Home | History | Annotate | Line # | Download | only in include
pte.h revision 1.22
      1 /*	$NetBSD: pte.h,v 1.22 2010/04/06 20:43:57 jld Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Frank van der Linden for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  *
     40  * Copyright (c) 1997 Charles D. Cranor and Washington University.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgment:
     53  *      This product includes software developed by Charles D. Cranor and
     54  *      Washington University.
     55  * 4. The name of the author may not be used to endorse or promote products
     56  *    derived from this software without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     59  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     60  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     61  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     62  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     63  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     64  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     65  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     66  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     67  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     68  */
     69 
     70 /*
     71  * pte.h rewritten by chuck based on the jolitz version, plus random
     72  * info on the pentium and other processors found on the net.   the
     73  * goal of this rewrite is to provide enough documentation on the MMU
     74  * hardware that the reader will be able to understand it without having
     75  * to refer to a hardware manual.
     76  */
     77 
     78 #ifndef _I386_PTE_H_
     79 #define _I386_PTE_H_
     80 #ifdef _KERNEL_OPT
     81 #include "opt_xen.h"
     82 #endif
     83 
     84 /*
     85  * i386 MMU hardware structure (without PAE extension):
     86  *
     87  * the i386 MMU is a two-level MMU which maps 4GB of virtual memory.
     88  * the pagesize is 4K (4096 [0x1000] bytes), although newer pentium
     89  * processors can support a 4MB pagesize as well.
     90  *
     91  * the first level table (segment table?) is called a "page directory"
     92  * and it contains 1024 page directory entries (PDEs).   each PDE is
     93  * 4 bytes (an int), so a PD fits in a single 4K page.   this page is
     94  * the page directory page (PDP).  each PDE in a PDP maps 4MB of space
     95  * (1024 * 4MB = 4GB).   a PDE contains the physical address of the
     96  * second level table: the page table.   or, if 4MB pages are being used,
     97  * then the PDE contains the PA of the 4MB page being mapped.
     98  *
     99  * a page table consists of 1024 page table entries (PTEs).  each PTE is
    100  * 4 bytes (an int), so a page table also fits in a single 4K page.  a
    101  * 4K page being used as a page table is called a page table page (PTP).
    102  * each PTE in a PTP maps one 4K page (1024 * 4K = 4MB).   a PTE contains
    103  * the physical address of the page it maps and some flag bits (described
    104  * below).
    105  *
    106  * the processor has a special register, "cr3", which points to the
    107  * the PDP which is currently controlling the mappings of the virtual
    108  * address space.
    109  *
    110  * the following picture shows the translation process for a 4K page:
    111  *
    112  * %cr3 register [PA of PDP]
    113  *      |
    114  *      |
    115  *      |   bits <31-22> of VA         bits <21-12> of VA   bits <11-0>
    116  *      |   index the PDP (0 - 1023)   index the PTP        are the page offset
    117  *      |         |                           |                  |
    118  *      |         v                           |                  |
    119  *      +--->+----------+                     |                  |
    120  *           | PD Page  |   PA of             v                  |
    121  *           |          |---PTP-------->+------------+           |
    122  *           | 1024 PDE |               | page table |--PTE--+   |
    123  *           | entries  |               | (aka PTP)  |       |   |
    124  *           +----------+               | 1024 PTE   |       |   |
    125  *                                      | entries    |       |   |
    126  *                                      +------------+       |   |
    127  *                                                           |   |
    128  *                                                bits <31-12>   bits <11-0>
    129  *                                                p h y s i c a l  a d d r
    130  *
    131  * the i386 caches PTEs in a TLB.   it is important to flush out old
    132  * TLB mappings when making a change to a mappings.   writing to the
    133  * %cr3 will flush the entire TLB.    newer processors also have an
    134  * instruction that will invalidate the mapping of a single page (which
    135  * is useful if you are changing a single mappings because it preserves
    136  * all the cached TLB entries).
    137  *
    138  * as shows, bits 31-12 of the PTE contain PA of the page being mapped.
    139  * the rest of the PTE is defined as follows:
    140  *   bit#	name	use
    141  *   11		n/a	available for OS use, hardware ignores it
    142  *   10		n/a	available for OS use, hardware ignores it
    143  *   9		n/a	available for OS use, hardware ignores it
    144  *   8		G	global bit (see discussion below)
    145  *   7		PS	page size [for PDEs] (0=4k, 1=4M <if supported>)
    146  *   6		D	dirty (modified) page
    147  *   5		A	accessed (referenced) page
    148  *   4		PCD	cache disable
    149  *   3		PWT	prevent write through (cache)
    150  *   2		U/S	user/supervisor bit (0=supervisor only, 1=both u&s)
    151  *   1		R/W	read/write bit (0=read only, 1=read-write)
    152  *   0		P	present (valid)
    153  *
    154  * notes:
    155  *  - PS is only supported on newer processors
    156  *  - PTEs with the G bit are global in the sense that they are not
    157  *    flushed from the TLB when %cr3 is written (to flush, use the
    158  *    "flush single page" instruction).   this is only supported on
    159  *    newer processors.    this bit can be used to keep the kernel's
    160  *    TLB entries around while context switching.   since the kernel
    161  *    is mapped into all processes at the same place it does not make
    162  *    sense to flush these entries when switching from one process'
    163  *    pmap to another.
    164  *
    165  * The PAE extension extends the size of the PTE to 64 bits (52bits physical
    166  * address) and is compatible with the amd64 PTE format. The first level
    167  * maps 2M, the second 1G, so a third level page table is introduced to
    168  * map the 4GB virtual address space. This PD has only 4 entries.
    169  * We can't use recursive mapping at level 3 to map the PD pages, as this
    170  * would eat one GB of address space. In addition, Xen imposes restrictions
    171  * on the entries we put in the L3 page (for example, the page pointed to by
    172  * the last slot can't be shared among different L3 pages), which makes
    173  * handling this L3 page in the same way we do for L2 on i386 (or L4 on amd64)
    174  * difficult. For most things we'll just pretend to have only 2 levels,
    175  * with the 2 high bits of the L2 index being in fact the index in the
    176  * L3.
    177  */
    178 
    179 #if !defined(_LOCORE)
    180 
    181 /*
    182  * here we define the data types for PDEs and PTEs
    183  */
    184 #ifdef PAE
    185 typedef uint64_t pd_entry_t;		/* PDE */
    186 typedef uint64_t pt_entry_t;		/* PTE */
    187 #else
    188 typedef uint32_t pd_entry_t;		/* PDE */
    189 typedef uint32_t pt_entry_t;		/* PTE */
    190 #endif
    191 
    192 #endif
    193 
    194 /*
    195  * now we define various for playing with virtual addresses
    196  */
    197 
    198 #ifdef PAE
    199 #define	L1_SHIFT	12
    200 #define	L2_SHIFT	21
    201 #define	L3_SHIFT	30
    202 #define	NBPD_L1		(1ULL << L1_SHIFT) /* # bytes mapped by L1 ent (4K) */
    203 #define	NBPD_L2		(1ULL << L2_SHIFT) /* # bytes mapped by L2 ent (2MB) */
    204 #define	NBPD_L3		(1ULL << L3_SHIFT) /* # bytes mapped by L3 ent (1GB) */
    205 
    206 #define	L3_MASK		0xc0000000
    207 #define	L2_REALMASK	0x3fe00000
    208 #define	L2_MASK		(L2_REALMASK | L3_MASK)
    209 #define	L1_MASK		0x001ff000
    210 
    211 #define	L3_FRAME	(L3_MASK)
    212 #define	L2_FRAME	(L3_FRAME | L2_MASK)
    213 #define	L1_FRAME	(L2_FRAME|L1_MASK)
    214 
    215 #define	PG_FRAME	0x000ffffffffff000ULL /* page frame mask */
    216 #define	PG_LGFRAME	0x000fffffffe00000ULL /* large (2MB) page frame mask */
    217 
    218 /* macros to get real L2 and L3 index, from our "extended" L2 index */
    219 #define l2tol3(idx)	((idx) >> (L3_SHIFT - L2_SHIFT))
    220 #define l2tol2(idx)	((idx) & (L2_REALMASK >>  L2_SHIFT))
    221 #else /* PAE */
    222 #define	L1_SHIFT	12
    223 #define	L2_SHIFT	22
    224 #define	NBPD_L1		(1UL << L1_SHIFT) /* # bytes mapped by L1 ent (4K) */
    225 #define	NBPD_L2		(1UL << L2_SHIFT) /* # bytes mapped by L2 ent (4MB) */
    226 
    227 #define L2_MASK		0xffc00000
    228 #define L1_MASK		0x003ff000
    229 
    230 #define L2_FRAME	(L2_MASK)
    231 #define L1_FRAME	(L2_FRAME|L1_MASK)
    232 
    233 #define	PG_FRAME	0xfffff000	/* page frame mask */
    234 #define	PG_LGFRAME	0xffc00000	/* large (4MB) page frame mask */
    235 
    236 #endif /* PAE */
    237 /*
    238  * here we define the bits of the PDE/PTE, as described above:
    239  *
    240  * XXXCDC: need to rename these (PG_u == ugly).
    241  */
    242 
    243 #define	PG_V		0x00000001	/* valid entry */
    244 #define	PG_RO		0x00000000	/* read-only page */
    245 #define	PG_RW		0x00000002	/* read-write page */
    246 #define	PG_u		0x00000004	/* user accessible page */
    247 #define	PG_PROT		0x00000806	/* all protection bits */
    248 #define	PG_N		0x00000018	/* non-cacheable */
    249 #define	PG_U		0x00000020	/* has been used */
    250 #define	PG_M		0x00000040	/* has been modified */
    251 #define PG_PS		0x00000080	/* 4MB page size */
    252 #define PG_G		0x00000100	/* global, don't TLB flush */
    253 #define PG_AVAIL1	0x00000200	/* ignored by hardware */
    254 #define PG_AVAIL2	0x00000400	/* ignored by hardware */
    255 #define PG_AVAIL3	0x00000800	/* ignored by hardware */
    256 
    257 /*
    258  * various short-hand protection codes
    259  */
    260 
    261 #define	PG_KR		0x00000000	/* kernel read-only */
    262 #define	PG_KW		0x00000002	/* kernel read-write */
    263 
    264 #ifdef PAE
    265 #define	PG_NX		0x8000000000000000 /* No-execute */
    266 #else
    267 #define	PG_NX		0		/* dummy */
    268 #endif
    269 
    270 /*
    271  * page protection exception bits
    272  */
    273 
    274 #define PGEX_P		0x01	/* protection violation (vs. no mapping) */
    275 #define PGEX_W		0x02	/* exception during a write cycle */
    276 #define PGEX_U		0x04	/* exception while in user mode (upl) */
    277 
    278 #endif /* _I386_PTE_H_ */
    279