h>
87
88 /*
89 * see pte.h for a description of i386 MMU terminology and hardware
90 * interface.
91 *
92 * a pmap describes a processes' 4GB virtual address space. this
93 * virtual address space can be broken up into 1024 4MB regions which
94 * are described by PDEs in the PDP. the PDEs are defined as follows:
95 *
96 * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
97 * (the following assumes that KERNBASE is 0xc0000000)
98 *
99 * PDE#s VA range usage
100 * 0->766 0x0 -> 0xbfc00000 user address space
101 * 767 0xbfc00000-> recursive mapping of PDP (used for
102 * 0xc0000000 linear mapping of PTPs)
103 * 768->1023 0xc0000000-> kernel address space (constant
104 * 0xffc00000 across all pmap's/processes)
105 * 1023 0xffc00000-> "alternate" recursive PDP mapping
106 * <end> (for other pmaps)
107 *
108 *
109 * note: a recursive PDP mapping provides a way to map all the PTEs for
110 * a 4GB address space into a linear chunk of virtual memory. in other
111 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
112 * area. the PTE for page 1 is the second int. the very last int in the
113 * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
114 * address).
115 *
116 * all pmap's PD's must have the same values in slots 768->1023 so that
117 * the kernel is always mapped in every process. these values are loaded
118 * into the PD at pmap creation time.
119 *
120 * at any one time only one pmap can be active on a processor. this is
121 * the pmap whose PDP is pointed to by processor register %cr3. this pmap
122 * will have all its PTEs mapped into memory at the recursive mapping
123 * point (slot #767 as show above). when the pmap code wants to find the
124 * PTE for a virtual address, all it has to do is the following:
125 *
126 * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
127 * = 0xbfc00000 + (VA / 4096) * 4
128 *
129 * what happens if the pmap layer is asked to perform an operation
130 * on a pmap that is not the one which is currently active? in that
131 * case we take the PA of the PDP of non-active pmap and put it in
132 * slot 1023 of the active pmap. this causes the non-active pmap's
133 * PTEs to get mapped in the final 4MB of the 4GB address space
134 * (e.g. starting at 0xffc00000).
135 *
136 * the following figure shows the effects of the recursive PDP mapping:
137 *
138 * PDP (%cr3)
139 * +----+
140 * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
141 * | |
142 * | |
143 * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
144 * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
145 * | |
146 * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
147 * +----+
148 *
149 * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
150 * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
151 *
152 * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
153 * PTP:
154 *
155 * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
156 * +----+
157 * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
158 * | |
159 * | |
160 * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
161 * | 768| -> maps contents of first kernel PTP
162 * | |
163 * |1023|
164 * +----+
165 *
166 * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
167 * defined as "PDP_BASE".... within that mapping there are two
168 * defines:
169 * "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
170 * which points back to itself.
171 * "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
172 * establishes the recursive mapping of the alternate pmap.
173 * to set the alternate PDP, one just has to put the correct
174 * PA info in *APDP_PDE.
175 *
176 * note that in the APTE_BASE space, the APDP appears at VA
177 * "APDP_BASE" (0xfffff000).
178 */
179 /* XXX MP should we allocate one APDP_PDE per processor?? */
180
181 /*
182 * Mask to get rid of the sign-extended part of addresses.
183 */
184 #define VA_SIGN_MASK 0
185 #define VA_SIGN_NEG(va) ((va) | VA_SIGN_MASK)
186 /*
187 * XXXfvdl this one's not right.
188 */
189 #define VA_SIGN_POS(va) ((va) & ~VA_SIGN_MASK)
190
191 /*
192 * the following defines identify the slots used as described above.
193 */
194
195 #define L2_SLOT_PTE (KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */
196 #define L2_SLOT_KERN (KERNBASE/NBPD_L2) /* 768: start of kernel space */
197 #define L2_SLOT_KERNBASE L2_SLOT_KERN
198 #define L2_SLOT_APTE 1023 /* 1023: alternative recursive slot */
199
200 #define PDIR_SLOT_KERN L2_SLOT_KERN
201 #define PDIR_SLOT_PTE L2_SLOT_PTE
202 #define PDIR_SLOT_APTE L2_SLOT_APTE
203
204 /*
205 * the following defines give the virtual addresses of various MMU
206 * data structures:
207 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
208 * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
209 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
210 */
211
212 #define PTE_BASE ((pt_entry_t *) (L2_SLOT_PTE * NBPD_L2))
213 #define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((L2_SLOT_APTE * NBPD_L2))))
214
215 #define L1_BASE PTE_BASE
216 #define AL1_BASE APTE_BASE
217
218 #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
219
220 #define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L2_SLOT_PTE * NBPD_L1))
221
222 #define PDP_PDE (L2_BASE + PDIR_SLOT_PTE)
223 #define APDP_PDE (L2_BASE + PDIR_SLOT_APTE)
224
225 #define PDP_BASE L2_BASE
226 #define APDP_BASE AL2_BASE
227
228 /* largest value (-1 for APTP space) */
229 #define NKL2_MAX_ENTRIES (NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
230 #define NKL1_MAX_ENTRIES (unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
231
232 #define NKL2_KIMG_ENTRIES 0 /* XXX unused */
233
234 #define NKL2_START_ENTRIES 0 /* XXX computed on runtime */
235 #define NKL1_START_ENTRIES 0 /* XXX unused */
236
237 #define NTOPLEVEL_PDES (PAGE_SIZE / (sizeof (pd_entry_t)))
238
239 #define NPDPG (PAGE_SIZE / sizeof (pd_entry_t))
240
241 #define ptei(VA) (((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT)
242
243 /*
244 * pl*_pi: index in the ptp page for a pde mapping a VA.
245 * (pl*_i below is the index in the virtual array of all pdes per level)
246 */
247 #define pl1_pi(VA) (((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT)
248 #define pl2_pi(VA) (((VA_SIGN_POS(VA)) & L2_MASK) >> L2_SHIFT)
249 #define pl3_pi(VA) (((VA_SIGN_POS(VA)) & L3_MASK) >> L3_SHIFT)
250 #define pl4_pi(VA) (((VA_SIGN_POS(VA)) & L4_MASK) >> L4_SHIFT)
251
252 /*
253 * pl*_i: generate index into pde/pte arrays in virtual space
254 */
255 #define pl1_i(VA) (((VA_SIGN_POS(VA)) & L1_FRAME) >> L1_SHIFT)
256 #define pl2_i(VA) (((VA_SIGN_POS(VA)) & L2_FRAME) >> L2_SHIFT)
257 #define pl3_i(VA) (((VA_SIGN_POS(VA)) & L3_FRAME) >> L3_SHIFT)
258 #define pl4_i(VA) (((VA_SIGN_POS(VA)) & L4_FRAME) >> L4_SHIFT)
259 #define pl_i(va, lvl) \
260 (((VA_SIGN_POS(va)) & ptp_masks[(lvl)-1]) >> ptp_shifts[(lvl)-1])
261
262 #define PTP_MASK_INITIALIZER { L1_FRAME, L2_FRAME }
263 #define PTP_SHIFT_INITIALIZER { L1_SHIFT, L2_SHIFT }
264 #define NKPTP_INITIALIZER { NKL1_START_ENTRIES, NKL2_START_ENTRIES }
265 #define NKPTPMAX_INITIALIZER { NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
266 #define NBPD_INITIALIZER { NBPD_L1, NBPD_L2 }
267 #define PDES_INITIALIZER { L2_BASE }
268 #define APDES_INITIALIZER { AL2_BASE }
269
270 /*
271 * PTP macros:
272 * a PTP's index is the PD index of the PDE that points to it
273 * a PTP's offset is the byte-offset in the PTE space that this PTP is at
274 * a PTP's VA is the first VA mapped by that PTP
275 */
276
277 #define ptp_va2o(va, lvl) (pl_i(va, (lvl)+1) * PAGE_SIZE)
278
279 #define PTP_LEVELS 2
280
281 /*
282 * PG_AVAIL usage: we make use of the ignored bits of the PTE
283 */
284
285 #define PG_W PG_AVAIL1 /* "wired" mapping */
286 #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
287 #define PG_X PG_AVAIL3 /* executable mapping */
288
289 /*
290 * Number of PTE's per cache line. 4 byte pte, 32-byte cache line
291 * Used to avoid false sharing of cache lines.
292 */
293 #define NPTECL 8
294
295 #ifdef _KERNEL
296 /*
297 * pmap data structures: see pmap.c for details of locking.
298 */
299
300 struct pmap;
301 typedef struct pmap *pmap_t;
302
303 /*
304 * we maintain a list of all non-kernel pmaps
305 */
306
307 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
308
309 /*
310 * the pmap structure
311 *
312 * note that the pm_obj contains the simple_lock, the reference count,
313 * page list, and number of PTPs within the pmap.
314 *
315 * XXX If we ever support processor numbers higher than 31, we'll have
316 * XXX to rethink the CPU mask.
317 */
318
319 struct pmap {
320 struct uvm_object pm_obj[PTP_LEVELS-1]; /* objects for lvl >= 1) */
321 #define pm_lock pm_obj[0].vmobjlock
322 #define pm_obj_l1 pm_obj[0]
323 #define pm_obj_l2 pm_obj[1]
324 #define pm_obj_l3 pm_obj[2]
325 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
326 pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
327 paddr_t pm_pdirpa; /* PA of PD (read-only after create) */
328 struct vm_page *pm_ptphint[PTP_LEVELS-1];
329 /* pointer to a PTP in our pmap */
330 struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
331
332 vaddr_t pm_hiexec; /* highest executable mapping */
333 int pm_flags; /* see below */
334
335 union descriptor *pm_ldt; /* user-set LDT */
336 int pm_ldt_len; /* number of LDT entries */
337 int pm_ldt_sel; /* LDT selector */
338 uint32_t pm_cpus; /* mask of CPUs using pmap */
339 uint32_t pm_kernel_cpus; /* mask of CPUs using kernel part
340 of pmap */
341 };
342
343 /* pm_flags */
344 #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
345
346 /*
347 * for each managed physical page we maintain a list of <PMAP,VA>'s
348 * which it is mapped at. the list is headed by a pv_head structure.
349 * there is one pv_head per managed phys page (allocated at boot time).
350 * the pv_head structure points to a list of pv_entry structures (each
351 * describes one mapping).
352 */
353
354 struct pv_entry { /* locked by its list's pvh_lock */
355 SPLAY_ENTRY(pv_entry) pv_node; /* splay-tree node */
356 struct pmap *pv_pmap; /* the pmap */
357 vaddr_t pv_va; /* the virtual address */
358 struct vm_page *pv_ptp; /* the vm_page of the PTP */
359 struct pmap_cpu *pv_alloc_cpu; /* CPU allocated from */
360 };
361
362 /*
363 * pv_entrys are dynamically allocated in chunks from a single page.
364 * we keep track of how many pv_entrys are in use for each page and
365 * we can free pv_entry pages if needed. there is one lock for the
366 * entire allocation system.
367 */
368
369 struct pv_page_info {
370 TAILQ_ENTRY(pv_page) pvpi_list;
371 struct pv_entry *pvpi_pvfree;
372 int pvpi_nfree;
373 };
374
375 /*
376 * number of pv_entry's in a pv_page
377 * (note: won't work on systems where NPBG isn't a constant)
378 */
379
380 #define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \
381 sizeof(struct pv_entry))
382
383 /*
384 * a pv_page: where pv_entrys are allocated from
385 */
386
387 struct pv_page {
388 struct pv_page_info pvinfo;
389 struct pv_entry pvents[PVE_PER_PVPAGE];
390 };
391
392 /*
393 * global kernel variables
394 */
395
396 /* PDPpaddr: is the physical address of the kernel's PDP */
397 extern u_long PDPpaddr;
398
399 extern struct pmap kernel_pmap_store; /* kernel pmap */
400 extern int nkpde; /* current # of PDEs for kernel */
401 extern int pmap_pg_g; /* do we support PG_G? */
402 extern long nkptp[PTP_LEVELS];
403
404 /*
405 * macros
406 */
407
408 #define pmap_kernel() (&kernel_pmap_store)
409 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
410 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
411
412 #define pmap_clear_modify(pg) pmap_clear_attrs(pg, PG_M)
413 #define pmap_clear_reference(pg) pmap_clear_attrs(pg, PG_U)
414 #define pmap_copy(DP,SP,D,L,S)
415 #define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
416 #define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
417 #define pmap_move(DP,SP,D,L,S)
418 #define pmap_phys_address(ppn) x86_ptob(ppn)
419 #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
420
421
422 /*
423 * prototypes
424 */
425
426 void pmap_activate(struct lwp *);
427 void pmap_bootstrap(vaddr_t);
428 bool pmap_clear_attrs(struct vm_page *, unsigned);
429 void pmap_deactivate(struct lwp *);
430 void pmap_page_remove (struct vm_page *);
431 void pmap_remove(struct pmap *, vaddr_t, vaddr_t);
432 bool pmap_test_attrs(struct vm_page *, unsigned);
433 void pmap_write_protect(struct pmap *, vaddr_t, vaddr_t, vm_prot_t);
434 int pmap_exec_fixup(struct vm_map *, struct trapframe *,
435 struct pcb *);
436 void pmap_load(void);
437
438 vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */
439
440 void pmap_tlb_shootdown(pmap_t, vaddr_t, vaddr_t, pt_entry_t);
441 void pmap_tlb_shootwait(void);
442
443 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
444
445 /*
446 * Do idle page zero'ing uncached to avoid polluting the cache.
447 */
448 bool pmap_pageidlezero(paddr_t);
449 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
450
451 /*
452 * inline functions
453 */
454
455 /*ARGSUSED*/
456 static __inline void
457 pmap_remove_all(struct pmap *pmap)
458 {
459 /* Nothing. */
460 }
461
462 /*
463 * pmap_update_pg: flush one page from the TLB (or flush the whole thing
464 * if hardware doesn't support one-page flushing)
465 */
466
467 __inline static void __attribute__((__unused__))
468 pmap_update_pg(vaddr_t va)
469 {
470 #if defined(I386_CPU)
471 if (cpu_class == CPUCLASS_386)
472 tlbflush();
473 else
474 #endif
475 invlpg((u_int) va);
476 }
477
478 /*
479 * pmap_update_2pg: flush two pages from the TLB
480 */
481
482 __inline static void __attribute__((__unused__))
483 pmap_update_2pg(vaddr_t va, vaddr_t vb)
484 {
485 #if defined(I386_CPU)
486 if (cpu_class == CPUCLASS_386)
487 tlbflush();
488 else
489 #endif
490 {
491 invlpg((u_int) va);
492 invlpg((u_int) vb);
493 }
494 }
495
496 /*
497 * pmap_page_protect: change the protection of all recorded mappings
498 * of a managed page
499 *
500 * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
501 * => we only have to worry about making the page more protected.
502 * unprotecting a page is done on-demand at fault time.
503 */
504
505 __inline static void __attribute__((__unused__))
506 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
507 {
508 if ((prot & VM_PROT_WRITE) == 0) {
509 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
510 (void) pmap_clear_attrs(pg, PG_RW);
511 } else {
512 pmap_page_remove(pg);
513 }
514 }
515 }
516
517 /*
518 * pmap_protect: change the protection of pages in a pmap
519 *
520 * => this function is a frontend for pmap_remove/pmap_write_protect
521 * => we only have to worry about making the page more protected.
522 * unprotecting a page is done on-demand at fault time.
523 */
524
525 __inline static void __attribute__((__unused__))
526 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
527 {
528 if ((prot & VM_PROT_WRITE) == 0) {
529 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
530 pmap_write_protect(pmap, sva, eva, prot);
531 } else {
532 pmap_remove(pmap, sva, eva);
533 }
534 }
535 }
536
537 /*
538 * various address inlines
539 *
540 * vtopte: return a pointer to the PTE mapping a VA, works only for
541 * user and PT addresses
542 *
543 * kvtopte: return a pointer to the PTE mapping a kernel VA
544 */
545
546 #include <lib/libkern/libkern.h>
547
548 static __inline pt_entry_t * __attribute__((__unused__))
549 vtopte(vaddr_t va)
550 {
551
552 KASSERT(va < (L2_SLOT_KERN * NBPD_L2));
553
554 return (PTE_BASE + pl1_i(va));
555 }
556
557 static __inline pt_entry_t * __attribute__((__unused__))
558 kvtopte(vaddr_t va)
559 {
560 pd_entry_t *pde;
561
562 KASSERT(va >= (L2_SLOT_KERN * NBPD_L2));
563
564
565 pde = L2_BASE + pl2_i(va);
566 if (*pde & PG_PS)
567 return ((pt_entry_t *)pde);
568
569 return (PTE_BASE + pl1_i(va));
570 }
571
572 #define pmap_pte_set(p, n) x86_atomic_testset_ul(p, n)
573 #define pmap_pte_setbits(p, b) x86_atomic_setbits_l(p, b)
574 #define pmap_pte_clearbits(p, b) x86_atomic_clearbits_l(p, b)
575 #define pmap_cpu_has_pg_n() (cpu_class != CPUCLASS_386)
576 #define pmap_cpu_has_invlpg() (cpu_class != CPUCLASS_386)
577
578 paddr_t vtophys(vaddr_t);
579 vaddr_t pmap_map(vaddr_t, paddr_t, paddr_t, vm_prot_t);
580 void pmap_ldt_cleanup(struct lwp *);
581 void pmap_cpu_init_early(struct cpu_info *);
582 void pmap_cpu_init_late(struct cpu_info *);
583 void sse2_zero_page(void *);
584 void sse2_copy_page(void *, void *);
585
586 /*
587 * Hooks for the pool allocator.
588 */
589 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
590
591 /*
592 * TLB shootdown mailbox.
593 */
594
595 struct pmap_mbox {
596 volatile void *mb_pointer;
597 volatile uintptr_t mb_addr1;
598 volatile uintptr_t mb_addr2;
599 volatile uintptr_t mb_head;
600 volatile uintptr_t mb_tail;
601 volatile uintptr_t mb_global;
602 };
603
604 #endif /* _KERNEL */
605 #endif /* _I386_PMAP_H_ */
606