pmap.h revision 1.90.2.8 1 /* $NetBSD: pmap.h,v 1.90.2.8 2007/10/07 13:44:34 yamt Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgment:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Copyright (c) 2001 Wasabi Systems, Inc.
37 * All rights reserved.
38 *
39 * Written by Frank van der Linden for Wasabi Systems, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 * must display the following acknowledgement:
51 * This product includes software developed for the NetBSD Project by
52 * Wasabi Systems, Inc.
53 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
54 * or promote products derived from this software without specific prior
55 * written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
60 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 * POSSIBILITY OF SUCH DAMAGE.
68 */
69
70 /*
71 * pmap.h: see pmap.c for the history of this pmap module.
72 */
73
74 #ifndef _I386_PMAP_H_
75 #define _I386_PMAP_H_
76
77 #if defined(_KERNEL_OPT)
78 #include "opt_user_ldt.h"
79 #endif
80
81 #include <machine/pte.h>
82 #include <machine/segments.h>
83 #include <machine/atomic.h>
84 #if defined(_KERNEL) || defined(_LKM)
85 #include <machine/cpufunc.h>
86 #endif
87
88 #include <uvm/uvm_object.h>
89
90 /*
91 * see pte.h for a description of i386 MMU terminology and hardware
92 * interface.
93 *
94 * a pmap describes a processes' 4GB virtual address space. this
95 * virtual address space can be broken up into 1024 4MB regions which
96 * are described by PDEs in the PDP. the PDEs are defined as follows:
97 *
98 * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
99 * (the following assumes that KERNBASE is 0xc0000000)
100 *
101 * PDE#s VA range usage
102 * 0->766 0x0 -> 0xbfc00000 user address space
103 * 767 0xbfc00000-> recursive mapping of PDP (used for
104 * 0xc0000000 linear mapping of PTPs)
105 * 768->1023 0xc0000000-> kernel address space (constant
106 * 0xffc00000 across all pmap's/processes)
107 * 1023 0xffc00000-> "alternate" recursive PDP mapping
108 * <end> (for other pmaps)
109 *
110 *
111 * note: a recursive PDP mapping provides a way to map all the PTEs for
112 * a 4GB address space into a linear chunk of virtual memory. in other
113 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
114 * area. the PTE for page 1 is the second int. the very last int in the
115 * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
116 * address).
117 *
118 * all pmap's PD's must have the same values in slots 768->1023 so that
119 * the kernel is always mapped in every process. these values are loaded
120 * into the PD at pmap creation time.
121 *
122 * at any one time only one pmap can be active on a processor. this is
123 * the pmap whose PDP is pointed to by processor register %cr3. this pmap
124 * will have all its PTEs mapped into memory at the recursive mapping
125 * point (slot #767 as show above). when the pmap code wants to find the
126 * PTE for a virtual address, all it has to do is the following:
127 *
128 * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
129 * = 0xbfc00000 + (VA / 4096) * 4
130 *
131 * what happens if the pmap layer is asked to perform an operation
132 * on a pmap that is not the one which is currently active? in that
133 * case we take the PA of the PDP of non-active pmap and put it in
134 * slot 1023 of the active pmap. this causes the non-active pmap's
135 * PTEs to get mapped in the final 4MB of the 4GB address space
136 * (e.g. starting at 0xffc00000).
137 *
138 * the following figure shows the effects of the recursive PDP mapping:
139 *
140 * PDP (%cr3)
141 * +----+
142 * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
143 * | |
144 * | |
145 * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
146 * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
147 * | |
148 * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
149 * +----+
150 *
151 * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
152 * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
153 *
154 * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
155 * PTP:
156 *
157 * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
158 * +----+
159 * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
160 * | |
161 * | |
162 * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
163 * | 768| -> maps contents of first kernel PTP
164 * | |
165 * |1023|
166 * +----+
167 *
168 * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
169 * defined as "PDP_BASE".... within that mapping there are two
170 * defines:
171 * "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
172 * which points back to itself.
173 * "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
174 * establishes the recursive mapping of the alternate pmap.
175 * to set the alternate PDP, one just has to put the correct
176 * PA info in *APDP_PDE.
177 *
178 * note that in the APTE_BASE space, the APDP appears at VA
179 * "APDP_BASE" (0xfffff000).
180 */
181 /* XXX MP should we allocate one APDP_PDE per processor?? */
182
183 /*
184 * Mask to get rid of the sign-extended part of addresses.
185 */
186 #define VA_SIGN_MASK 0
187 #define VA_SIGN_NEG(va) ((va) | VA_SIGN_MASK)
188 /*
189 * XXXfvdl this one's not right.
190 */
191 #define VA_SIGN_POS(va) ((va) & ~VA_SIGN_MASK)
192
193 /*
194 * the following defines identify the slots used as described above.
195 */
196
197 #define L2_SLOT_PTE (KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */
198 #define L2_SLOT_KERN (KERNBASE/NBPD_L2) /* 768: start of kernel space */
199 #define L2_SLOT_KERNBASE L2_SLOT_KERN
200 #define L2_SLOT_APTE 1023 /* 1023: alternative recursive slot */
201
202 #define PDIR_SLOT_KERN L2_SLOT_KERN
203 #define PDIR_SLOT_PTE L2_SLOT_PTE
204 #define PDIR_SLOT_APTE L2_SLOT_APTE
205
206 /*
207 * the following defines give the virtual addresses of various MMU
208 * data structures:
209 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
210 * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
211 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
212 */
213
214 #define PTE_BASE ((pt_entry_t *) (L2_SLOT_PTE * NBPD_L2))
215 #define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((L2_SLOT_APTE * NBPD_L2))))
216
217 #define L1_BASE PTE_BASE
218 #define AL1_BASE APTE_BASE
219
220 #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
221
222 #define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L2_SLOT_PTE * NBPD_L1))
223
224 #define PDP_PDE (L2_BASE + PDIR_SLOT_PTE)
225 #define APDP_PDE (L2_BASE + PDIR_SLOT_APTE)
226
227 #define PDP_BASE L2_BASE
228 #define APDP_BASE AL2_BASE
229
230 /* largest value (-1 for APTP space) */
231 #define NKL2_MAX_ENTRIES (NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
232 #define NKL1_MAX_ENTRIES (unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
233
234 #define NKL2_KIMG_ENTRIES 0 /* XXX unused */
235
236 #define NKL2_START_ENTRIES 0 /* XXX computed on runtime */
237 #define NKL1_START_ENTRIES 0 /* XXX unused */
238
239 #define NTOPLEVEL_PDES (PAGE_SIZE / (sizeof (pd_entry_t)))
240
241 #define NPDPG (PAGE_SIZE / sizeof (pd_entry_t))
242
243 #define ptei(VA) (((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT)
244
245 /*
246 * pl*_pi: index in the ptp page for a pde mapping a VA.
247 * (pl*_i below is the index in the virtual array of all pdes per level)
248 */
249 #define pl1_pi(VA) (((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT)
250 #define pl2_pi(VA) (((VA_SIGN_POS(VA)) & L2_MASK) >> L2_SHIFT)
251 #define pl3_pi(VA) (((VA_SIGN_POS(VA)) & L3_MASK) >> L3_SHIFT)
252 #define pl4_pi(VA) (((VA_SIGN_POS(VA)) & L4_MASK) >> L4_SHIFT)
253
254 /*
255 * pl*_i: generate index into pde/pte arrays in virtual space
256 */
257 #define pl1_i(VA) (((VA_SIGN_POS(VA)) & L1_FRAME) >> L1_SHIFT)
258 #define pl2_i(VA) (((VA_SIGN_POS(VA)) & L2_FRAME) >> L2_SHIFT)
259 #define pl3_i(VA) (((VA_SIGN_POS(VA)) & L3_FRAME) >> L3_SHIFT)
260 #define pl4_i(VA) (((VA_SIGN_POS(VA)) & L4_FRAME) >> L4_SHIFT)
261 #define pl_i(va, lvl) \
262 (((VA_SIGN_POS(va)) & ptp_masks[(lvl)-1]) >> ptp_shifts[(lvl)-1])
263
264 #define PTP_MASK_INITIALIZER { L1_FRAME, L2_FRAME }
265 #define PTP_SHIFT_INITIALIZER { L1_SHIFT, L2_SHIFT }
266 #define NKPTP_INITIALIZER { NKL1_START_ENTRIES, NKL2_START_ENTRIES }
267 #define NKPTPMAX_INITIALIZER { NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
268 #define NBPD_INITIALIZER { NBPD_L1, NBPD_L2 }
269 #define PDES_INITIALIZER { L2_BASE }
270 #define APDES_INITIALIZER { AL2_BASE }
271
272 /*
273 * PTP macros:
274 * a PTP's index is the PD index of the PDE that points to it
275 * a PTP's offset is the byte-offset in the PTE space that this PTP is at
276 * a PTP's VA is the first VA mapped by that PTP
277 */
278
279 #define ptp_va2o(va, lvl) (pl_i(va, (lvl)+1) * PAGE_SIZE)
280
281 #define PTP_LEVELS 2
282
283 /*
284 * PG_AVAIL usage: we make use of the ignored bits of the PTE
285 */
286
287 #define PG_W PG_AVAIL1 /* "wired" mapping */
288 #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
289 #define PG_X PG_AVAIL3 /* executable mapping */
290
291 /*
292 * Number of PTE's per cache line. 4 byte pte, 32-byte cache line
293 * Used to avoid false sharing of cache lines.
294 */
295 #define NPTECL 8
296
297 #if defined(_KERNEL)
298 /*
299 * pmap data structures: see pmap.c for details of locking.
300 */
301
302 struct pmap;
303 typedef struct pmap *pmap_t;
304
305 /*
306 * we maintain a list of all non-kernel pmaps
307 */
308
309 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
310
311 /*
312 * the pmap structure
313 *
314 * note that the pm_obj contains the simple_lock, the reference count,
315 * page list, and number of PTPs within the pmap.
316 *
317 * pm_lock is the same as the spinlock for vm object 0. Changes to
318 * the other objects may only be made if that lock has been taken
319 * (the other object locks are only used when uvm_pagealloc is called)
320 *
321 * XXX If we ever support processor numbers higher than 31, we'll have
322 * XXX to rethink the CPU mask.
323 */
324
325 struct pmap {
326 struct uvm_object pm_obj[PTP_LEVELS-1]; /* objects for lvl >= 1) */
327 #define pm_lock pm_obj[0].vmobjlock
328 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
329 pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
330 paddr_t pm_pdirpa; /* PA of PD (read-only after create) */
331 struct vm_page *pm_ptphint[PTP_LEVELS-1];
332 /* pointer to a PTP in our pmap */
333 struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
334
335 vaddr_t pm_hiexec; /* highest executable mapping */
336 int pm_flags; /* see below */
337
338 union descriptor *pm_ldt; /* user-set LDT */
339 int pm_ldt_len; /* number of LDT entries */
340 int pm_ldt_sel; /* LDT selector */
341 uint32_t pm_cpus; /* mask of CPUs using pmap */
342 uint32_t pm_kernel_cpus; /* mask of CPUs using kernel part
343 of pmap */
344 };
345
346 /* pm_flags */
347 #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
348
349 /*
350 * for each managed physical page we maintain a list of <PMAP,VA>'s
351 * which it is mapped at. the list is headed by a pv_head structure.
352 * there is one pv_head per managed phys page (allocated at boot time).
353 * the pv_head structure points to a list of pv_entry structures (each
354 * describes one mapping).
355 */
356
357 struct pv_entry { /* locked by its list's pvh_lock */
358 SPLAY_ENTRY(pv_entry) pv_node; /* splay-tree node */
359 struct pmap *pv_pmap; /* the pmap */
360 vaddr_t pv_va; /* the virtual address */
361 struct vm_page *pv_ptp; /* the vm_page of the PTP */
362 struct pmap_cpu *pv_alloc_cpu; /* CPU allocated from */
363 };
364
365 /*
366 * pv_entrys are dynamically allocated in chunks from a single page.
367 * we keep track of how many pv_entrys are in use for each page and
368 * we can free pv_entry pages if needed. there is one lock for the
369 * entire allocation system.
370 */
371
372 struct pv_page_info {
373 TAILQ_ENTRY(pv_page) pvpi_list;
374 struct pv_entry *pvpi_pvfree;
375 int pvpi_nfree;
376 };
377
378 /*
379 * number of pv_entry's in a pv_page
380 * (note: won't work on systems where NPBG isn't a constant)
381 */
382
383 #define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \
384 sizeof(struct pv_entry))
385
386 /*
387 * a pv_page: where pv_entrys are allocated from
388 */
389
390 struct pv_page {
391 struct pv_page_info pvinfo;
392 struct pv_entry pvents[PVE_PER_PVPAGE];
393 };
394
395 /*
396 * global kernel variables
397 */
398
399 /* PDPpaddr: is the physical address of the kernel's PDP */
400 extern u_long PDPpaddr;
401
402 extern struct pmap kernel_pmap_store; /* kernel pmap */
403 extern int pmap_pg_g; /* do we support PG_G? */
404 extern long nkptp[PTP_LEVELS];
405
406 /*
407 * macros
408 */
409
410 #define pmap_kernel() (&kernel_pmap_store)
411 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
412 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
413
414 #define pmap_clear_modify(pg) pmap_clear_attrs(pg, PG_M)
415 #define pmap_clear_reference(pg) pmap_clear_attrs(pg, PG_U)
416 #define pmap_copy(DP,SP,D,L,S)
417 #define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
418 #define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
419 #define pmap_move(DP,SP,D,L,S)
420 #define pmap_phys_address(ppn) x86_ptob(ppn)
421 #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
422
423
424 /*
425 * prototypes
426 */
427
428 void pmap_activate(struct lwp *);
429 void pmap_bootstrap(vaddr_t);
430 bool pmap_clear_attrs(struct vm_page *, unsigned);
431 void pmap_deactivate(struct lwp *);
432 void pmap_page_remove (struct vm_page *);
433 void pmap_remove(struct pmap *, vaddr_t, vaddr_t);
434 bool pmap_test_attrs(struct vm_page *, unsigned);
435 void pmap_write_protect(struct pmap *, vaddr_t, vaddr_t, vm_prot_t);
436 int pmap_exec_fixup(struct vm_map *, struct trapframe *,
437 struct pcb *);
438 void pmap_load(void);
439
440 vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */
441
442 void pmap_tlb_shootdown(pmap_t, vaddr_t, vaddr_t, pt_entry_t);
443 void pmap_tlb_shootwait(void);
444
445 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
446
447 /*
448 * Do idle page zero'ing uncached to avoid polluting the cache.
449 */
450 bool pmap_pageidlezero(paddr_t);
451 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
452
453 /*
454 * inline functions
455 */
456
457 /*ARGSUSED*/
458 static __inline void
459 pmap_remove_all(struct pmap *pmap)
460 {
461 /* Nothing. */
462 }
463
464 /*
465 * pmap_update_pg: flush one page from the TLB (or flush the whole thing
466 * if hardware doesn't support one-page flushing)
467 */
468
469 __inline static void __attribute__((__unused__))
470 pmap_update_pg(vaddr_t va)
471 {
472 #if defined(I386_CPU)
473 if (cpu_class == CPUCLASS_386)
474 tlbflush();
475 else
476 #endif
477 invlpg((u_int) va);
478 }
479
480 /*
481 * pmap_update_2pg: flush two pages from the TLB
482 */
483
484 __inline static void __attribute__((__unused__))
485 pmap_update_2pg(vaddr_t va, vaddr_t vb)
486 {
487 #if defined(I386_CPU)
488 if (cpu_class == CPUCLASS_386)
489 tlbflush();
490 else
491 #endif
492 {
493 invlpg((u_int) va);
494 invlpg((u_int) vb);
495 }
496 }
497
498 /*
499 * pmap_page_protect: change the protection of all recorded mappings
500 * of a managed page
501 *
502 * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
503 * => we only have to worry about making the page more protected.
504 * unprotecting a page is done on-demand at fault time.
505 */
506
507 __inline static void __attribute__((__unused__))
508 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
509 {
510 if ((prot & VM_PROT_WRITE) == 0) {
511 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
512 (void) pmap_clear_attrs(pg, PG_RW);
513 } else {
514 pmap_page_remove(pg);
515 }
516 }
517 }
518
519 /*
520 * pmap_protect: change the protection of pages in a pmap
521 *
522 * => this function is a frontend for pmap_remove/pmap_write_protect
523 * => we only have to worry about making the page more protected.
524 * unprotecting a page is done on-demand at fault time.
525 */
526
527 __inline static void __attribute__((__unused__))
528 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
529 {
530 if ((prot & VM_PROT_WRITE) == 0) {
531 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
532 pmap_write_protect(pmap, sva, eva, prot);
533 } else {
534 pmap_remove(pmap, sva, eva);
535 }
536 }
537 }
538
539 /*
540 * various address inlines
541 *
542 * vtopte: return a pointer to the PTE mapping a VA, works only for
543 * user and PT addresses
544 *
545 * kvtopte: return a pointer to the PTE mapping a kernel VA
546 */
547
548 #include <lib/libkern/libkern.h>
549
550 static __inline pt_entry_t * __attribute__((__unused__))
551 vtopte(vaddr_t va)
552 {
553
554 KASSERT(va < (L2_SLOT_KERN * NBPD_L2));
555
556 return (PTE_BASE + pl1_i(va));
557 }
558
559 static __inline pt_entry_t * __attribute__((__unused__))
560 kvtopte(vaddr_t va)
561 {
562 pd_entry_t *pde;
563
564 KASSERT(va >= (L2_SLOT_KERN * NBPD_L2));
565
566 pde = L2_BASE + pl2_i(va);
567 if (*pde & PG_PS)
568 return ((pt_entry_t *)pde);
569
570 return (PTE_BASE + pl1_i(va));
571 }
572
573 #define pmap_pte_set(p, n) x86_atomic_testset_ul(p, n)
574 #define pmap_pte_setbits(p, b) x86_atomic_setbits_l(p, b)
575 #define pmap_pte_clearbits(p, b) x86_atomic_clearbits_l(p, b)
576 #define pmap_cpu_has_pg_n() (cpu_class != CPUCLASS_386)
577 #define pmap_cpu_has_invlpg() (cpu_class != CPUCLASS_386)
578
579 paddr_t vtophys(vaddr_t);
580 vaddr_t pmap_map(vaddr_t, paddr_t, paddr_t, vm_prot_t);
581 void pmap_ldt_cleanup(struct lwp *);
582 void pmap_cpu_init_early(struct cpu_info *);
583 void pmap_cpu_init_late(struct cpu_info *);
584 void sse2_zero_page(void *);
585 void sse2_copy_page(void *, void *);
586
587 /*
588 * Hooks for the pool allocator.
589 */
590 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
591
592 /*
593 * TLB shootdown mailbox.
594 */
595
596 struct pmap_mbox {
597 volatile void *mb_pointer;
598 volatile uintptr_t mb_addr1;
599 volatile uintptr_t mb_addr2;
600 volatile uintptr_t mb_head;
601 volatile uintptr_t mb_tail;
602 volatile uintptr_t mb_global;
603 };
604
605 #endif /* _KERNEL */
606 #endif /* _I386_PMAP_H_ */
607