Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.90.2.9
      1 /*	$NetBSD: pmap.h,v 1.90.2.9 2007/10/07 14:56:33 yamt Exp $	*/
      2 
      3 /*
      4  *
      5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgment:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * Copyright (c) 2001 Wasabi Systems, Inc.
     37  * All rights reserved.
     38  *
     39  * Written by Frank van der Linden for Wasabi Systems, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. All advertising materials mentioning features or use of this software
     50  *    must display the following acknowledgement:
     51  *      This product includes software developed for the NetBSD Project by
     52  *      Wasabi Systems, Inc.
     53  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     54  *    or promote products derived from this software without specific prior
     55  *    written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     60  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     67  * POSSIBILITY OF SUCH DAMAGE.
     68  */
     69 
     70 /*
     71  * pmap.h: see pmap.c for the history of this pmap module.
     72  */
     73 
     74 #ifndef	_I386_PMAP_H_
     75 #define	_I386_PMAP_H_
     76 
     77 #if defined(_KERNEL_OPT)
     78 #include "opt_user_ldt.h"
     79 #endif
     80 
     81 #include <machine/pte.h>
     82 #include <machine/segments.h>
     83 #include <machine/atomic.h>
     84 #if defined(_KERNEL) || defined(_LKM)
     85 #include <machine/cpufunc.h>
     86 #endif
     87 
     88 #include <uvm/uvm_object.h>
     89 
     90 /*
     91  * see pte.h for a description of i386 MMU terminology and hardware
     92  * interface.
     93  *
     94  * a pmap describes a processes' 4GB virtual address space.  this
     95  * virtual address space can be broken up into 1024 4MB regions which
     96  * are described by PDEs in the PDP.  the PDEs are defined as follows:
     97  *
     98  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
     99  * (the following assumes that KERNBASE is 0xc0000000)
    100  *
    101  * PDE#s	VA range		usage
    102  * 0->766	0x0 -> 0xbfc00000	user address space
    103  * 767		0xbfc00000->		recursive mapping of PDP (used for
    104  *			0xc0000000	linear mapping of PTPs)
    105  * 768->1023	0xc0000000->		kernel address space (constant
    106  *			0xffc00000	across all pmap's/processes)
    107  * 1023		0xffc00000->		"alternate" recursive PDP mapping
    108  *			<end>		(for other pmaps)
    109  *
    110  *
    111  * note: a recursive PDP mapping provides a way to map all the PTEs for
    112  * a 4GB address space into a linear chunk of virtual memory.  in other
    113  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
    114  * area.  the PTE for page 1 is the second int.  the very last int in the
    115  * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
    116  * address).
    117  *
    118  * all pmap's PD's must have the same values in slots 768->1023 so that
    119  * the kernel is always mapped in every process.  these values are loaded
    120  * into the PD at pmap creation time.
    121  *
    122  * at any one time only one pmap can be active on a processor.  this is
    123  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
    124  * will have all its PTEs mapped into memory at the recursive mapping
    125  * point (slot #767 as show above).  when the pmap code wants to find the
    126  * PTE for a virtual address, all it has to do is the following:
    127  *
    128  * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
    129  *                = 0xbfc00000 + (VA / 4096) * 4
    130  *
    131  * what happens if the pmap layer is asked to perform an operation
    132  * on a pmap that is not the one which is currently active?  in that
    133  * case we take the PA of the PDP of non-active pmap and put it in
    134  * slot 1023 of the active pmap.  this causes the non-active pmap's
    135  * PTEs to get mapped in the final 4MB of the 4GB address space
    136  * (e.g. starting at 0xffc00000).
    137  *
    138  * the following figure shows the effects of the recursive PDP mapping:
    139  *
    140  *   PDP (%cr3)
    141  *   +----+
    142  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    143  *   |    |
    144  *   |    |
    145  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    146  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
    147  *   |    |
    148  *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
    149  *   +----+
    150  *
    151  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    152  * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
    153  *
    154  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    155  * PTP:
    156  *
    157  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    158  *   +----+
    159  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    160  *   |    |
    161  *   |    |
    162  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
    163  *   | 768| -> maps contents of first kernel PTP
    164  *   |    |
    165  *   |1023|
    166  *   +----+
    167  *
    168  * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
    169  * defined as "PDP_BASE".... within that mapping there are two
    170  * defines:
    171  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    172  *      which points back to itself.
    173  *   "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
    174  *      establishes the recursive mapping of the alternate pmap.
    175  *      to set the alternate PDP, one just has to put the correct
    176  *	PA info in *APDP_PDE.
    177  *
    178  * note that in the APTE_BASE space, the APDP appears at VA
    179  * "APDP_BASE" (0xfffff000).
    180  */
    181 /* XXX MP should we allocate one APDP_PDE per processor?? */
    182 
    183 /*
    184  * Mask to get rid of the sign-extended part of addresses.
    185  */
    186 #define VA_SIGN_MASK		0
    187 #define VA_SIGN_NEG(va)		((va) | VA_SIGN_MASK)
    188 /*
    189  * XXXfvdl this one's not right.
    190  */
    191 #define VA_SIGN_POS(va)		((va) & ~VA_SIGN_MASK)
    192 
    193 /*
    194  * the following defines identify the slots used as described above.
    195  */
    196 
    197 #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-1)	/* 767: for recursive PDP map */
    198 #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)	/* 768: start of kernel space */
    199 #define	L2_SLOT_KERNBASE L2_SLOT_KERN
    200 #define L2_SLOT_APTE	1023		/* 1023: alternative recursive slot */
    201 
    202 #define PDIR_SLOT_KERN	L2_SLOT_KERN
    203 #define PDIR_SLOT_PTE	L2_SLOT_PTE
    204 #define PDIR_SLOT_APTE	L2_SLOT_APTE
    205 
    206 /*
    207  * the following defines give the virtual addresses of various MMU
    208  * data structures:
    209  * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
    210  * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
    211  * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
    212  */
    213 
    214 #define PTE_BASE  ((pt_entry_t *) (L2_SLOT_PTE * NBPD_L2))
    215 #define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((L2_SLOT_APTE * NBPD_L2))))
    216 
    217 #define L1_BASE		PTE_BASE
    218 #define AL1_BASE	APTE_BASE
    219 
    220 #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
    221 
    222 #define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L2_SLOT_PTE * NBPD_L1))
    223 
    224 #define PDP_PDE		(L2_BASE + PDIR_SLOT_PTE)
    225 #define APDP_PDE	(L2_BASE + PDIR_SLOT_APTE)
    226 
    227 #define PDP_BASE	L2_BASE
    228 #define APDP_BASE	AL2_BASE
    229 
    230 /* largest value (-1 for APTP space) */
    231 #define NKL2_MAX_ENTRIES	(NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
    232 #define NKL1_MAX_ENTRIES	(unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
    233 
    234 #define NKL2_KIMG_ENTRIES	0	/* XXX unused */
    235 
    236 #define NKL2_START_ENTRIES	0	/* XXX computed on runtime */
    237 #define NKL1_START_ENTRIES	0	/* XXX unused */
    238 
    239 #define NTOPLEVEL_PDES		(PAGE_SIZE / (sizeof (pd_entry_t)))
    240 
    241 #define NPDPG			(PAGE_SIZE / sizeof (pd_entry_t))
    242 
    243 #define ptei(VA)	(((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT)
    244 
    245 /*
    246  * pl*_pi: index in the ptp page for a pde mapping a VA.
    247  * (pl*_i below is the index in the virtual array of all pdes per level)
    248  */
    249 #define pl1_pi(VA)	(((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT)
    250 #define pl2_pi(VA)	(((VA_SIGN_POS(VA)) & L2_MASK) >> L2_SHIFT)
    251 #define pl3_pi(VA)	(((VA_SIGN_POS(VA)) & L3_MASK) >> L3_SHIFT)
    252 #define pl4_pi(VA)	(((VA_SIGN_POS(VA)) & L4_MASK) >> L4_SHIFT)
    253 
    254 /*
    255  * pl*_i: generate index into pde/pte arrays in virtual space
    256  */
    257 #define pl1_i(VA)	(((VA_SIGN_POS(VA)) & L1_FRAME) >> L1_SHIFT)
    258 #define pl2_i(VA)	(((VA_SIGN_POS(VA)) & L2_FRAME) >> L2_SHIFT)
    259 #define pl3_i(VA)	(((VA_SIGN_POS(VA)) & L3_FRAME) >> L3_SHIFT)
    260 #define pl4_i(VA)	(((VA_SIGN_POS(VA)) & L4_FRAME) >> L4_SHIFT)
    261 #define pl_i(va, lvl) \
    262         (((VA_SIGN_POS(va)) & ptp_masks[(lvl)-1]) >> ptp_shifts[(lvl)-1])
    263 
    264 #define PTP_MASK_INITIALIZER	{ L1_FRAME, L2_FRAME }
    265 #define PTP_SHIFT_INITIALIZER	{ L1_SHIFT, L2_SHIFT }
    266 #define NKPTP_INITIALIZER	{ NKL1_START_ENTRIES, NKL2_START_ENTRIES }
    267 #define NKPTPMAX_INITIALIZER	{ NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
    268 #define NBPD_INITIALIZER	{ NBPD_L1, NBPD_L2 }
    269 #define PDES_INITIALIZER	{ L2_BASE }
    270 #define APDES_INITIALIZER	{ AL2_BASE }
    271 
    272 /*
    273  * PTP macros:
    274  *   a PTP's index is the PD index of the PDE that points to it
    275  *   a PTP's offset is the byte-offset in the PTE space that this PTP is at
    276  *   a PTP's VA is the first VA mapped by that PTP
    277  */
    278 
    279 #define ptp_va2o(va, lvl)	(pl_i(va, (lvl)+1) * PAGE_SIZE)
    280 
    281 #define PTP_LEVELS	2
    282 
    283 /*
    284  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    285  */
    286 
    287 #define PG_W		PG_AVAIL1	/* "wired" mapping */
    288 #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
    289 #define PG_X		PG_AVAIL3	/* executable mapping */
    290 
    291 /*
    292  * Number of PTE's per cache line.  4 byte pte, 32-byte cache line
    293  * Used to avoid false sharing of cache lines.
    294  */
    295 #define NPTECL		8
    296 
    297 #if defined(_KERNEL)
    298 /*
    299  * pmap data structures: see pmap.c for details of locking.
    300  */
    301 
    302 struct pmap;
    303 typedef struct pmap *pmap_t;
    304 
    305 /*
    306  * we maintain a list of all non-kernel pmaps
    307  */
    308 
    309 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
    310 
    311 /*
    312  * the pmap structure
    313  *
    314  * note that the pm_obj contains the simple_lock, the reference count,
    315  * page list, and number of PTPs within the pmap.
    316  *
    317  * pm_lock is the same as the spinlock for vm object 0. Changes to
    318  * the other objects may only be made if that lock has been taken
    319  * (the other object locks are only used when uvm_pagealloc is called)
    320  *
    321  * XXX If we ever support processor numbers higher than 31, we'll have
    322  * XXX to rethink the CPU mask.
    323  */
    324 
    325 struct pmap {
    326 	struct uvm_object pm_obj[PTP_LEVELS-1]; /* objects for lvl >= 1) */
    327 #define	pm_lock	pm_obj[0].vmobjlock
    328 	LIST_ENTRY(pmap) pm_list;	/* list (lck by pm_list lock) */
    329 	pd_entry_t *pm_pdir;		/* VA of PD (lck by object lock) */
    330 	paddr_t pm_pdirpa;		/* PA of PD (read-only after create) */
    331 	struct vm_page *pm_ptphint[PTP_LEVELS-1];
    332 					/* pointer to a PTP in our pmap */
    333 	struct pmap_statistics pm_stats;  /* pmap stats (lck by object lock) */
    334 
    335 	vaddr_t pm_hiexec;		/* highest executable mapping */
    336 	int pm_flags;			/* see below */
    337 
    338 	union descriptor *pm_ldt;	/* user-set LDT */
    339 	int pm_ldt_len;			/* number of LDT entries */
    340 	int pm_ldt_sel;			/* LDT selector */
    341 	uint32_t pm_cpus;		/* mask of CPUs using pmap */
    342 	uint32_t pm_kernel_cpus;	/* mask of CPUs using kernel part
    343 					 of pmap */
    344 };
    345 
    346 /* pm_flags */
    347 #define	PMF_USER_LDT	0x01	/* pmap has user-set LDT */
    348 
    349 /*
    350  * for each managed physical page we maintain a list of <PMAP,VA>'s
    351  * which it is mapped at.  the list is headed by a pv_head structure.
    352  * there is one pv_head per managed phys page (allocated at boot time).
    353  * the pv_head structure points to a list of pv_entry structures (each
    354  * describes one mapping).
    355  */
    356 
    357 struct pv_entry {			/* locked by its list's pvh_lock */
    358 	SPLAY_ENTRY(pv_entry) pv_node;	/* splay-tree node */
    359 	struct pmap *pv_pmap;		/* the pmap */
    360 	vaddr_t pv_va;			/* the virtual address */
    361 	struct vm_page *pv_ptp;		/* the vm_page of the PTP */
    362 	struct pmap_cpu *pv_alloc_cpu;	/* CPU allocated from */
    363 };
    364 
    365 /*
    366  * pv_entrys are dynamically allocated in chunks from a single page.
    367  * we keep track of how many pv_entrys are in use for each page and
    368  * we can free pv_entry pages if needed.  there is one lock for the
    369  * entire allocation system.
    370  */
    371 
    372 struct pv_page_info {
    373 	TAILQ_ENTRY(pv_page) pvpi_list;
    374 	struct pv_entry *pvpi_pvfree;
    375 	int pvpi_nfree;
    376 };
    377 
    378 /*
    379  * number of pv_entry's in a pv_page
    380  * (note: won't work on systems where NPBG isn't a constant)
    381  */
    382 
    383 #define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \
    384 			sizeof(struct pv_entry))
    385 
    386 /*
    387  * a pv_page: where pv_entrys are allocated from
    388  */
    389 
    390 struct pv_page {
    391 	struct pv_page_info pvinfo;
    392 	struct pv_entry pvents[PVE_PER_PVPAGE];
    393 };
    394 
    395 /*
    396  * global kernel variables
    397  */
    398 
    399 /* PDPpaddr: is the physical address of the kernel's PDP */
    400 extern u_long PDPpaddr;
    401 
    402 extern struct pmap kernel_pmap_store;	/* kernel pmap */
    403 extern int pmap_pg_g;			/* do we support PG_G? */
    404 extern long nkptp[PTP_LEVELS];
    405 
    406 /*
    407  * macros
    408  */
    409 
    410 #define	pmap_kernel()			(&kernel_pmap_store)
    411 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    412 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    413 
    414 #define pmap_clear_modify(pg)		pmap_clear_attrs(pg, PG_M)
    415 #define pmap_clear_reference(pg)	pmap_clear_attrs(pg, PG_U)
    416 #define pmap_copy(DP,SP,D,L,S)
    417 #define pmap_is_modified(pg)		pmap_test_attrs(pg, PG_M)
    418 #define pmap_is_referenced(pg)		pmap_test_attrs(pg, PG_U)
    419 #define pmap_move(DP,SP,D,L,S)
    420 #define pmap_phys_address(ppn)		x86_ptob(ppn)
    421 #define pmap_valid_entry(E) 		((E) & PG_V) /* is PDE or PTE valid? */
    422 
    423 
    424 /*
    425  * prototypes
    426  */
    427 
    428 void		pmap_activate(struct lwp *);
    429 void		pmap_bootstrap(vaddr_t);
    430 bool		pmap_clear_attrs(struct vm_page *, unsigned);
    431 void		pmap_deactivate(struct lwp *);
    432 void		pmap_page_remove (struct vm_page *);
    433 void		pmap_remove(struct pmap *, vaddr_t, vaddr_t);
    434 bool		pmap_test_attrs(struct vm_page *, unsigned);
    435 void		pmap_write_protect(struct pmap *, vaddr_t, vaddr_t, vm_prot_t);
    436 int		pmap_exec_fixup(struct vm_map *, struct trapframe *,
    437 		    struct pcb *);
    438 void		pmap_load(void);
    439 
    440 vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */
    441 
    442 void	pmap_tlb_shootdown(pmap_t, vaddr_t, vaddr_t, pt_entry_t);
    443 void	pmap_tlb_shootwait(void);
    444 
    445 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    446 
    447 /*
    448  * Do idle page zero'ing uncached to avoid polluting the cache.
    449  */
    450 bool	pmap_pageidlezero(paddr_t);
    451 #define	PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    452 
    453 /*
    454  * inline functions
    455  */
    456 
    457 /*ARGSUSED*/
    458 static __inline void
    459 pmap_remove_all(struct pmap *pmap)
    460 {
    461 	/* Nothing. */
    462 }
    463 
    464 /*
    465  * pmap_update_pg: flush one page from the TLB (or flush the whole thing
    466  *	if hardware doesn't support one-page flushing)
    467  */
    468 
    469 __inline static void __attribute__((__unused__))
    470 pmap_update_pg(vaddr_t va)
    471 {
    472 #if defined(I386_CPU)
    473 	if (cpu_class == CPUCLASS_386)
    474 		tlbflush();
    475 	else
    476 #endif
    477 		invlpg(va);
    478 }
    479 
    480 /*
    481  * pmap_update_2pg: flush two pages from the TLB
    482  */
    483 
    484 __inline static void __attribute__((__unused__))
    485 pmap_update_2pg(vaddr_t va, vaddr_t vb)
    486 {
    487 #if defined(I386_CPU)
    488 	if (cpu_class == CPUCLASS_386)
    489 		tlbflush();
    490 	else
    491 #endif
    492 	{
    493 		invlpg(va);
    494 		invlpg(vb);
    495 	}
    496 }
    497 
    498 /*
    499  * pmap_page_protect: change the protection of all recorded mappings
    500  *	of a managed page
    501  *
    502  * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
    503  * => we only have to worry about making the page more protected.
    504  *	unprotecting a page is done on-demand at fault time.
    505  */
    506 
    507 __inline static void __attribute__((__unused__))
    508 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
    509 {
    510 	if ((prot & VM_PROT_WRITE) == 0) {
    511 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    512 			(void) pmap_clear_attrs(pg, PG_RW);
    513 		} else {
    514 			pmap_page_remove(pg);
    515 		}
    516 	}
    517 }
    518 
    519 /*
    520  * pmap_protect: change the protection of pages in a pmap
    521  *
    522  * => this function is a frontend for pmap_remove/pmap_write_protect
    523  * => we only have to worry about making the page more protected.
    524  *	unprotecting a page is done on-demand at fault time.
    525  */
    526 
    527 __inline static void __attribute__((__unused__))
    528 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
    529 {
    530 	if ((prot & VM_PROT_WRITE) == 0) {
    531 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    532 			pmap_write_protect(pmap, sva, eva, prot);
    533 		} else {
    534 			pmap_remove(pmap, sva, eva);
    535 		}
    536 	}
    537 }
    538 
    539 /*
    540  * various address inlines
    541  *
    542  *  vtopte: return a pointer to the PTE mapping a VA, works only for
    543  *  user and PT addresses
    544  *
    545  *  kvtopte: return a pointer to the PTE mapping a kernel VA
    546  */
    547 
    548 #include <lib/libkern/libkern.h>
    549 
    550 static __inline pt_entry_t * __attribute__((__unused__))
    551 vtopte(vaddr_t va)
    552 {
    553 
    554 	KASSERT(va < (L2_SLOT_KERN * NBPD_L2));
    555 
    556 	return (PTE_BASE + pl1_i(va));
    557 }
    558 
    559 static __inline pt_entry_t * __attribute__((__unused__))
    560 kvtopte(vaddr_t va)
    561 {
    562 	pd_entry_t *pde;
    563 
    564 	KASSERT(va >= (L2_SLOT_KERN * NBPD_L2));
    565 
    566 	pde = L2_BASE + pl2_i(va);
    567 	if (*pde & PG_PS)
    568 		return ((pt_entry_t *)pde);
    569 
    570 	return (PTE_BASE + pl1_i(va));
    571 }
    572 
    573 #define pmap_pte_set(p, n)		x86_atomic_testset_ul(p, n)
    574 #define pmap_pte_setbits(p, b)		x86_atomic_setbits_l(p, b)
    575 #define pmap_pte_clearbits(p, b)	x86_atomic_clearbits_l(p, b)
    576 #define pmap_cpu_has_pg_n()		(cpu_class != CPUCLASS_386)
    577 #define pmap_cpu_has_invlpg()		(cpu_class != CPUCLASS_386)
    578 
    579 paddr_t vtophys(vaddr_t);
    580 vaddr_t	pmap_map(vaddr_t, paddr_t, paddr_t, vm_prot_t);
    581 void	pmap_ldt_cleanup(struct lwp *);
    582 void	pmap_cpu_init_early(struct cpu_info *);
    583 void	pmap_cpu_init_late(struct cpu_info *);
    584 void	sse2_zero_page(void *);
    585 void	sse2_copy_page(void *, void *);
    586 
    587 /*
    588  * Hooks for the pool allocator.
    589  */
    590 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
    591 
    592 /*
    593  * TLB shootdown mailbox.
    594  */
    595 
    596 struct pmap_mbox {
    597 	volatile void		*mb_pointer;
    598 	volatile uintptr_t	mb_addr1;
    599 	volatile uintptr_t	mb_addr2;
    600 	volatile uintptr_t	mb_head;
    601 	volatile uintptr_t	mb_tail;
    602 	volatile uintptr_t	mb_global;
    603 };
    604 
    605 #endif /* _KERNEL */
    606 #endif	/* _I386_PMAP_H_ */
    607