pmap.h revision 1.90.2.6 1 /* $NetBSD: pmap.h,v 1.90.2.6 2007/10/07 13:22:14 yamt Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgment:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Copyright (c) 2001 Wasabi Systems, Inc.
37 * All rights reserved.
38 *
39 * Written by Frank van der Linden for Wasabi Systems, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 * must display the following acknowledgement:
51 * This product includes software developed for the NetBSD Project by
52 * Wasabi Systems, Inc.
53 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
54 * or promote products derived from this software without specific prior
55 * written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
60 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 * POSSIBILITY OF SUCH DAMAGE.
68 */
69
70 /*
71 * pmap.h: see pmap.c for the history of this pmap module.
72 */
73
74 #ifndef _I386_PMAP_H_
75 #define _I386_PMAP_H_
76
77 #if defined(_KERNEL_OPT)
78 #include "opt_user_ldt.h"
79 #endif
80
81 #include <machine/pte.h>
82 #include <machine/segments.h>
83 #include <machine/atomic.h>
84 #if defined(_KERNEL) || defined(_LKM)
85 #include <machine/cpufunc.h>
86 #endif
87
88 #include <uvm/uvm_object.h>
89
90 /*
91 * see pte.h for a description of i386 MMU terminology and hardware
92 * interface.
93 *
94 * a pmap describes a processes' 4GB virtual address space. this
95 * virtual address space can be broken up into 1024 4MB regions which
96 * are described by PDEs in the PDP. the PDEs are defined as follows:
97 *
98 * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
99 * (the following assumes that KERNBASE is 0xc0000000)
100 *
101 * PDE#s VA range usage
102 * 0->766 0x0 -> 0xbfc00000 user address space
103 * 767 0xbfc00000-> recursive mapping of PDP (used for
104 * 0xc0000000 linear mapping of PTPs)
105 * 768->1023 0xc0000000-> kernel address space (constant
106 * 0xffc00000 across all pmap's/processes)
107 * 1023 0xffc00000-> "alternate" recursive PDP mapping
108 * <end> (for other pmaps)
109 *
110 *
111 * note: a recursive PDP mapping provides a way to map all the PTEs for
112 * a 4GB address space into a linear chunk of virtual memory. in other
113 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
114 * area. the PTE for page 1 is the second int. the very last int in the
115 * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
116 * address).
117 *
118 * all pmap's PD's must have the same values in slots 768->1023 so that
119 * the kernel is always mapped in every process. these values are loaded
120 * into the PD at pmap creation time.
121 *
122 * at any one time only one pmap can be active on a processor. this is
123 * the pmap whose PDP is pointed to by processor register %cr3. this pmap
124 * will have all its PTEs mapped into memory at the recursive mapping
125 * point (slot #767 as show above). when the pmap code wants to find the
126 * PTE for a virtual address, all it has to do is the following:
127 *
128 * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
129 * = 0xbfc00000 + (VA / 4096) * 4
130 *
131 * what happens if the pmap layer is asked to perform an operation
132 * on a pmap that is not the one which is currently active? in that
133 * case we take the PA of the PDP of non-active pmap and put it in
134 * slot 1023 of the active pmap. this causes the non-active pmap's
135 * PTEs to get mapped in the final 4MB of the 4GB address space
136 * (e.g. starting at 0xffc00000).
137 *
138 * the following figure shows the effects of the recursive PDP mapping:
139 *
140 * PDP (%cr3)
141 * +----+
142 * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
143 * | |
144 * | |
145 * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
146 * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
147 * | |
148 * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
149 * +----+
150 *
151 * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
152 * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
153 *
154 * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
155 * PTP:
156 *
157 * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
158 * +----+
159 * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
160 * | |
161 * | |
162 * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
163 * | 768| -> maps contents of first kernel PTP
164 * | |
165 * |1023|
166 * +----+
167 *
168 * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
169 * defined as "PDP_BASE".... within that mapping there are two
170 * defines:
171 * "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
172 * which points back to itself.
173 * "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
174 * establishes the recursive mapping of the alternate pmap.
175 * to set the alternate PDP, one just has to put the correct
176 * PA info in *APDP_PDE.
177 *
178 * note that in the APTE_BASE space, the APDP appears at VA
179 * "APDP_BASE" (0xfffff000).
180 */
181 /* XXX MP should we allocate one APDP_PDE per processor?? */
182
183 /*
184 * Mask to get rid of the sign-extended part of addresses.
185 */
186 #define VA_SIGN_MASK 0
187 #define VA_SIGN_NEG(va) ((va) | VA_SIGN_MASK)
188 /*
189 * XXXfvdl this one's not right.
190 */
191 #define VA_SIGN_POS(va) ((va) & ~VA_SIGN_MASK)
192
193 /*
194 * the following defines identify the slots used as described above.
195 */
196
197 #define L2_SLOT_PTE (KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */
198 #define L2_SLOT_KERN (KERNBASE/NBPD_L2) /* 768: start of kernel space */
199 #define L2_SLOT_KERNBASE L2_SLOT_KERN
200 #define L2_SLOT_APTE 1023 /* 1023: alternative recursive slot */
201
202 #define PDIR_SLOT_KERN L2_SLOT_KERN
203 #define PDIR_SLOT_PTE L2_SLOT_PTE
204 #define PDIR_SLOT_APTE L2_SLOT_APTE
205
206 /*
207 * the following defines give the virtual addresses of various MMU
208 * data structures:
209 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
210 * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
211 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
212 */
213
214 #define PTE_BASE ((pt_entry_t *) (L2_SLOT_PTE * NBPD_L2))
215 #define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((L2_SLOT_APTE * NBPD_L2))))
216
217 #define L1_BASE PTE_BASE
218 #define AL1_BASE APTE_BASE
219
220 #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
221
222 #define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L2_SLOT_PTE * NBPD_L1))
223
224 #define PDP_PDE (L2_BASE + PDIR_SLOT_PTE)
225 #define APDP_PDE (L2_BASE + PDIR_SLOT_APTE)
226
227 #define PDP_BASE L2_BASE
228 #define APDP_BASE AL2_BASE
229
230 /* largest value (-1 for APTP space) */
231 #define NKL2_MAX_ENTRIES (NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
232 #define NKL1_MAX_ENTRIES (unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
233
234 #define NKL2_KIMG_ENTRIES 0 /* XXX unused */
235
236 #define NKL2_START_ENTRIES 0 /* XXX computed on runtime */
237 #define NKL1_START_ENTRIES 0 /* XXX unused */
238
239 #define NTOPLEVEL_PDES (PAGE_SIZE / (sizeof (pd_entry_t)))
240
241 #define NPDPG (PAGE_SIZE / sizeof (pd_entry_t))
242
243 #define ptei(VA) (((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT)
244
245 /*
246 * pl*_pi: index in the ptp page for a pde mapping a VA.
247 * (pl*_i below is the index in the virtual array of all pdes per level)
248 */
249 #define pl1_pi(VA) (((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT)
250 #define pl2_pi(VA) (((VA_SIGN_POS(VA)) & L2_MASK) >> L2_SHIFT)
251 #define pl3_pi(VA) (((VA_SIGN_POS(VA)) & L3_MASK) >> L3_SHIFT)
252 #define pl4_pi(VA) (((VA_SIGN_POS(VA)) & L4_MASK) >> L4_SHIFT)
253
254 /*
255 * pl*_i: generate index into pde/pte arrays in virtual space
256 */
257 #define pl1_i(VA) (((VA_SIGN_POS(VA)) & L1_FRAME) >> L1_SHIFT)
258 #define pl2_i(VA) (((VA_SIGN_POS(VA)) & L2_FRAME) >> L2_SHIFT)
259 #define pl3_i(VA) (((VA_SIGN_POS(VA)) & L3_FRAME) >> L3_SHIFT)
260 #define pl4_i(VA) (((VA_SIGN_POS(VA)) & L4_FRAME) >> L4_SHIFT)
261 #define pl_i(va, lvl) \
262 (((VA_SIGN_POS(va)) & ptp_masks[(lvl)-1]) >> ptp_shifts[(lvl)-1])
263
264 #define PTP_MASK_INITIALIZER { L1_FRAME, L2_FRAME }
265 #define PTP_SHIFT_INITIALIZER { L1_SHIFT, L2_SHIFT }
266 #define NKPTP_INITIALIZER { NKL1_START_ENTRIES, NKL2_START_ENTRIES }
267 #define NKPTPMAX_INITIALIZER { NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
268 #define NBPD_INITIALIZER { NBPD_L1, NBPD_L2 }
269 #define PDES_INITIALIZER { L2_BASE }
270 #define APDES_INITIALIZER { AL2_BASE }
271
272 /*
273 * PTP macros:
274 * a PTP's index is the PD index of the PDE that points to it
275 * a PTP's offset is the byte-offset in the PTE space that this PTP is at
276 * a PTP's VA is the first VA mapped by that PTP
277 */
278
279 #define ptp_va2o(va, lvl) (pl_i(va, (lvl)+1) * PAGE_SIZE)
280
281 #define PTP_LEVELS 2
282
283 /*
284 * PG_AVAIL usage: we make use of the ignored bits of the PTE
285 */
286
287 #define PG_W PG_AVAIL1 /* "wired" mapping */
288 #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
289 #define PG_X PG_AVAIL3 /* executable mapping */
290
291 /*
292 * Number of PTE's per cache line. 4 byte pte, 32-byte cache line
293 * Used to avoid false sharing of cache lines.
294 */
295 #define NPTECL 8
296
297 #ifdef _KERNEL
298 /*
299 * pmap data structures: see pmap.c for details of locking.
300 */
301
302 struct pmap;
303 typedef struct pmap *pmap_t;
304
305 /*
306 * we maintain a list of all non-kernel pmaps
307 */
308
309 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
310
311 /*
312 * the pmap structure
313 *
314 * note that the pm_obj contains the simple_lock, the reference count,
315 * page list, and number of PTPs within the pmap.
316 *
317 * XXX If we ever support processor numbers higher than 31, we'll have
318 * XXX to rethink the CPU mask.
319 */
320
321 struct pmap {
322 struct uvm_object pm_obj[PTP_LEVELS-1]; /* objects for lvl >= 1) */
323 #define pm_lock pm_obj[0].vmobjlock
324 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
325 pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
326 paddr_t pm_pdirpa; /* PA of PD (read-only after create) */
327 struct vm_page *pm_ptphint[PTP_LEVELS-1];
328 /* pointer to a PTP in our pmap */
329 struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
330
331 vaddr_t pm_hiexec; /* highest executable mapping */
332 int pm_flags; /* see below */
333
334 union descriptor *pm_ldt; /* user-set LDT */
335 int pm_ldt_len; /* number of LDT entries */
336 int pm_ldt_sel; /* LDT selector */
337 uint32_t pm_cpus; /* mask of CPUs using pmap */
338 uint32_t pm_kernel_cpus; /* mask of CPUs using kernel part
339 of pmap */
340 };
341
342 /* pm_flags */
343 #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
344
345 /*
346 * for each managed physical page we maintain a list of <PMAP,VA>'s
347 * which it is mapped at. the list is headed by a pv_head structure.
348 * there is one pv_head per managed phys page (allocated at boot time).
349 * the pv_head structure points to a list of pv_entry structures (each
350 * describes one mapping).
351 */
352
353 struct pv_entry { /* locked by its list's pvh_lock */
354 SPLAY_ENTRY(pv_entry) pv_node; /* splay-tree node */
355 struct pmap *pv_pmap; /* the pmap */
356 vaddr_t pv_va; /* the virtual address */
357 struct vm_page *pv_ptp; /* the vm_page of the PTP */
358 struct pmap_cpu *pv_alloc_cpu; /* CPU allocated from */
359 };
360
361 /*
362 * pv_entrys are dynamically allocated in chunks from a single page.
363 * we keep track of how many pv_entrys are in use for each page and
364 * we can free pv_entry pages if needed. there is one lock for the
365 * entire allocation system.
366 */
367
368 struct pv_page_info {
369 TAILQ_ENTRY(pv_page) pvpi_list;
370 struct pv_entry *pvpi_pvfree;
371 int pvpi_nfree;
372 };
373
374 /*
375 * number of pv_entry's in a pv_page
376 * (note: won't work on systems where NPBG isn't a constant)
377 */
378
379 #define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \
380 sizeof(struct pv_entry))
381
382 /*
383 * a pv_page: where pv_entrys are allocated from
384 */
385
386 struct pv_page {
387 struct pv_page_info pvinfo;
388 struct pv_entry pvents[PVE_PER_PVPAGE];
389 };
390
391 /*
392 * global kernel variables
393 */
394
395 /* PDPpaddr: is the physical address of the kernel's PDP */
396 extern u_long PDPpaddr;
397
398 extern struct pmap kernel_pmap_store; /* kernel pmap */
399 extern int nkpde; /* current # of PDEs for kernel */
400 extern int pmap_pg_g; /* do we support PG_G? */
401 extern long nkptp[PTP_LEVELS];
402
403 /*
404 * macros
405 */
406
407 #define pmap_kernel() (&kernel_pmap_store)
408 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
409 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
410
411 #define pmap_clear_modify(pg) pmap_clear_attrs(pg, PG_M)
412 #define pmap_clear_reference(pg) pmap_clear_attrs(pg, PG_U)
413 #define pmap_copy(DP,SP,D,L,S)
414 #define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
415 #define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
416 #define pmap_move(DP,SP,D,L,S)
417 #define pmap_phys_address(ppn) x86_ptob(ppn)
418 #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
419
420
421 /*
422 * prototypes
423 */
424
425 void pmap_activate(struct lwp *);
426 void pmap_bootstrap(vaddr_t);
427 bool pmap_clear_attrs(struct vm_page *, unsigned);
428 void pmap_deactivate(struct lwp *);
429 void pmap_page_remove (struct vm_page *);
430 void pmap_remove(struct pmap *, vaddr_t, vaddr_t);
431 bool pmap_test_attrs(struct vm_page *, unsigned);
432 void pmap_write_protect(struct pmap *, vaddr_t, vaddr_t, vm_prot_t);
433 int pmap_exec_fixup(struct vm_map *, struct trapframe *,
434 struct pcb *);
435 void pmap_load(void);
436
437 vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */
438
439 void pmap_tlb_shootdown(pmap_t, vaddr_t, vaddr_t, pt_entry_t);
440 void pmap_tlb_shootwait(void);
441
442 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
443
444 /*
445 * Do idle page zero'ing uncached to avoid polluting the cache.
446 */
447 bool pmap_pageidlezero(paddr_t);
448 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
449
450 /*
451 * inline functions
452 */
453
454 /*ARGSUSED*/
455 static __inline void
456 pmap_remove_all(struct pmap *pmap)
457 {
458 /* Nothing. */
459 }
460
461 /*
462 * pmap_update_pg: flush one page from the TLB (or flush the whole thing
463 * if hardware doesn't support one-page flushing)
464 */
465
466 __inline static void __attribute__((__unused__))
467 pmap_update_pg(vaddr_t va)
468 {
469 #if defined(I386_CPU)
470 if (cpu_class == CPUCLASS_386)
471 tlbflush();
472 else
473 #endif
474 invlpg((u_int) va);
475 }
476
477 /*
478 * pmap_update_2pg: flush two pages from the TLB
479 */
480
481 __inline static void __attribute__((__unused__))
482 pmap_update_2pg(vaddr_t va, vaddr_t vb)
483 {
484 #if defined(I386_CPU)
485 if (cpu_class == CPUCLASS_386)
486 tlbflush();
487 else
488 #endif
489 {
490 invlpg((u_int) va);
491 invlpg((u_int) vb);
492 }
493 }
494
495 /*
496 * pmap_page_protect: change the protection of all recorded mappings
497 * of a managed page
498 *
499 * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
500 * => we only have to worry about making the page more protected.
501 * unprotecting a page is done on-demand at fault time.
502 */
503
504 __inline static void __attribute__((__unused__))
505 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
506 {
507 if ((prot & VM_PROT_WRITE) == 0) {
508 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
509 (void) pmap_clear_attrs(pg, PG_RW);
510 } else {
511 pmap_page_remove(pg);
512 }
513 }
514 }
515
516 /*
517 * pmap_protect: change the protection of pages in a pmap
518 *
519 * => this function is a frontend for pmap_remove/pmap_write_protect
520 * => we only have to worry about making the page more protected.
521 * unprotecting a page is done on-demand at fault time.
522 */
523
524 __inline static void __attribute__((__unused__))
525 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
526 {
527 if ((prot & VM_PROT_WRITE) == 0) {
528 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
529 pmap_write_protect(pmap, sva, eva, prot);
530 } else {
531 pmap_remove(pmap, sva, eva);
532 }
533 }
534 }
535
536 /*
537 * various address inlines
538 *
539 * vtopte: return a pointer to the PTE mapping a VA, works only for
540 * user and PT addresses
541 *
542 * kvtopte: return a pointer to the PTE mapping a kernel VA
543 */
544
545 #include <lib/libkern/libkern.h>
546
547 static __inline pt_entry_t * __attribute__((__unused__))
548 vtopte(vaddr_t va)
549 {
550
551 KASSERT(va < (L2_SLOT_KERN * NBPD_L2));
552
553 return (PTE_BASE + pl1_i(va));
554 }
555
556 static __inline pt_entry_t * __attribute__((__unused__))
557 kvtopte(vaddr_t va)
558 {
559 pd_entry_t *pde;
560
561 KASSERT(va >= (L2_SLOT_KERN * NBPD_L2));
562
563 pde = L2_BASE + pl2_i(va);
564 if (*pde & PG_PS)
565 return ((pt_entry_t *)pde);
566
567 return (PTE_BASE + pl1_i(va));
568 }
569
570 #define pmap_pte_set(p, n) x86_atomic_testset_ul(p, n)
571 #define pmap_pte_setbits(p, b) x86_atomic_setbits_l(p, b)
572 #define pmap_pte_clearbits(p, b) x86_atomic_clearbits_l(p, b)
573 #define pmap_cpu_has_pg_n() (cpu_class != CPUCLASS_386)
574 #define pmap_cpu_has_invlpg() (cpu_class != CPUCLASS_386)
575
576 paddr_t vtophys(vaddr_t);
577 vaddr_t pmap_map(vaddr_t, paddr_t, paddr_t, vm_prot_t);
578 void pmap_ldt_cleanup(struct lwp *);
579 void pmap_cpu_init_early(struct cpu_info *);
580 void pmap_cpu_init_late(struct cpu_info *);
581 void sse2_zero_page(void *);
582 void sse2_copy_page(void *, void *);
583
584 /*
585 * Hooks for the pool allocator.
586 */
587 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
588
589 /*
590 * TLB shootdown mailbox.
591 */
592
593 struct pmap_mbox {
594 volatile void *mb_pointer;
595 volatile uintptr_t mb_addr1;
596 volatile uintptr_t mb_addr2;
597 volatile uintptr_t mb_head;
598 volatile uintptr_t mb_tail;
599 volatile uintptr_t mb_global;
600 };
601
602 #endif /* _KERNEL */
603 #endif /* _I386_PMAP_H_ */
604