1 1.19 riastrad /* $NetBSD: glxsb.c,v 1.19 2022/05/22 11:39:26 riastradh Exp $ */ 2 1.1 jmcneill /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */ 3 1.1 jmcneill 4 1.1 jmcneill /* 5 1.1 jmcneill * Copyright (c) 2006 Tom Cosgrove <tom (at) openbsd.org> 6 1.1 jmcneill * Copyright (c) 2003, 2004 Theo de Raadt 7 1.1 jmcneill * Copyright (c) 2003 Jason Wright 8 1.1 jmcneill * 9 1.1 jmcneill * Permission to use, copy, modify, and distribute this software for any 10 1.1 jmcneill * purpose with or without fee is hereby granted, provided that the above 11 1.1 jmcneill * copyright notice and this permission notice appear in all copies. 12 1.1 jmcneill * 13 1.1 jmcneill * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 1.1 jmcneill * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 1.1 jmcneill * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 1.1 jmcneill * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 1.1 jmcneill * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 1.1 jmcneill * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 1.1 jmcneill * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 1.1 jmcneill */ 21 1.1 jmcneill 22 1.1 jmcneill /* 23 1.1 jmcneill * Driver for the security block on the AMD Geode LX processors 24 1.1 jmcneill * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf 25 1.1 jmcneill */ 26 1.1 jmcneill 27 1.1 jmcneill #include <sys/cdefs.h> 28 1.19 riastrad __KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.19 2022/05/22 11:39:26 riastradh Exp $"); 29 1.3 lukem 30 1.1 jmcneill #include <sys/param.h> 31 1.1 jmcneill #include <sys/systm.h> 32 1.1 jmcneill #include <sys/device.h> 33 1.1 jmcneill #include <sys/malloc.h> 34 1.1 jmcneill #include <sys/mbuf.h> 35 1.1 jmcneill #include <sys/types.h> 36 1.1 jmcneill #include <sys/callout.h> 37 1.4 ad #include <sys/bus.h> 38 1.10 tls #include <sys/cprng.h> 39 1.13 riastrad #include <sys/rndsource.h> 40 1.1 jmcneill 41 1.4 ad #include <machine/cpufunc.h> 42 1.1 jmcneill 43 1.1 jmcneill #include <dev/pci/pcivar.h> 44 1.1 jmcneill #include <dev/pci/pcidevs.h> 45 1.1 jmcneill 46 1.1 jmcneill #include <opencrypto/cryptodev.h> 47 1.1 jmcneill 48 1.1 jmcneill #define SB_GLD_MSR_CAP 0x58002000 /* RO - Capabilities */ 49 1.1 jmcneill #define SB_GLD_MSR_CONFIG 0x58002001 /* RW - Master Config */ 50 1.1 jmcneill #define SB_GLD_MSR_SMI 0x58002002 /* RW - SMI */ 51 1.1 jmcneill #define SB_GLD_MSR_ERROR 0x58002003 /* RW - Error */ 52 1.1 jmcneill #define SB_GLD_MSR_PM 0x58002004 /* RW - Power Mgmt */ 53 1.1 jmcneill #define SB_GLD_MSR_DIAG 0x58002005 /* RW - Diagnostic */ 54 1.1 jmcneill #define SB_GLD_MSR_CTRL 0x58002006 /* RW - Security Block Cntrl */ 55 1.1 jmcneill 56 1.1 jmcneill /* For GLD_MSR_CTRL: */ 57 1.1 jmcneill #define SB_GMC_DIV0 0x0000 /* AES update divisor values */ 58 1.1 jmcneill #define SB_GMC_DIV1 0x0001 59 1.1 jmcneill #define SB_GMC_DIV2 0x0002 60 1.1 jmcneill #define SB_GMC_DIV3 0x0003 61 1.1 jmcneill #define SB_GMC_DIV_MASK 0x0003 62 1.1 jmcneill #define SB_GMC_SBI 0x0004 /* AES swap bits */ 63 1.1 jmcneill #define SB_GMC_SBY 0x0008 /* AES swap bytes */ 64 1.1 jmcneill #define SB_GMC_TW 0x0010 /* Time write (EEPROM) */ 65 1.1 jmcneill #define SB_GMC_T_SEL0 0x0000 /* RNG post-proc: none */ 66 1.1 jmcneill #define SB_GMC_T_SEL1 0x0100 /* RNG post-proc: LFSR */ 67 1.1 jmcneill #define SB_GMC_T_SEL2 0x0200 /* RNG post-proc: whitener */ 68 1.1 jmcneill #define SB_GMC_T_SEL3 0x0300 /* RNG LFSR+whitener */ 69 1.1 jmcneill #define SB_GMC_T_SEL_MASK 0x0300 70 1.1 jmcneill #define SB_GMC_T_NE 0x0400 /* Noise (generator) Enable */ 71 1.1 jmcneill #define SB_GMC_T_TM 0x0800 /* RNG test mode */ 72 1.1 jmcneill /* (deterministic) */ 73 1.1 jmcneill 74 1.1 jmcneill /* Security Block configuration/control registers (offsets from base) */ 75 1.1 jmcneill 76 1.1 jmcneill #define SB_CTL_A 0x0000 /* RW - SB Control A */ 77 1.1 jmcneill #define SB_CTL_B 0x0004 /* RW - SB Control B */ 78 1.1 jmcneill #define SB_AES_INT 0x0008 /* RW - SB AES Interrupt */ 79 1.1 jmcneill #define SB_SOURCE_A 0x0010 /* RW - Source A */ 80 1.1 jmcneill #define SB_DEST_A 0x0014 /* RW - Destination A */ 81 1.1 jmcneill #define SB_LENGTH_A 0x0018 /* RW - Length A */ 82 1.1 jmcneill #define SB_SOURCE_B 0x0020 /* RW - Source B */ 83 1.1 jmcneill #define SB_DEST_B 0x0024 /* RW - Destination B */ 84 1.1 jmcneill #define SB_LENGTH_B 0x0028 /* RW - Length B */ 85 1.1 jmcneill #define SB_WKEY 0x0030 /* WO - Writable Key 0-3 */ 86 1.1 jmcneill #define SB_WKEY_0 0x0030 /* WO - Writable Key 0 */ 87 1.1 jmcneill #define SB_WKEY_1 0x0034 /* WO - Writable Key 1 */ 88 1.1 jmcneill #define SB_WKEY_2 0x0038 /* WO - Writable Key 2 */ 89 1.1 jmcneill #define SB_WKEY_3 0x003C /* WO - Writable Key 3 */ 90 1.1 jmcneill #define SB_CBC_IV 0x0040 /* RW - CBC IV 0-3 */ 91 1.1 jmcneill #define SB_CBC_IV_0 0x0040 /* RW - CBC IV 0 */ 92 1.1 jmcneill #define SB_CBC_IV_1 0x0044 /* RW - CBC IV 1 */ 93 1.1 jmcneill #define SB_CBC_IV_2 0x0048 /* RW - CBC IV 2 */ 94 1.1 jmcneill #define SB_CBC_IV_3 0x004C /* RW - CBC IV 3 */ 95 1.1 jmcneill #define SB_RANDOM_NUM 0x0050 /* RW - Random Number */ 96 1.1 jmcneill #define SB_RANDOM_NUM_STATUS 0x0054 /* RW - Random Number Status */ 97 1.1 jmcneill #define SB_EEPROM_COMM 0x0800 /* RW - EEPROM Command */ 98 1.1 jmcneill #define SB_EEPROM_ADDR 0x0804 /* RW - EEPROM Address */ 99 1.1 jmcneill #define SB_EEPROM_DATA 0x0808 /* RW - EEPROM Data */ 100 1.1 jmcneill #define SB_EEPROM_SEC_STATE 0x080C /* RW - EEPROM Security State */ 101 1.1 jmcneill 102 1.1 jmcneill /* For SB_CTL_A and _B */ 103 1.1 jmcneill #define SB_CTL_ST 0x0001 /* Start operation (enc/dec) */ 104 1.1 jmcneill #define SB_CTL_ENC 0x0002 /* Encrypt (0 is decrypt) */ 105 1.1 jmcneill #define SB_CTL_DEC 0x0000 /* Decrypt */ 106 1.1 jmcneill #define SB_CTL_WK 0x0004 /* Use writable key (we set) */ 107 1.1 jmcneill #define SB_CTL_DC 0x0008 /* Destination coherent */ 108 1.1 jmcneill #define SB_CTL_SC 0x0010 /* Source coherent */ 109 1.1 jmcneill #define SB_CTL_CBC 0x0020 /* CBC (0 is ECB) */ 110 1.1 jmcneill 111 1.1 jmcneill /* For SB_AES_INT */ 112 1.1 jmcneill #define SB_AI_DISABLE_AES_A 0x0001 /* Disable AES A compl int */ 113 1.1 jmcneill #define SB_AI_ENABLE_AES_A 0x0000 /* Enable AES A compl int */ 114 1.1 jmcneill #define SB_AI_DISABLE_AES_B 0x0002 /* Disable AES B compl int */ 115 1.1 jmcneill #define SB_AI_ENABLE_AES_B 0x0000 /* Enable AES B compl int */ 116 1.1 jmcneill #define SB_AI_DISABLE_EEPROM 0x0004 /* Disable EEPROM op comp int */ 117 1.1 jmcneill #define SB_AI_ENABLE_EEPROM 0x0000 /* Enable EEPROM op compl int */ 118 1.1 jmcneill #define SB_AI_AES_A_COMPLETE 0x0100 /* AES A operation complete */ 119 1.1 jmcneill #define SB_AI_AES_B_COMPLETE 0x0200 /* AES B operation complete */ 120 1.1 jmcneill #define SB_AI_EEPROM_COMPLETE 0x0400 /* EEPROM operation complete */ 121 1.1 jmcneill 122 1.1 jmcneill #define SB_RNS_TRNG_VALID 0x0001 /* in SB_RANDOM_NUM_STATUS */ 123 1.1 jmcneill 124 1.1 jmcneill #define SB_MEM_SIZE 0x0810 /* Size of memory block */ 125 1.1 jmcneill 126 1.1 jmcneill #define SB_AES_ALIGN 0x0010 /* Source and dest buffers */ 127 1.1 jmcneill /* must be 16-byte aligned */ 128 1.1 jmcneill #define SB_AES_BLOCK_SIZE 0x0010 129 1.1 jmcneill 130 1.1 jmcneill /* 131 1.1 jmcneill * The Geode LX security block AES acceleration doesn't perform scatter- 132 1.1 jmcneill * gather: it just takes source and destination addresses. Therefore the 133 1.1 jmcneill * plain- and ciphertexts need to be contiguous. To this end, we allocate 134 1.1 jmcneill * a buffer for both, and accept the overhead of copying in and out. If 135 1.1 jmcneill * the number of bytes in one operation is bigger than allowed for by the 136 1.1 jmcneill * buffer (buffer is twice the size of the max length, as it has both input 137 1.1 jmcneill * and output) then we have to perform multiple encryptions/decryptions. 138 1.1 jmcneill */ 139 1.1 jmcneill #define GLXSB_MAX_AES_LEN 16384 140 1.1 jmcneill 141 1.1 jmcneill struct glxsb_dma_map { 142 1.1 jmcneill bus_dmamap_t dma_map; 143 1.1 jmcneill bus_dma_segment_t dma_seg; 144 1.1 jmcneill int dma_nsegs; 145 1.1 jmcneill int dma_size; 146 1.1 jmcneill void * dma_vaddr; 147 1.1 jmcneill uint32_t dma_paddr; 148 1.1 jmcneill }; 149 1.1 jmcneill struct glxsb_session { 150 1.1 jmcneill uint32_t ses_key[4]; 151 1.1 jmcneill int ses_klen; 152 1.1 jmcneill int ses_used; 153 1.1 jmcneill }; 154 1.1 jmcneill 155 1.1 jmcneill struct glxsb_softc { 156 1.6 xtraeme device_t sc_dev; 157 1.1 jmcneill bus_space_tag_t sc_iot; 158 1.1 jmcneill bus_space_handle_t sc_ioh; 159 1.1 jmcneill struct callout sc_co; 160 1.1 jmcneill 161 1.1 jmcneill bus_dma_tag_t sc_dmat; 162 1.1 jmcneill struct glxsb_dma_map sc_dma; 163 1.1 jmcneill int32_t sc_cid; 164 1.1 jmcneill int sc_nsessions; 165 1.1 jmcneill struct glxsb_session *sc_sessions; 166 1.1 jmcneill 167 1.10 tls krndsource_t sc_rnd_source; 168 1.1 jmcneill }; 169 1.1 jmcneill 170 1.6 xtraeme int glxsb_match(device_t, cfdata_t, void *); 171 1.6 xtraeme void glxsb_attach(device_t, device_t, void *); 172 1.1 jmcneill void glxsb_rnd(void *); 173 1.1 jmcneill 174 1.6 xtraeme CFATTACH_DECL_NEW(glxsb, sizeof(struct glxsb_softc), 175 1.6 xtraeme glxsb_match, glxsb_attach, NULL, NULL); 176 1.1 jmcneill 177 1.1 jmcneill #define GLXSB_SESSION(sid) ((sid) & 0x0fffffff) 178 1.1 jmcneill #define GLXSB_SID(crd,ses) (((crd) << 28) | ((ses) & 0x0fffffff)) 179 1.1 jmcneill 180 1.1 jmcneill int glxsb_crypto_setup(struct glxsb_softc *); 181 1.1 jmcneill int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *); 182 1.1 jmcneill int glxsb_crypto_process(void *, struct cryptop *, int); 183 1.19 riastrad void glxsb_crypto_freesession(void *, uint64_t); 184 1.1 jmcneill static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t, 185 1.1 jmcneill uint32_t, void *, int, void *); 186 1.1 jmcneill 187 1.1 jmcneill int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *); 188 1.1 jmcneill void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *); 189 1.1 jmcneill void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *); 190 1.1 jmcneill void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *); 191 1.1 jmcneill 192 1.1 jmcneill int 193 1.6 xtraeme glxsb_match(device_t parent, cfdata_t match, void *aux) 194 1.1 jmcneill { 195 1.1 jmcneill struct pci_attach_args *pa = aux; 196 1.1 jmcneill 197 1.1 jmcneill if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD && 198 1.1 jmcneill PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES) 199 1.1 jmcneill return (1); 200 1.1 jmcneill 201 1.1 jmcneill return (0); 202 1.1 jmcneill } 203 1.1 jmcneill 204 1.1 jmcneill void 205 1.6 xtraeme glxsb_attach(device_t parent, device_t self, void *aux) 206 1.1 jmcneill { 207 1.6 xtraeme struct glxsb_softc *sc = device_private(self); 208 1.1 jmcneill struct pci_attach_args *pa = aux; 209 1.1 jmcneill bus_addr_t membase; 210 1.1 jmcneill bus_size_t memsize; 211 1.1 jmcneill uint64_t msr; 212 1.1 jmcneill uint32_t intr; 213 1.1 jmcneill 214 1.1 jmcneill msr = rdmsr(SB_GLD_MSR_CAP); 215 1.1 jmcneill if ((msr & 0xFFFF00) != 0x130400) { 216 1.14 msaitoh aprint_error(": unknown ID 0x%x\n", 217 1.14 msaitoh (int)((msr & 0xFFFF00) >> 16)); 218 1.1 jmcneill return; 219 1.1 jmcneill } 220 1.1 jmcneill 221 1.1 jmcneill /* printf(": revision %d", (int) (msr & 0xFF)); */ 222 1.1 jmcneill 223 1.1 jmcneill /* Map in the security block configuration/control registers */ 224 1.1 jmcneill if (pci_mapreg_map(pa, PCI_MAPREG_START, 225 1.1 jmcneill PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, 226 1.1 jmcneill &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) { 227 1.14 msaitoh aprint_error(": can't find mem space\n"); 228 1.1 jmcneill return; 229 1.1 jmcneill } 230 1.1 jmcneill 231 1.6 xtraeme sc->sc_dev = self; 232 1.6 xtraeme 233 1.1 jmcneill /* 234 1.1 jmcneill * Configure the Security Block. 235 1.1 jmcneill * 236 1.1 jmcneill * We want to enable the noise generator (T_NE), and enable the 237 1.1 jmcneill * linear feedback shift register and whitener post-processing 238 1.1 jmcneill * (T_SEL = 3). Also ensure that test mode (deterministic values) 239 1.1 jmcneill * is disabled. 240 1.1 jmcneill */ 241 1.1 jmcneill msr = rdmsr(SB_GLD_MSR_CTRL); 242 1.1 jmcneill msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK); 243 1.1 jmcneill msr |= SB_GMC_T_NE | SB_GMC_T_SEL3; 244 1.1 jmcneill #if 0 245 1.1 jmcneill msr |= SB_GMC_SBI | SB_GMC_SBY; /* for AES, if necessary */ 246 1.1 jmcneill #endif 247 1.1 jmcneill wrmsr(SB_GLD_MSR_CTRL, msr); 248 1.1 jmcneill 249 1.6 xtraeme rnd_attach_source(&sc->sc_rnd_source, device_xname(self), 250 1.12 tls RND_TYPE_RNG, RND_FLAG_COLLECT_VALUE); 251 1.1 jmcneill 252 1.1 jmcneill /* Install a periodic collector for the "true" (AMD's word) RNG */ 253 1.2 ad callout_init(&sc->sc_co, 0); 254 1.1 jmcneill callout_setfunc(&sc->sc_co, glxsb_rnd, sc); 255 1.1 jmcneill glxsb_rnd(sc); 256 1.11 christos aprint_normal(": RNG"); 257 1.1 jmcneill 258 1.1 jmcneill /* We don't have an interrupt handler, so disable completion INTs */ 259 1.1 jmcneill intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B | 260 1.1 jmcneill SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE | 261 1.1 jmcneill SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE; 262 1.1 jmcneill bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr); 263 1.1 jmcneill 264 1.1 jmcneill sc->sc_dmat = pa->pa_dmat; 265 1.1 jmcneill 266 1.1 jmcneill if (glxsb_crypto_setup(sc)) 267 1.11 christos aprint_normal(" AES"); 268 1.1 jmcneill 269 1.11 christos aprint_normal("\n"); 270 1.1 jmcneill } 271 1.1 jmcneill 272 1.1 jmcneill void 273 1.1 jmcneill glxsb_rnd(void *v) 274 1.1 jmcneill { 275 1.1 jmcneill struct glxsb_softc *sc = v; 276 1.1 jmcneill uint32_t status, value; 277 1.1 jmcneill extern int hz; 278 1.1 jmcneill 279 1.1 jmcneill status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS); 280 1.1 jmcneill if (status & SB_RNS_TRNG_VALID) { 281 1.1 jmcneill value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM); 282 1.12 tls rnd_add_data(&sc->sc_rnd_source, &value, sizeof(value), 283 1.12 tls sizeof(value) * NBBY); 284 1.1 jmcneill } 285 1.1 jmcneill 286 1.1 jmcneill callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1); 287 1.1 jmcneill } 288 1.1 jmcneill 289 1.1 jmcneill int 290 1.1 jmcneill glxsb_crypto_setup(struct glxsb_softc *sc) 291 1.1 jmcneill { 292 1.1 jmcneill 293 1.1 jmcneill /* Allocate a contiguous DMA-able buffer to work in */ 294 1.1 jmcneill if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0) 295 1.1 jmcneill return 0; 296 1.1 jmcneill 297 1.1 jmcneill sc->sc_cid = crypto_get_driverid(0); 298 1.1 jmcneill if (sc->sc_cid < 0) 299 1.1 jmcneill return 0; 300 1.1 jmcneill 301 1.1 jmcneill crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0, 302 1.1 jmcneill glxsb_crypto_newsession, glxsb_crypto_freesession, 303 1.1 jmcneill glxsb_crypto_process, sc); 304 1.1 jmcneill 305 1.1 jmcneill sc->sc_nsessions = 0; 306 1.1 jmcneill 307 1.1 jmcneill return 1; 308 1.1 jmcneill } 309 1.1 jmcneill 310 1.1 jmcneill int 311 1.1 jmcneill glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri) 312 1.1 jmcneill { 313 1.1 jmcneill struct glxsb_softc *sc = aux; 314 1.1 jmcneill struct glxsb_session *ses = NULL; 315 1.1 jmcneill int sesn; 316 1.1 jmcneill 317 1.18 riastrad if (cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC || 318 1.1 jmcneill cri->cri_klen != 128) 319 1.1 jmcneill return (EINVAL); 320 1.1 jmcneill 321 1.1 jmcneill for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { 322 1.1 jmcneill if (sc->sc_sessions[sesn].ses_used == 0) { 323 1.1 jmcneill ses = &sc->sc_sessions[sesn]; 324 1.1 jmcneill break; 325 1.1 jmcneill } 326 1.1 jmcneill } 327 1.1 jmcneill 328 1.1 jmcneill if (ses == NULL) { 329 1.1 jmcneill sesn = sc->sc_nsessions; 330 1.1 jmcneill ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT); 331 1.1 jmcneill if (ses == NULL) 332 1.1 jmcneill return (ENOMEM); 333 1.1 jmcneill if (sesn != 0) { 334 1.9 cegger memcpy(ses, sc->sc_sessions, sesn * sizeof(*ses)); 335 1.7 cegger memset(sc->sc_sessions, 0, sesn * sizeof(*ses)); 336 1.1 jmcneill free(sc->sc_sessions, M_DEVBUF); 337 1.1 jmcneill } 338 1.1 jmcneill sc->sc_sessions = ses; 339 1.1 jmcneill ses = &sc->sc_sessions[sesn]; 340 1.1 jmcneill sc->sc_nsessions++; 341 1.1 jmcneill } 342 1.1 jmcneill 343 1.7 cegger memset(ses, 0, sizeof(*ses)); 344 1.1 jmcneill ses->ses_used = 1; 345 1.1 jmcneill 346 1.1 jmcneill ses->ses_klen = cri->cri_klen; 347 1.1 jmcneill 348 1.1 jmcneill /* Copy the key (Geode LX wants the primary key only) */ 349 1.9 cegger memcpy(ses->ses_key, cri->cri_key, sizeof(ses->ses_key)); 350 1.1 jmcneill 351 1.1 jmcneill *sidp = GLXSB_SID(0, sesn); 352 1.1 jmcneill return (0); 353 1.1 jmcneill } 354 1.1 jmcneill 355 1.19 riastrad void 356 1.1 jmcneill glxsb_crypto_freesession(void *aux, uint64_t tid) 357 1.1 jmcneill { 358 1.1 jmcneill struct glxsb_softc *sc = aux; 359 1.1 jmcneill int sesn; 360 1.1 jmcneill uint32_t sid = ((uint32_t)tid) & 0xffffffff; 361 1.1 jmcneill 362 1.1 jmcneill sesn = GLXSB_SESSION(sid); 363 1.18 riastrad KASSERTMSG(sesn < sc->sc_nsessions, "sesn=%d nsessions=%d", 364 1.18 riastrad sesn, sc->sc_nsessions); 365 1.18 riastrad 366 1.7 cegger memset(&sc->sc_sessions[sesn], 0, sizeof(sc->sc_sessions[sesn])); 367 1.1 jmcneill } 368 1.1 jmcneill 369 1.1 jmcneill /* 370 1.1 jmcneill * Must be called at splnet() or higher 371 1.1 jmcneill */ 372 1.1 jmcneill static __inline void 373 1.1 jmcneill glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc, 374 1.1 jmcneill uint32_t pdst, void *key, int len, void *iv) 375 1.1 jmcneill { 376 1.1 jmcneill uint32_t status; 377 1.1 jmcneill int i; 378 1.1 jmcneill 379 1.1 jmcneill if (len & 0xF) { 380 1.1 jmcneill printf("%s: len must be a multiple of 16 (not %d)\n", 381 1.6 xtraeme device_xname(sc->sc_dev), len); 382 1.1 jmcneill return; 383 1.1 jmcneill } 384 1.1 jmcneill 385 1.1 jmcneill /* Set the source */ 386 1.1 jmcneill bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc); 387 1.1 jmcneill 388 1.1 jmcneill /* Set the destination address */ 389 1.1 jmcneill bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst); 390 1.1 jmcneill 391 1.1 jmcneill /* Set the data length */ 392 1.1 jmcneill bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len); 393 1.1 jmcneill 394 1.1 jmcneill /* Set the IV */ 395 1.1 jmcneill if (iv != NULL) { 396 1.1 jmcneill bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, 397 1.1 jmcneill SB_CBC_IV, iv, 4); 398 1.1 jmcneill control |= SB_CTL_CBC; 399 1.1 jmcneill } 400 1.1 jmcneill 401 1.1 jmcneill /* Set the key */ 402 1.1 jmcneill bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4); 403 1.1 jmcneill 404 1.1 jmcneill /* Ask the security block to do it */ 405 1.1 jmcneill bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A, 406 1.1 jmcneill control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST); 407 1.1 jmcneill 408 1.1 jmcneill /* 409 1.1 jmcneill * Now wait until it is done. 410 1.1 jmcneill * 411 1.1 jmcneill * We do a busy wait. Obviously the number of iterations of 412 1.1 jmcneill * the loop required to perform the AES operation depends upon 413 1.1 jmcneill * the number of bytes to process. 414 1.1 jmcneill * 415 1.1 jmcneill * On a 500 MHz Geode LX we see 416 1.1 jmcneill * 417 1.1 jmcneill * length (bytes) typical max iterations 418 1.1 jmcneill * 16 12 419 1.1 jmcneill * 64 22 420 1.1 jmcneill * 256 59 421 1.1 jmcneill * 1024 212 422 1.1 jmcneill * 8192 1,537 423 1.1 jmcneill * 424 1.1 jmcneill * Since we have a maximum size of operation defined in 425 1.1 jmcneill * GLXSB_MAX_AES_LEN, we use this constant to decide how long 426 1.1 jmcneill * to wait. Allow an order of magnitude longer than it should 427 1.1 jmcneill * really take, just in case. 428 1.1 jmcneill */ 429 1.1 jmcneill for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) { 430 1.1 jmcneill status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A); 431 1.1 jmcneill 432 1.1 jmcneill if ((status & SB_CTL_ST) == 0) /* Done */ 433 1.1 jmcneill return; 434 1.1 jmcneill } 435 1.1 jmcneill 436 1.6 xtraeme aprint_error_dev(sc->sc_dev, "operation failed to complete\n"); 437 1.1 jmcneill } 438 1.1 jmcneill 439 1.1 jmcneill int 440 1.1 jmcneill glxsb_crypto_process(void *aux, struct cryptop *crp, int hint) 441 1.1 jmcneill { 442 1.1 jmcneill struct glxsb_softc *sc = aux; 443 1.1 jmcneill struct glxsb_session *ses; 444 1.1 jmcneill struct cryptodesc *crd; 445 1.1 jmcneill char *op_src, *op_dst; 446 1.1 jmcneill uint32_t op_psrc, op_pdst; 447 1.15 riastrad uint8_t op_iv[SB_AES_BLOCK_SIZE]; 448 1.1 jmcneill int sesn, err = 0; 449 1.1 jmcneill int len, tlen, xlen; 450 1.1 jmcneill int offset; 451 1.1 jmcneill uint32_t control; 452 1.1 jmcneill int s; 453 1.1 jmcneill 454 1.1 jmcneill s = splnet(); 455 1.1 jmcneill 456 1.1 jmcneill if (crp == NULL || crp->crp_callback == NULL) { 457 1.1 jmcneill err = EINVAL; 458 1.1 jmcneill goto out; 459 1.1 jmcneill } 460 1.1 jmcneill crd = crp->crp_desc; 461 1.1 jmcneill if (crd == NULL || crd->crd_next != NULL || 462 1.1 jmcneill crd->crd_alg != CRYPTO_AES_CBC || 463 1.1 jmcneill (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) { 464 1.1 jmcneill err = EINVAL; 465 1.1 jmcneill goto out; 466 1.1 jmcneill } 467 1.1 jmcneill 468 1.1 jmcneill sesn = GLXSB_SESSION(crp->crp_sid); 469 1.1 jmcneill if (sesn >= sc->sc_nsessions) { 470 1.1 jmcneill err = EINVAL; 471 1.1 jmcneill goto out; 472 1.1 jmcneill } 473 1.1 jmcneill ses = &sc->sc_sessions[sesn]; 474 1.1 jmcneill 475 1.1 jmcneill /* How much of our buffer will we need to use? */ 476 1.1 jmcneill xlen = crd->crd_len > GLXSB_MAX_AES_LEN ? 477 1.1 jmcneill GLXSB_MAX_AES_LEN : crd->crd_len; 478 1.1 jmcneill 479 1.1 jmcneill /* 480 1.1 jmcneill * XXX Check if we can have input == output on Geode LX. 481 1.1 jmcneill * XXX In the meantime, use two separate (adjacent) buffers. 482 1.1 jmcneill */ 483 1.1 jmcneill op_src = sc->sc_dma.dma_vaddr; 484 1.1 jmcneill op_dst = (char *)sc->sc_dma.dma_vaddr + xlen; 485 1.1 jmcneill 486 1.1 jmcneill op_psrc = sc->sc_dma.dma_paddr; 487 1.1 jmcneill op_pdst = sc->sc_dma.dma_paddr + xlen; 488 1.1 jmcneill 489 1.1 jmcneill if (crd->crd_flags & CRD_F_ENCRYPT) { 490 1.1 jmcneill control = SB_CTL_ENC; 491 1.1 jmcneill if (crd->crd_flags & CRD_F_IV_EXPLICIT) 492 1.9 cegger memcpy(op_iv, crd->crd_iv, sizeof(op_iv)); 493 1.1 jmcneill else 494 1.15 riastrad cprng_fast(op_iv, sizeof(op_iv)); 495 1.1 jmcneill 496 1.1 jmcneill if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) { 497 1.1 jmcneill if (crp->crp_flags & CRYPTO_F_IMBUF) 498 1.1 jmcneill m_copyback((struct mbuf *)crp->crp_buf, 499 1.1 jmcneill crd->crd_inject, sizeof(op_iv), op_iv); 500 1.1 jmcneill else if (crp->crp_flags & CRYPTO_F_IOV) 501 1.1 jmcneill cuio_copyback((struct uio *)crp->crp_buf, 502 1.1 jmcneill crd->crd_inject, sizeof(op_iv), op_iv); 503 1.1 jmcneill else 504 1.1 jmcneill bcopy(op_iv, 505 1.1 jmcneill (char *)crp->crp_buf + crd->crd_inject, 506 1.1 jmcneill sizeof(op_iv)); 507 1.1 jmcneill } 508 1.1 jmcneill } else { 509 1.1 jmcneill control = SB_CTL_DEC; 510 1.1 jmcneill if (crd->crd_flags & CRD_F_IV_EXPLICIT) 511 1.9 cegger memcpy(op_iv, crd->crd_iv, sizeof(op_iv)); 512 1.1 jmcneill else { 513 1.1 jmcneill if (crp->crp_flags & CRYPTO_F_IMBUF) 514 1.1 jmcneill m_copydata((struct mbuf *)crp->crp_buf, 515 1.1 jmcneill crd->crd_inject, sizeof(op_iv), op_iv); 516 1.1 jmcneill else if (crp->crp_flags & CRYPTO_F_IOV) 517 1.1 jmcneill cuio_copydata((struct uio *)crp->crp_buf, 518 1.1 jmcneill crd->crd_inject, sizeof(op_iv), op_iv); 519 1.1 jmcneill else 520 1.1 jmcneill bcopy((char *)crp->crp_buf + crd->crd_inject, 521 1.1 jmcneill op_iv, sizeof(op_iv)); 522 1.1 jmcneill } 523 1.1 jmcneill } 524 1.1 jmcneill 525 1.1 jmcneill offset = 0; 526 1.1 jmcneill tlen = crd->crd_len; 527 1.1 jmcneill 528 1.1 jmcneill /* Process the data in GLXSB_MAX_AES_LEN chunks */ 529 1.1 jmcneill while (tlen > 0) { 530 1.1 jmcneill len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen; 531 1.1 jmcneill 532 1.1 jmcneill if (crp->crp_flags & CRYPTO_F_IMBUF) 533 1.1 jmcneill m_copydata((struct mbuf *)crp->crp_buf, 534 1.1 jmcneill crd->crd_skip + offset, len, op_src); 535 1.1 jmcneill else if (crp->crp_flags & CRYPTO_F_IOV) 536 1.1 jmcneill cuio_copydata((struct uio *)crp->crp_buf, 537 1.1 jmcneill crd->crd_skip + offset, len, op_src); 538 1.1 jmcneill else 539 1.1 jmcneill bcopy((char *)crp->crp_buf + crd->crd_skip + offset, 540 1.1 jmcneill op_src, len); 541 1.1 jmcneill 542 1.1 jmcneill glxsb_dma_pre_op(sc, &sc->sc_dma); 543 1.1 jmcneill 544 1.1 jmcneill glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key, 545 1.1 jmcneill len, op_iv); 546 1.1 jmcneill 547 1.1 jmcneill glxsb_dma_post_op(sc, &sc->sc_dma); 548 1.1 jmcneill 549 1.1 jmcneill if (crp->crp_flags & CRYPTO_F_IMBUF) 550 1.1 jmcneill m_copyback((struct mbuf *)crp->crp_buf, 551 1.1 jmcneill crd->crd_skip + offset, len, op_dst); 552 1.1 jmcneill else if (crp->crp_flags & CRYPTO_F_IOV) 553 1.1 jmcneill cuio_copyback((struct uio *)crp->crp_buf, 554 1.1 jmcneill crd->crd_skip + offset, len, op_dst); 555 1.1 jmcneill else 556 1.14 msaitoh memcpy((char *)crp->crp_buf + crd->crd_skip + offset, 557 1.14 msaitoh op_dst, len); 558 1.1 jmcneill 559 1.1 jmcneill offset += len; 560 1.1 jmcneill tlen -= len; 561 1.1 jmcneill 562 1.1 jmcneill if (crd->crd_flags & CRD_F_ENCRYPT) { 563 1.15 riastrad memcpy(op_iv, op_dst + len - sizeof(op_iv), 564 1.14 msaitoh sizeof(op_iv)); 565 1.1 jmcneill } else { 566 1.1 jmcneill /* Decryption, only need this if another iteration */ 567 1.1 jmcneill if (tlen > 0) { 568 1.15 riastrad memcpy(op_iv, op_src + len - sizeof(op_iv), 569 1.1 jmcneill sizeof(op_iv)); 570 1.1 jmcneill } 571 1.1 jmcneill } 572 1.1 jmcneill } 573 1.1 jmcneill 574 1.1 jmcneill /* All AES processing has now been done. */ 575 1.1 jmcneill 576 1.7 cegger memset(sc->sc_dma.dma_vaddr, 0, xlen * 2); 577 1.1 jmcneill out: 578 1.1 jmcneill crp->crp_etype = err; 579 1.1 jmcneill crypto_done(crp); 580 1.1 jmcneill splx(s); 581 1.17 riastrad return 0; 582 1.1 jmcneill } 583 1.1 jmcneill 584 1.1 jmcneill int 585 1.1 jmcneill glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma) 586 1.1 jmcneill { 587 1.1 jmcneill int rc; 588 1.1 jmcneill 589 1.1 jmcneill dma->dma_nsegs = 1; 590 1.1 jmcneill dma->dma_size = size; 591 1.1 jmcneill 592 1.1 jmcneill rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size, 593 1.1 jmcneill 0, BUS_DMA_NOWAIT, &dma->dma_map); 594 1.1 jmcneill if (rc != 0) { 595 1.14 msaitoh aprint_error_dev(sc->sc_dev, 596 1.14 msaitoh "couldn't create DMA map for %d bytes (%d)\n", size, rc); 597 1.1 jmcneill 598 1.1 jmcneill goto fail0; 599 1.1 jmcneill } 600 1.1 jmcneill 601 1.1 jmcneill rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0, 602 1.1 jmcneill &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT); 603 1.1 jmcneill if (rc != 0) { 604 1.14 msaitoh aprint_error_dev(sc->sc_dev, 605 1.14 msaitoh "couldn't allocate DMA memory of %d bytes (%d)\n", 606 1.5 cegger size, rc); 607 1.1 jmcneill 608 1.1 jmcneill goto fail1; 609 1.1 jmcneill } 610 1.1 jmcneill 611 1.1 jmcneill rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size, 612 1.1 jmcneill &dma->dma_vaddr, BUS_DMA_NOWAIT); 613 1.1 jmcneill if (rc != 0) { 614 1.14 msaitoh aprint_error_dev(sc->sc_dev, 615 1.14 msaitoh "couldn't map DMA memory for %d bytes (%d)\n", size, rc); 616 1.1 jmcneill 617 1.1 jmcneill goto fail2; 618 1.1 jmcneill } 619 1.1 jmcneill 620 1.1 jmcneill rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr, 621 1.1 jmcneill size, NULL, BUS_DMA_NOWAIT); 622 1.1 jmcneill if (rc != 0) { 623 1.14 msaitoh aprint_error_dev(sc->sc_dev, 624 1.14 msaitoh "couldn't load DMA memory for %d bytes (%d)\n", size, rc); 625 1.1 jmcneill 626 1.1 jmcneill goto fail3; 627 1.1 jmcneill } 628 1.1 jmcneill 629 1.1 jmcneill dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr; 630 1.1 jmcneill 631 1.1 jmcneill return 0; 632 1.1 jmcneill 633 1.1 jmcneill fail3: 634 1.1 jmcneill bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size); 635 1.1 jmcneill fail2: 636 1.1 jmcneill bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs); 637 1.1 jmcneill fail1: 638 1.1 jmcneill bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); 639 1.1 jmcneill fail0: 640 1.1 jmcneill return rc; 641 1.1 jmcneill } 642 1.1 jmcneill 643 1.1 jmcneill void 644 1.1 jmcneill glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma) 645 1.1 jmcneill { 646 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size, 647 1.1 jmcneill BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 648 1.1 jmcneill } 649 1.1 jmcneill 650 1.1 jmcneill void 651 1.1 jmcneill glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma) 652 1.1 jmcneill { 653 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size, 654 1.1 jmcneill BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 655 1.1 jmcneill } 656 1.1 jmcneill 657 1.1 jmcneill void 658 1.1 jmcneill glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma) 659 1.1 jmcneill { 660 1.1 jmcneill bus_dmamap_unload(sc->sc_dmat, dma->dma_map); 661 1.1 jmcneill bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size); 662 1.1 jmcneill bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs); 663 1.1 jmcneill bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); 664 1.1 jmcneill } 665