Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.92
      1 /*	$NetBSD: pmap.h,v 1.92 2007/10/17 17:33:22 ad Exp $	*/
      2 
      3 /*
      4  *
      5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgment:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * pmap.h: see pmap.c for the history of this pmap module.
     37  */
     38 
     39 #ifndef	_I386_PMAP_H_
     40 #define	_I386_PMAP_H_
     41 
     42 #if defined(_KERNEL_OPT)
     43 #include "opt_user_ldt.h"
     44 #include "opt_largepages.h"
     45 #endif
     46 
     47 #include <machine/pte.h>
     48 #include <machine/segments.h>
     49 #include <machine/atomic.h>
     50 #if defined(_KERNEL)
     51 #include <machine/cpufunc.h>
     52 #endif
     53 
     54 #include <uvm/uvm_object.h>
     55 
     56 /*
     57  * see pte.h for a description of i386 MMU terminology and hardware
     58  * interface.
     59  *
     60  * a pmap describes a processes' 4GB virtual address space.  this
     61  * virtual address space can be broken up into 1024 4MB regions which
     62  * are described by PDEs in the PDP.  the PDEs are defined as follows:
     63  *
     64  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
     65  * (the following assumes that KERNBASE is 0xc0000000)
     66  *
     67  * PDE#s	VA range		usage
     68  * 0->766	0x0 -> 0xbfc00000	user address space
     69  * 767		0xbfc00000->		recursive mapping of PDP (used for
     70  *			0xc0000000	linear mapping of PTPs)
     71  * 768->1023	0xc0000000->		kernel address space (constant
     72  *			0xffc00000	across all pmap's/processes)
     73  * 1023		0xffc00000->		"alternate" recursive PDP mapping
     74  *			<end>		(for other pmaps)
     75  *
     76  *
     77  * note: a recursive PDP mapping provides a way to map all the PTEs for
     78  * a 4GB address space into a linear chunk of virtual memory.  in other
     79  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
     80  * area.  the PTE for page 1 is the second int.  the very last int in the
     81  * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
     82  * address).
     83  *
     84  * all pmap's PD's must have the same values in slots 768->1023 so that
     85  * the kernel is always mapped in every process.  these values are loaded
     86  * into the PD at pmap creation time.
     87  *
     88  * at any one time only one pmap can be active on a processor.  this is
     89  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
     90  * will have all its PTEs mapped into memory at the recursive mapping
     91  * point (slot #767 as show above).  when the pmap code wants to find the
     92  * PTE for a virtual address, all it has to do is the following:
     93  *
     94  * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
     95  *                = 0xbfc00000 + (VA / 4096) * 4
     96  *
     97  * what happens if the pmap layer is asked to perform an operation
     98  * on a pmap that is not the one which is currently active?  in that
     99  * case we take the PA of the PDP of non-active pmap and put it in
    100  * slot 1023 of the active pmap.  this causes the non-active pmap's
    101  * PTEs to get mapped in the final 4MB of the 4GB address space
    102  * (e.g. starting at 0xffc00000).
    103  *
    104  * the following figure shows the effects of the recursive PDP mapping:
    105  *
    106  *   PDP (%cr3)
    107  *   +----+
    108  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    109  *   |    |
    110  *   |    |
    111  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    112  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
    113  *   |    |
    114  *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
    115  *   +----+
    116  *
    117  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    118  * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
    119  *
    120  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    121  * PTP:
    122  *
    123  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    124  *   +----+
    125  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    126  *   |    |
    127  *   |    |
    128  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
    129  *   | 768| -> maps contents of first kernel PTP
    130  *   |    |
    131  *   |1023|
    132  *   +----+
    133  *
    134  * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
    135  * defined as "PDP_BASE".... within that mapping there are two
    136  * defines:
    137  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    138  *      which points back to itself.
    139  *   "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
    140  *      establishes the recursive mapping of the alternate pmap.
    141  *      to set the alternate PDP, one just has to put the correct
    142  *	PA info in *APDP_PDE.
    143  *
    144  * note that in the APTE_BASE space, the APDP appears at VA
    145  * "APDP_BASE" (0xfffff000).
    146  */
    147 /* XXX MP should we allocate one APDP_PDE per processor?? */
    148 
    149 /*
    150  * the following defines identify the slots used as described above.
    151  */
    152 
    153 #define PDSLOT_PTE	((KERNBASE/NBPD)-1) /* 767: for recursive PDP map */
    154 #define PDSLOT_KERN	(KERNBASE/NBPD)	    /* 768: start of kernel space */
    155 #define PDSLOT_APTE	((unsigned)1023) /* 1023: alternative recursive slot */
    156 
    157 /*
    158  * the following defines give the virtual addresses of various MMU
    159  * data structures:
    160  * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
    161  * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
    162  * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
    163  */
    164 
    165 #define PTE_BASE	((pt_entry_t *)  (PDSLOT_PTE * NBPD) )
    166 #define APTE_BASE	((pt_entry_t *)  (PDSLOT_APTE * NBPD) )
    167 #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * PAGE_SIZE)))
    168 #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * PAGE_SIZE)))
    169 #define PDP_PDE		(PDP_BASE + PDSLOT_PTE)
    170 #define APDP_PDE	(PDP_BASE + PDSLOT_APTE)
    171 
    172 /*
    173  * the follow define determines how many PTPs should be set up for the
    174  * kernel by locore.S at boot time.  this should be large enough to
    175  * get the VM system running.  once the VM system is running, the
    176  * pmap module can add more PTPs to the kernel area on demand.
    177  */
    178 
    179 #ifndef NKPTP
    180 #define NKPTP		0	/* 16MB to start */
    181 #endif
    182 #define NKPTP_MIN	2	/* smallest value we allow */
    183 #define NKPTP_MAX	(1024 - (KERNBASE/NBPD) - 1)
    184 				/* largest value (-1 for APTP space) */
    185 
    186 /*
    187  * pdei/ptei: generate index into PDP/PTP from a VA
    188  */
    189 #define	pdei(VA)	(((VA) & PD_MASK) >> PDSHIFT)
    190 #define	ptei(VA)	(((VA) & PT_MASK) >> PGSHIFT)
    191 
    192 /*
    193  * PTP macros:
    194  *   a PTP's index is the PD index of the PDE that points to it
    195  *   a PTP's offset is the byte-offset in the PTE space that this PTP is at
    196  *   a PTP's VA is the first VA mapped by that PTP
    197  *
    198  * note that PAGE_SIZE == number of bytes in a PTP (4096 bytes == 1024 entries)
    199  *           NBPD == number of bytes a PTP can map (4MB)
    200  */
    201 
    202 #define ptp_i2o(I)	((I) * PAGE_SIZE)	/* index => offset */
    203 #define ptp_o2i(O)	((O) / PAGE_SIZE)	/* offset => index */
    204 #define ptp_i2v(I)	((I) * NBPD)	/* index => VA */
    205 #define ptp_v2i(V)	((V) / NBPD)	/* VA => index (same as pdei) */
    206 
    207 /*
    208  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    209  */
    210 
    211 #define PG_W		PG_AVAIL1	/* "wired" mapping */
    212 #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
    213 #define PG_X		PG_AVAIL3	/* executable mapping */
    214 
    215 /*
    216  * Number of PTE's per cache line.  4 byte pte, 32-byte cache line
    217  * Used to avoid false sharing of cache lines.
    218  */
    219 #define NPTECL			8
    220 
    221 #ifdef _KERNEL
    222 /*
    223  * pmap data structures: see pmap.c for details of locking.
    224  */
    225 
    226 struct pmap;
    227 typedef struct pmap *pmap_t;
    228 
    229 /*
    230  * we maintain a list of all non-kernel pmaps
    231  */
    232 
    233 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
    234 
    235 /*
    236  * the pmap structure
    237  *
    238  * note that the pm_obj contains the simple_lock, the reference count,
    239  * page list, and number of PTPs within the pmap.
    240  *
    241  * XXX If we ever support processor numbers higher than 31, we'll have
    242  * XXX to rethink the CPU mask.
    243  */
    244 
    245 struct pmap {
    246 	struct uvm_object pm_obj;	/* object (lck by object lock) */
    247 #define	pm_lock	pm_obj.vmobjlock
    248 	LIST_ENTRY(pmap) pm_list;	/* list (lck by pm_list lock) */
    249 	pd_entry_t *pm_pdir;		/* VA of PD (lck by object lock) */
    250 	uint32_t pm_pdirpa;		/* PA of PD (read-only after create) */
    251 	struct vm_page *pm_ptphint;	/* pointer to a PTP in our pmap */
    252 	struct pmap_statistics pm_stats;  /* pmap stats (lck by object lock) */
    253 
    254 	vaddr_t pm_hiexec;		/* highest executable mapping */
    255 	int pm_flags;			/* see below */
    256 
    257 	union descriptor *pm_ldt;	/* user-set LDT */
    258 	int pm_ldt_len;			/* number of LDT entries */
    259 	int pm_ldt_sel;			/* LDT selector */
    260 	uint32_t pm_cpus;		/* mask of CPUs using pmap */
    261 	uint32_t pm_kernel_cpus;	/* mask of CPUs using kernel part
    262 					 of pmap */
    263 };
    264 
    265 /* pm_flags */
    266 #define	PMF_USER_LDT	0x01	/* pmap has user-set LDT */
    267 
    268 /*
    269  * for each managed physical page we maintain a list of <PMAP,VA>'s
    270  * which it is mapped at.  the list is headed by a pv_head structure.
    271  * there is one pv_head per managed phys page (allocated at boot time).
    272  * the pv_head structure points to a list of pv_entry structures (each
    273  * describes one mapping).
    274  */
    275 
    276 struct pv_entry {			/* locked by its list's pvh_lock */
    277 	SPLAY_ENTRY(pv_entry) pv_node;	/* splay-tree node */
    278 	struct pmap *pv_pmap;		/* the pmap */
    279 	vaddr_t pv_va;			/* the virtual address */
    280 	struct vm_page *pv_ptp;		/* the vm_page of the PTP */
    281 	struct pmap_cpu *pv_alloc_cpu;	/* CPU allocated from */
    282 };
    283 
    284 /*
    285  * pv_entrys are dynamically allocated in chunks from a single page.
    286  * we keep track of how many pv_entrys are in use for each page and
    287  * we can free pv_entry pages if needed.  there is one lock for the
    288  * entire allocation system.
    289  */
    290 
    291 struct pv_page_info {
    292 	TAILQ_ENTRY(pv_page) pvpi_list;
    293 	struct pv_entry *pvpi_pvfree;
    294 	int pvpi_nfree;
    295 };
    296 
    297 /*
    298  * number of pv_entry's in a pv_page
    299  * (note: won't work on systems where NPBG isn't a constant)
    300  */
    301 
    302 #define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \
    303 			sizeof(struct pv_entry))
    304 
    305 /*
    306  * a pv_page: where pv_entrys are allocated from
    307  */
    308 
    309 struct pv_page {
    310 	struct pv_page_info pvinfo;
    311 	struct pv_entry pvents[PVE_PER_PVPAGE];
    312 };
    313 
    314 /*
    315  * global kernel variables
    316  */
    317 
    318 /* PDPpaddr: is the physical address of the kernel's PDP */
    319 extern u_long PDPpaddr;
    320 
    321 extern struct pmap kernel_pmap_store;	/* kernel pmap */
    322 extern int nkpde;			/* current # of PDEs for kernel */
    323 extern int pmap_pg_g;			/* do we support PG_G? */
    324 
    325 /*
    326  * macros
    327  */
    328 
    329 #define	pmap_kernel()			(&kernel_pmap_store)
    330 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    331 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    332 
    333 #define pmap_clear_modify(pg)		pmap_clear_attrs(pg, PG_M)
    334 #define pmap_clear_reference(pg)	pmap_clear_attrs(pg, PG_U)
    335 #define pmap_copy(DP,SP,D,L,S)
    336 #define pmap_is_modified(pg)		pmap_test_attrs(pg, PG_M)
    337 #define pmap_is_referenced(pg)		pmap_test_attrs(pg, PG_U)
    338 #define pmap_move(DP,SP,D,L,S)
    339 #define pmap_phys_address(ppn)		x86_ptob(ppn)
    340 #define pmap_valid_entry(E) 		((E) & PG_V) /* is PDE or PTE valid? */
    341 
    342 
    343 /*
    344  * prototypes
    345  */
    346 
    347 void		pmap_activate(struct lwp *);
    348 void		pmap_bootstrap(vaddr_t);
    349 bool		pmap_clear_attrs(struct vm_page *, int);
    350 void		pmap_deactivate(struct lwp *);
    351 void		pmap_deactivate2(struct lwp *);
    352 void		pmap_page_remove (struct vm_page *);
    353 void		pmap_remove(struct pmap *, vaddr_t, vaddr_t);
    354 bool		pmap_test_attrs(struct vm_page *, int);
    355 void		pmap_write_protect(struct pmap *, vaddr_t, vaddr_t, vm_prot_t);
    356 int		pmap_exec_fixup(struct vm_map *, struct trapframe *,
    357 		    struct pcb *);
    358 void		pmap_load(void);
    359 
    360 vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */
    361 
    362 void	pmap_tlb_shootdown(pmap_t, vaddr_t, vaddr_t, pt_entry_t);
    363 void	pmap_tlb_shootwait(void);
    364 
    365 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    366 
    367 /*
    368  * Do idle page zero'ing uncached to avoid polluting the cache.
    369  */
    370 bool	pmap_pageidlezero(paddr_t);
    371 #define	PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    372 
    373 /*
    374  * inline functions
    375  */
    376 
    377 /*ARGSUSED*/
    378 static __inline void
    379 pmap_remove_all(struct pmap *pmap)
    380 {
    381 	/* Nothing. */
    382 }
    383 
    384 /*
    385  * pmap_update_pg: flush one page from the TLB (or flush the whole thing
    386  *	if hardware doesn't support one-page flushing)
    387  */
    388 
    389 __inline static void __attribute__((__unused__))
    390 pmap_update_pg(vaddr_t va)
    391 {
    392 #if defined(I386_CPU)
    393 	if (cpu_class == CPUCLASS_386)
    394 		tlbflush();
    395 	else
    396 #endif
    397 		invlpg((u_int) va);
    398 }
    399 
    400 /*
    401  * pmap_update_2pg: flush two pages from the TLB
    402  */
    403 
    404 __inline static void __attribute__((__unused__))
    405 pmap_update_2pg(vaddr_t va, vaddr_t vb)
    406 {
    407 #if defined(I386_CPU)
    408 	if (cpu_class == CPUCLASS_386)
    409 		tlbflush();
    410 	else
    411 #endif
    412 	{
    413 		invlpg((u_int) va);
    414 		invlpg((u_int) vb);
    415 	}
    416 }
    417 
    418 /*
    419  * pmap_page_protect: change the protection of all recorded mappings
    420  *	of a managed page
    421  *
    422  * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
    423  * => we only have to worry about making the page more protected.
    424  *	unprotecting a page is done on-demand at fault time.
    425  */
    426 
    427 __inline static void __attribute__((__unused__))
    428 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
    429 {
    430 	if ((prot & VM_PROT_WRITE) == 0) {
    431 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    432 			(void) pmap_clear_attrs(pg, PG_RW);
    433 		} else {
    434 			pmap_page_remove(pg);
    435 		}
    436 	}
    437 }
    438 
    439 /*
    440  * pmap_protect: change the protection of pages in a pmap
    441  *
    442  * => this function is a frontend for pmap_remove/pmap_write_protect
    443  * => we only have to worry about making the page more protected.
    444  *	unprotecting a page is done on-demand at fault time.
    445  */
    446 
    447 __inline static void __attribute__((__unused__))
    448 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
    449 {
    450 	if ((prot & VM_PROT_WRITE) == 0) {
    451 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    452 			pmap_write_protect(pmap, sva, eva, prot);
    453 		} else {
    454 			pmap_remove(pmap, sva, eva);
    455 		}
    456 	}
    457 }
    458 
    459 /*
    460  * various address inlines
    461  *
    462  *  vtopte: return a pointer to the PTE mapping a VA, works only for
    463  *  user and PT addresses
    464  *
    465  *  kvtopte: return a pointer to the PTE mapping a kernel VA
    466  */
    467 
    468 #include <lib/libkern/libkern.h>
    469 
    470 static __inline pt_entry_t * __attribute__((__unused__))
    471 vtopte(vaddr_t va)
    472 {
    473 
    474 	KASSERT(va < (PDSLOT_KERN << PDSHIFT));
    475 
    476 	return (PTE_BASE + x86_btop(va));
    477 }
    478 
    479 static __inline pt_entry_t * __attribute__((__unused__))
    480 kvtopte(vaddr_t va)
    481 {
    482 
    483 	KASSERT(va >= (PDSLOT_KERN << PDSHIFT));
    484 
    485 #ifdef LARGEPAGES
    486 	{
    487 		pd_entry_t *pde;
    488 
    489 		pde = PDP_BASE + pdei(va);
    490 		if (*pde & PG_PS)
    491 			return ((pt_entry_t *)pde);
    492 	}
    493 #endif
    494 
    495 	return (PTE_BASE + x86_btop(va));
    496 }
    497 
    498 #define pmap_pte_set(p, n)		x86_atomic_testset_ul(p, n)
    499 #define pmap_pte_setbits(p, b)		x86_atomic_setbits_l(p, b)
    500 #define pmap_pte_clearbits(p, b)	x86_atomic_clearbits_l(p, b)
    501 #define pmap_cpu_has_pg_n()		(cpu_class != CPUCLASS_386)
    502 #define pmap_cpu_has_invlpg()		(cpu_class != CPUCLASS_386)
    503 
    504 paddr_t vtophys(vaddr_t);
    505 vaddr_t	pmap_map(vaddr_t, paddr_t, paddr_t, vm_prot_t);
    506 void	pmap_ldt_cleanup(struct lwp *);
    507 void	pmap_cpu_init_early(struct cpu_info *);
    508 void	pmap_cpu_init_late(struct cpu_info *);
    509 void	sse2_zero_page(void *);
    510 void	sse2_copy_page(void *, void *);
    511 
    512 /*
    513  * Hooks for the pool allocator.
    514  */
    515 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
    516 
    517 /*
    518  * TLB shootdown mailbox.
    519  */
    520 
    521 struct pmap_mbox {
    522 	volatile void		*mb_pointer;
    523 	volatile uintptr_t	mb_addr1;
    524 	volatile uintptr_t	mb_addr2;
    525 	volatile uintptr_t	mb_head;
    526 	volatile uintptr_t	mb_tail;
    527 	volatile uintptr_t	mb_global;
    528 };
    529 
    530 #endif /* _KERNEL */
    531 #endif	/* _I386_PMAP_H_ */
    532