Home | History | Annotate | Line # | Download | only in pci
glxsb.c revision 1.10.12.1
      1  1.10.12.1     rmind /*	$NetBSD: glxsb.c,v 1.10.12.1 2014/05/18 17:45:12 rmind Exp $	*/
      2        1.1  jmcneill /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
      3        1.1  jmcneill 
      4        1.1  jmcneill /*
      5        1.1  jmcneill  * Copyright (c) 2006 Tom Cosgrove <tom (at) openbsd.org>
      6        1.1  jmcneill  * Copyright (c) 2003, 2004 Theo de Raadt
      7        1.1  jmcneill  * Copyright (c) 2003 Jason Wright
      8        1.1  jmcneill  *
      9        1.1  jmcneill  * Permission to use, copy, modify, and distribute this software for any
     10        1.1  jmcneill  * purpose with or without fee is hereby granted, provided that the above
     11        1.1  jmcneill  * copyright notice and this permission notice appear in all copies.
     12        1.1  jmcneill  *
     13        1.1  jmcneill  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     14        1.1  jmcneill  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     15        1.1  jmcneill  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     16        1.1  jmcneill  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     17        1.1  jmcneill  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     18        1.1  jmcneill  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     19        1.1  jmcneill  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     20        1.1  jmcneill  */
     21        1.1  jmcneill 
     22        1.1  jmcneill /*
     23        1.1  jmcneill  * Driver for the security block on the AMD Geode LX processors
     24        1.1  jmcneill  * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
     25        1.1  jmcneill  */
     26        1.1  jmcneill 
     27        1.1  jmcneill #include <sys/cdefs.h>
     28  1.10.12.1     rmind __KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.10.12.1 2014/05/18 17:45:12 rmind Exp $");
     29        1.3     lukem 
     30        1.1  jmcneill #include <sys/param.h>
     31        1.1  jmcneill #include <sys/systm.h>
     32        1.1  jmcneill #include <sys/device.h>
     33        1.1  jmcneill #include <sys/malloc.h>
     34        1.1  jmcneill #include <sys/mbuf.h>
     35        1.1  jmcneill #include <sys/types.h>
     36        1.1  jmcneill #include <sys/callout.h>
     37        1.4        ad #include <sys/bus.h>
     38       1.10       tls #include <sys/cprng.h>
     39        1.1  jmcneill 
     40        1.4        ad #include <machine/cpufunc.h>
     41        1.1  jmcneill 
     42        1.1  jmcneill #include <dev/pci/pcivar.h>
     43        1.1  jmcneill #include <dev/pci/pcidevs.h>
     44        1.1  jmcneill 
     45        1.1  jmcneill #include <opencrypto/cryptodev.h>
     46        1.1  jmcneill #include <crypto/rijndael/rijndael.h>
     47        1.1  jmcneill 
     48        1.1  jmcneill #define SB_GLD_MSR_CAP		0x58002000	/* RO - Capabilities */
     49        1.1  jmcneill #define SB_GLD_MSR_CONFIG	0x58002001	/* RW - Master Config */
     50        1.1  jmcneill #define SB_GLD_MSR_SMI		0x58002002	/* RW - SMI */
     51        1.1  jmcneill #define SB_GLD_MSR_ERROR	0x58002003	/* RW - Error */
     52        1.1  jmcneill #define SB_GLD_MSR_PM		0x58002004	/* RW - Power Mgmt */
     53        1.1  jmcneill #define SB_GLD_MSR_DIAG		0x58002005	/* RW - Diagnostic */
     54        1.1  jmcneill #define SB_GLD_MSR_CTRL		0x58002006	/* RW - Security Block Cntrl */
     55        1.1  jmcneill 
     56        1.1  jmcneill 						/* For GLD_MSR_CTRL: */
     57        1.1  jmcneill #define SB_GMC_DIV0		0x0000		/* AES update divisor values */
     58        1.1  jmcneill #define SB_GMC_DIV1		0x0001
     59        1.1  jmcneill #define SB_GMC_DIV2		0x0002
     60        1.1  jmcneill #define SB_GMC_DIV3		0x0003
     61        1.1  jmcneill #define SB_GMC_DIV_MASK		0x0003
     62        1.1  jmcneill #define SB_GMC_SBI		0x0004		/* AES swap bits */
     63        1.1  jmcneill #define SB_GMC_SBY		0x0008		/* AES swap bytes */
     64        1.1  jmcneill #define SB_GMC_TW		0x0010		/* Time write (EEPROM) */
     65        1.1  jmcneill #define SB_GMC_T_SEL0		0x0000		/* RNG post-proc: none */
     66        1.1  jmcneill #define SB_GMC_T_SEL1		0x0100		/* RNG post-proc: LFSR */
     67        1.1  jmcneill #define SB_GMC_T_SEL2		0x0200		/* RNG post-proc: whitener */
     68        1.1  jmcneill #define SB_GMC_T_SEL3		0x0300		/* RNG LFSR+whitener */
     69        1.1  jmcneill #define SB_GMC_T_SEL_MASK	0x0300
     70        1.1  jmcneill #define SB_GMC_T_NE		0x0400		/* Noise (generator) Enable */
     71        1.1  jmcneill #define SB_GMC_T_TM		0x0800		/* RNG test mode */
     72        1.1  jmcneill 						/*     (deterministic) */
     73        1.1  jmcneill 
     74        1.1  jmcneill /* Security Block configuration/control registers (offsets from base) */
     75        1.1  jmcneill 
     76        1.1  jmcneill #define SB_CTL_A		0x0000		/* RW - SB Control A */
     77        1.1  jmcneill #define SB_CTL_B		0x0004		/* RW - SB Control B */
     78        1.1  jmcneill #define SB_AES_INT		0x0008		/* RW - SB AES Interrupt */
     79        1.1  jmcneill #define SB_SOURCE_A		0x0010		/* RW - Source A */
     80        1.1  jmcneill #define SB_DEST_A		0x0014		/* RW - Destination A */
     81        1.1  jmcneill #define SB_LENGTH_A		0x0018		/* RW - Length A */
     82        1.1  jmcneill #define SB_SOURCE_B		0x0020		/* RW - Source B */
     83        1.1  jmcneill #define SB_DEST_B		0x0024		/* RW - Destination B */
     84        1.1  jmcneill #define SB_LENGTH_B		0x0028		/* RW - Length B */
     85        1.1  jmcneill #define SB_WKEY			0x0030		/* WO - Writable Key 0-3 */
     86        1.1  jmcneill #define SB_WKEY_0		0x0030		/* WO - Writable Key 0 */
     87        1.1  jmcneill #define SB_WKEY_1		0x0034		/* WO - Writable Key 1 */
     88        1.1  jmcneill #define SB_WKEY_2		0x0038		/* WO - Writable Key 2 */
     89        1.1  jmcneill #define SB_WKEY_3		0x003C		/* WO - Writable Key 3 */
     90        1.1  jmcneill #define SB_CBC_IV		0x0040		/* RW - CBC IV 0-3 */
     91        1.1  jmcneill #define SB_CBC_IV_0		0x0040		/* RW - CBC IV 0 */
     92        1.1  jmcneill #define SB_CBC_IV_1		0x0044		/* RW - CBC IV 1 */
     93        1.1  jmcneill #define SB_CBC_IV_2		0x0048		/* RW - CBC IV 2 */
     94        1.1  jmcneill #define SB_CBC_IV_3		0x004C		/* RW - CBC IV 3 */
     95        1.1  jmcneill #define SB_RANDOM_NUM		0x0050		/* RW - Random Number */
     96        1.1  jmcneill #define SB_RANDOM_NUM_STATUS	0x0054		/* RW - Random Number Status */
     97        1.1  jmcneill #define SB_EEPROM_COMM		0x0800		/* RW - EEPROM Command */
     98        1.1  jmcneill #define SB_EEPROM_ADDR		0x0804		/* RW - EEPROM Address */
     99        1.1  jmcneill #define SB_EEPROM_DATA		0x0808		/* RW - EEPROM Data */
    100        1.1  jmcneill #define SB_EEPROM_SEC_STATE	0x080C		/* RW - EEPROM Security State */
    101        1.1  jmcneill 
    102        1.1  jmcneill 						/* For SB_CTL_A and _B */
    103        1.1  jmcneill #define SB_CTL_ST		0x0001		/* Start operation (enc/dec) */
    104        1.1  jmcneill #define SB_CTL_ENC		0x0002		/* Encrypt (0 is decrypt) */
    105        1.1  jmcneill #define SB_CTL_DEC		0x0000		/* Decrypt */
    106        1.1  jmcneill #define SB_CTL_WK		0x0004		/* Use writable key (we set) */
    107        1.1  jmcneill #define SB_CTL_DC		0x0008		/* Destination coherent */
    108        1.1  jmcneill #define SB_CTL_SC		0x0010		/* Source coherent */
    109        1.1  jmcneill #define SB_CTL_CBC		0x0020		/* CBC (0 is ECB) */
    110        1.1  jmcneill 
    111        1.1  jmcneill 						/* For SB_AES_INT */
    112        1.1  jmcneill #define SB_AI_DISABLE_AES_A	0x0001		/* Disable AES A compl int */
    113        1.1  jmcneill #define SB_AI_ENABLE_AES_A	0x0000		/* Enable AES A compl int */
    114        1.1  jmcneill #define SB_AI_DISABLE_AES_B	0x0002		/* Disable AES B compl int */
    115        1.1  jmcneill #define SB_AI_ENABLE_AES_B	0x0000		/* Enable AES B compl int */
    116        1.1  jmcneill #define SB_AI_DISABLE_EEPROM	0x0004		/* Disable EEPROM op comp int */
    117        1.1  jmcneill #define SB_AI_ENABLE_EEPROM	0x0000		/* Enable EEPROM op compl int */
    118        1.1  jmcneill #define SB_AI_AES_A_COMPLETE	0x0100		/* AES A operation complete */
    119        1.1  jmcneill #define SB_AI_AES_B_COMPLETE	0x0200		/* AES B operation complete */
    120        1.1  jmcneill #define SB_AI_EEPROM_COMPLETE	0x0400		/* EEPROM operation complete */
    121        1.1  jmcneill 
    122        1.1  jmcneill #define SB_RNS_TRNG_VALID	0x0001		/* in SB_RANDOM_NUM_STATUS */
    123        1.1  jmcneill 
    124        1.1  jmcneill #define SB_MEM_SIZE		0x0810		/* Size of memory block */
    125        1.1  jmcneill 
    126        1.1  jmcneill #define SB_AES_ALIGN		0x0010		/* Source and dest buffers */
    127        1.1  jmcneill 						/* must be 16-byte aligned */
    128        1.1  jmcneill #define SB_AES_BLOCK_SIZE	0x0010
    129        1.1  jmcneill 
    130        1.1  jmcneill /*
    131        1.1  jmcneill  * The Geode LX security block AES acceleration doesn't perform scatter-
    132        1.1  jmcneill  * gather: it just takes source and destination addresses.  Therefore the
    133        1.1  jmcneill  * plain- and ciphertexts need to be contiguous.  To this end, we allocate
    134        1.1  jmcneill  * a buffer for both, and accept the overhead of copying in and out.  If
    135        1.1  jmcneill  * the number of bytes in one operation is bigger than allowed for by the
    136        1.1  jmcneill  * buffer (buffer is twice the size of the max length, as it has both input
    137        1.1  jmcneill  * and output) then we have to perform multiple encryptions/decryptions.
    138        1.1  jmcneill  */
    139        1.1  jmcneill #define GLXSB_MAX_AES_LEN	16384
    140        1.1  jmcneill 
    141        1.1  jmcneill struct glxsb_dma_map {
    142        1.1  jmcneill 	bus_dmamap_t		dma_map;
    143        1.1  jmcneill 	bus_dma_segment_t	dma_seg;
    144        1.1  jmcneill 	int			dma_nsegs;
    145        1.1  jmcneill 	int			dma_size;
    146        1.1  jmcneill 	void *			dma_vaddr;
    147        1.1  jmcneill 	uint32_t		dma_paddr;
    148        1.1  jmcneill };
    149        1.1  jmcneill struct glxsb_session {
    150        1.1  jmcneill 	uint32_t	ses_key[4];
    151        1.1  jmcneill 	uint8_t		ses_iv[SB_AES_BLOCK_SIZE];
    152        1.1  jmcneill 	int		ses_klen;
    153        1.1  jmcneill 	int		ses_used;
    154        1.1  jmcneill };
    155        1.1  jmcneill 
    156        1.1  jmcneill struct glxsb_softc {
    157        1.6   xtraeme 	device_t		sc_dev;
    158        1.1  jmcneill 	bus_space_tag_t		sc_iot;
    159        1.1  jmcneill 	bus_space_handle_t	sc_ioh;
    160        1.1  jmcneill 	struct callout		sc_co;
    161        1.1  jmcneill 
    162        1.1  jmcneill 	bus_dma_tag_t		sc_dmat;
    163        1.1  jmcneill 	struct glxsb_dma_map	sc_dma;
    164        1.1  jmcneill 	int32_t			sc_cid;
    165        1.1  jmcneill 	int			sc_nsessions;
    166        1.1  jmcneill 	struct glxsb_session	*sc_sessions;
    167        1.1  jmcneill 
    168       1.10       tls 	krndsource_t	sc_rnd_source;
    169        1.1  jmcneill };
    170        1.1  jmcneill 
    171        1.6   xtraeme int	glxsb_match(device_t, cfdata_t, void *);
    172        1.6   xtraeme void	glxsb_attach(device_t, device_t, void *);
    173        1.1  jmcneill void	glxsb_rnd(void *);
    174        1.1  jmcneill 
    175        1.6   xtraeme CFATTACH_DECL_NEW(glxsb, sizeof(struct glxsb_softc),
    176        1.6   xtraeme     glxsb_match, glxsb_attach, NULL, NULL);
    177        1.1  jmcneill 
    178        1.1  jmcneill #define GLXSB_SESSION(sid)		((sid) & 0x0fffffff)
    179        1.1  jmcneill #define	GLXSB_SID(crd,ses)		(((crd) << 28) | ((ses) & 0x0fffffff))
    180        1.1  jmcneill 
    181        1.1  jmcneill int glxsb_crypto_setup(struct glxsb_softc *);
    182        1.1  jmcneill int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *);
    183        1.1  jmcneill int glxsb_crypto_process(void *, struct cryptop *, int);
    184        1.1  jmcneill int glxsb_crypto_freesession(void *, uint64_t);
    185        1.1  jmcneill static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
    186        1.1  jmcneill     uint32_t, void *, int, void *);
    187        1.1  jmcneill 
    188        1.1  jmcneill int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
    189        1.1  jmcneill void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
    190        1.1  jmcneill void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
    191        1.1  jmcneill void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
    192        1.1  jmcneill 
    193        1.1  jmcneill int
    194        1.6   xtraeme glxsb_match(device_t parent, cfdata_t match, void *aux)
    195        1.1  jmcneill {
    196        1.1  jmcneill 	struct pci_attach_args *pa = aux;
    197        1.1  jmcneill 
    198        1.1  jmcneill 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
    199        1.1  jmcneill 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES)
    200        1.1  jmcneill 		return (1);
    201        1.1  jmcneill 
    202        1.1  jmcneill 	return (0);
    203        1.1  jmcneill }
    204        1.1  jmcneill 
    205        1.1  jmcneill void
    206        1.6   xtraeme glxsb_attach(device_t parent, device_t self, void *aux)
    207        1.1  jmcneill {
    208        1.6   xtraeme 	struct glxsb_softc *sc = device_private(self);
    209        1.1  jmcneill 	struct pci_attach_args *pa = aux;
    210        1.1  jmcneill 	bus_addr_t membase;
    211        1.1  jmcneill 	bus_size_t memsize;
    212        1.1  jmcneill 	uint64_t msr;
    213        1.1  jmcneill 	uint32_t intr;
    214        1.1  jmcneill 
    215        1.1  jmcneill 	msr = rdmsr(SB_GLD_MSR_CAP);
    216        1.1  jmcneill 	if ((msr & 0xFFFF00) != 0x130400) {
    217        1.1  jmcneill 		printf(": unknown ID 0x%x\n", (int) ((msr & 0xFFFF00) >> 16));
    218        1.1  jmcneill 		return;
    219        1.1  jmcneill 	}
    220        1.1  jmcneill 
    221        1.1  jmcneill 	/* printf(": revision %d", (int) (msr & 0xFF)); */
    222        1.1  jmcneill 
    223        1.1  jmcneill 	/* Map in the security block configuration/control registers */
    224        1.1  jmcneill 	if (pci_mapreg_map(pa, PCI_MAPREG_START,
    225        1.1  jmcneill 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
    226        1.1  jmcneill 	    &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) {
    227        1.1  jmcneill 		printf(": can't find mem space\n");
    228        1.1  jmcneill 		return;
    229        1.1  jmcneill 	}
    230        1.1  jmcneill 
    231        1.6   xtraeme 	sc->sc_dev = self;
    232        1.6   xtraeme 
    233        1.1  jmcneill 	/*
    234        1.1  jmcneill 	 * Configure the Security Block.
    235        1.1  jmcneill 	 *
    236        1.1  jmcneill 	 * We want to enable the noise generator (T_NE), and enable the
    237        1.1  jmcneill 	 * linear feedback shift register and whitener post-processing
    238        1.1  jmcneill 	 * (T_SEL = 3).  Also ensure that test mode (deterministic values)
    239        1.1  jmcneill 	 * is disabled.
    240        1.1  jmcneill 	 */
    241        1.1  jmcneill 	msr = rdmsr(SB_GLD_MSR_CTRL);
    242        1.1  jmcneill 	msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
    243        1.1  jmcneill 	msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
    244        1.1  jmcneill #if 0
    245        1.1  jmcneill 	msr |= SB_GMC_SBI | SB_GMC_SBY;		/* for AES, if necessary */
    246        1.1  jmcneill #endif
    247        1.1  jmcneill 	wrmsr(SB_GLD_MSR_CTRL, msr);
    248        1.1  jmcneill 
    249        1.6   xtraeme 	rnd_attach_source(&sc->sc_rnd_source, device_xname(self),
    250        1.1  jmcneill 			  RND_TYPE_RNG, RND_FLAG_NO_ESTIMATE);
    251        1.1  jmcneill 
    252        1.1  jmcneill 	/* Install a periodic collector for the "true" (AMD's word) RNG */
    253        1.2        ad 	callout_init(&sc->sc_co, 0);
    254        1.1  jmcneill 	callout_setfunc(&sc->sc_co, glxsb_rnd, sc);
    255        1.1  jmcneill 	glxsb_rnd(sc);
    256  1.10.12.1     rmind 	aprint_normal(": RNG");
    257        1.1  jmcneill 
    258        1.1  jmcneill 	/* We don't have an interrupt handler, so disable completion INTs */
    259        1.1  jmcneill 	intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
    260        1.1  jmcneill 	    SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
    261        1.1  jmcneill 	    SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
    262        1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
    263        1.1  jmcneill 
    264        1.1  jmcneill 	sc->sc_dmat = pa->pa_dmat;
    265        1.1  jmcneill 
    266        1.1  jmcneill 	if (glxsb_crypto_setup(sc))
    267  1.10.12.1     rmind 		aprint_normal(" AES");
    268        1.1  jmcneill 
    269  1.10.12.1     rmind 	aprint_normal("\n");
    270        1.1  jmcneill }
    271        1.1  jmcneill 
    272        1.1  jmcneill void
    273        1.1  jmcneill glxsb_rnd(void *v)
    274        1.1  jmcneill {
    275        1.1  jmcneill 	struct glxsb_softc *sc = v;
    276        1.1  jmcneill 	uint32_t status, value;
    277        1.1  jmcneill 	extern int hz;
    278        1.1  jmcneill 
    279        1.1  jmcneill 	status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
    280        1.1  jmcneill 	if (status & SB_RNS_TRNG_VALID) {
    281        1.1  jmcneill 		value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
    282        1.1  jmcneill 		rnd_add_uint32(&sc->sc_rnd_source, value);
    283        1.1  jmcneill 	}
    284        1.1  jmcneill 
    285        1.1  jmcneill 	callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1);
    286        1.1  jmcneill }
    287        1.1  jmcneill 
    288        1.1  jmcneill int
    289        1.1  jmcneill glxsb_crypto_setup(struct glxsb_softc *sc)
    290        1.1  jmcneill {
    291        1.1  jmcneill 
    292        1.1  jmcneill 	/* Allocate a contiguous DMA-able buffer to work in */
    293        1.1  jmcneill 	if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
    294        1.1  jmcneill 		return 0;
    295        1.1  jmcneill 
    296        1.1  jmcneill 	sc->sc_cid = crypto_get_driverid(0);
    297        1.1  jmcneill 	if (sc->sc_cid < 0)
    298        1.1  jmcneill 		return 0;
    299        1.1  jmcneill 
    300        1.1  jmcneill 	crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
    301        1.1  jmcneill 	    glxsb_crypto_newsession, glxsb_crypto_freesession,
    302        1.1  jmcneill 	    glxsb_crypto_process, sc);
    303        1.1  jmcneill 
    304        1.1  jmcneill 	sc->sc_nsessions = 0;
    305        1.1  jmcneill 
    306        1.1  jmcneill 	return 1;
    307        1.1  jmcneill }
    308        1.1  jmcneill 
    309        1.1  jmcneill int
    310        1.1  jmcneill glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri)
    311        1.1  jmcneill {
    312        1.1  jmcneill 	struct glxsb_softc *sc = aux;
    313        1.1  jmcneill 	struct glxsb_session *ses = NULL;
    314        1.1  jmcneill 	int sesn;
    315        1.1  jmcneill 
    316        1.1  jmcneill 	if (sc == NULL || sidp == NULL || cri == NULL ||
    317        1.1  jmcneill 	    cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC ||
    318        1.1  jmcneill 	    cri->cri_klen != 128)
    319        1.1  jmcneill 		return (EINVAL);
    320        1.1  jmcneill 
    321        1.1  jmcneill 	for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
    322        1.1  jmcneill 		if (sc->sc_sessions[sesn].ses_used == 0) {
    323        1.1  jmcneill 			ses = &sc->sc_sessions[sesn];
    324        1.1  jmcneill 			break;
    325        1.1  jmcneill 		}
    326        1.1  jmcneill 	}
    327        1.1  jmcneill 
    328        1.1  jmcneill 	if (ses == NULL) {
    329        1.1  jmcneill 		sesn = sc->sc_nsessions;
    330        1.1  jmcneill 		ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT);
    331        1.1  jmcneill 		if (ses == NULL)
    332        1.1  jmcneill 			return (ENOMEM);
    333        1.1  jmcneill 		if (sesn != 0) {
    334        1.9    cegger 			memcpy(ses, sc->sc_sessions, sesn * sizeof(*ses));
    335        1.7    cegger 			memset(sc->sc_sessions, 0, sesn * sizeof(*ses));
    336        1.1  jmcneill 			free(sc->sc_sessions, M_DEVBUF);
    337        1.1  jmcneill 		}
    338        1.1  jmcneill 		sc->sc_sessions = ses;
    339        1.1  jmcneill 		ses = &sc->sc_sessions[sesn];
    340        1.1  jmcneill 		sc->sc_nsessions++;
    341        1.1  jmcneill 	}
    342        1.1  jmcneill 
    343        1.7    cegger 	memset(ses, 0, sizeof(*ses));
    344        1.1  jmcneill 	ses->ses_used = 1;
    345        1.1  jmcneill 
    346       1.10       tls 	cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
    347        1.1  jmcneill 	ses->ses_klen = cri->cri_klen;
    348        1.1  jmcneill 
    349        1.1  jmcneill 	/* Copy the key (Geode LX wants the primary key only) */
    350        1.9    cegger 	memcpy(ses->ses_key, cri->cri_key, sizeof(ses->ses_key));
    351        1.1  jmcneill 
    352        1.1  jmcneill 	*sidp = GLXSB_SID(0, sesn);
    353        1.1  jmcneill 	return (0);
    354        1.1  jmcneill }
    355        1.1  jmcneill 
    356        1.1  jmcneill int
    357        1.1  jmcneill glxsb_crypto_freesession(void *aux, uint64_t tid)
    358        1.1  jmcneill {
    359        1.1  jmcneill 	struct glxsb_softc *sc = aux;
    360        1.1  jmcneill 	int sesn;
    361        1.1  jmcneill 	uint32_t sid = ((uint32_t)tid) & 0xffffffff;
    362        1.1  jmcneill 
    363        1.1  jmcneill 	if (sc == NULL)
    364        1.1  jmcneill 		return (EINVAL);
    365        1.1  jmcneill 	sesn = GLXSB_SESSION(sid);
    366        1.1  jmcneill 	if (sesn >= sc->sc_nsessions)
    367        1.1  jmcneill 		return (EINVAL);
    368        1.7    cegger 	memset(&sc->sc_sessions[sesn], 0, sizeof(sc->sc_sessions[sesn]));
    369        1.1  jmcneill 	return (0);
    370        1.1  jmcneill }
    371        1.1  jmcneill 
    372        1.1  jmcneill /*
    373        1.1  jmcneill  * Must be called at splnet() or higher
    374        1.1  jmcneill  */
    375        1.1  jmcneill static __inline void
    376        1.1  jmcneill glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
    377        1.1  jmcneill     uint32_t pdst, void *key, int len, void *iv)
    378        1.1  jmcneill {
    379        1.1  jmcneill 	uint32_t status;
    380        1.1  jmcneill 	int i;
    381        1.1  jmcneill 
    382        1.1  jmcneill 	if (len & 0xF) {
    383        1.1  jmcneill 		printf("%s: len must be a multiple of 16 (not %d)\n",
    384        1.6   xtraeme 		    device_xname(sc->sc_dev), len);
    385        1.1  jmcneill 		return;
    386        1.1  jmcneill 	}
    387        1.1  jmcneill 
    388        1.1  jmcneill 	/* Set the source */
    389        1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
    390        1.1  jmcneill 
    391        1.1  jmcneill 	/* Set the destination address */
    392        1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
    393        1.1  jmcneill 
    394        1.1  jmcneill 	/* Set the data length */
    395        1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
    396        1.1  jmcneill 
    397        1.1  jmcneill 	/* Set the IV */
    398        1.1  jmcneill 	if (iv != NULL) {
    399        1.1  jmcneill 		bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
    400        1.1  jmcneill 		    SB_CBC_IV, iv, 4);
    401        1.1  jmcneill 		control |= SB_CTL_CBC;
    402        1.1  jmcneill 	}
    403        1.1  jmcneill 
    404        1.1  jmcneill 	/* Set the key */
    405        1.1  jmcneill 	bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
    406        1.1  jmcneill 
    407        1.1  jmcneill 	/* Ask the security block to do it */
    408        1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
    409        1.1  jmcneill 	    control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
    410        1.1  jmcneill 
    411        1.1  jmcneill 	/*
    412        1.1  jmcneill 	 * Now wait until it is done.
    413        1.1  jmcneill 	 *
    414        1.1  jmcneill 	 * We do a busy wait.  Obviously the number of iterations of
    415        1.1  jmcneill 	 * the loop required to perform the AES operation depends upon
    416        1.1  jmcneill 	 * the number of bytes to process.
    417        1.1  jmcneill 	 *
    418        1.1  jmcneill 	 * On a 500 MHz Geode LX we see
    419        1.1  jmcneill 	 *
    420        1.1  jmcneill 	 *	length (bytes)	typical max iterations
    421        1.1  jmcneill 	 *	    16		   12
    422        1.1  jmcneill 	 *	    64		   22
    423        1.1  jmcneill 	 *	   256		   59
    424        1.1  jmcneill 	 *	  1024		  212
    425        1.1  jmcneill 	 *	  8192		1,537
    426        1.1  jmcneill 	 *
    427        1.1  jmcneill 	 * Since we have a maximum size of operation defined in
    428        1.1  jmcneill 	 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
    429        1.1  jmcneill 	 * to wait.  Allow an order of magnitude longer than it should
    430        1.1  jmcneill 	 * really take, just in case.
    431        1.1  jmcneill 	 */
    432        1.1  jmcneill 	for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
    433        1.1  jmcneill 		status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
    434        1.1  jmcneill 
    435        1.1  jmcneill 		if ((status & SB_CTL_ST) == 0)		/* Done */
    436        1.1  jmcneill 			return;
    437        1.1  jmcneill 	}
    438        1.1  jmcneill 
    439        1.6   xtraeme 	aprint_error_dev(sc->sc_dev, "operation failed to complete\n");
    440        1.1  jmcneill }
    441        1.1  jmcneill 
    442        1.1  jmcneill int
    443        1.1  jmcneill glxsb_crypto_process(void *aux, struct cryptop *crp, int hint)
    444        1.1  jmcneill {
    445        1.1  jmcneill 	struct glxsb_softc *sc = aux;
    446        1.1  jmcneill 	struct glxsb_session *ses;
    447        1.1  jmcneill 	struct cryptodesc *crd;
    448        1.1  jmcneill 	char *op_src, *op_dst;
    449        1.1  jmcneill 	uint32_t op_psrc, op_pdst;
    450        1.1  jmcneill 	uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
    451        1.1  jmcneill 	int sesn, err = 0;
    452        1.1  jmcneill 	int len, tlen, xlen;
    453        1.1  jmcneill 	int offset;
    454        1.1  jmcneill 	uint32_t control;
    455        1.1  jmcneill 	int s;
    456        1.1  jmcneill 
    457        1.1  jmcneill 	s = splnet();
    458        1.1  jmcneill 
    459        1.1  jmcneill 	if (crp == NULL || crp->crp_callback == NULL) {
    460        1.1  jmcneill 		err = EINVAL;
    461        1.1  jmcneill 		goto out;
    462        1.1  jmcneill 	}
    463        1.1  jmcneill 	crd = crp->crp_desc;
    464        1.1  jmcneill 	if (crd == NULL || crd->crd_next != NULL ||
    465        1.1  jmcneill 	    crd->crd_alg != CRYPTO_AES_CBC ||
    466        1.1  jmcneill 	    (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
    467        1.1  jmcneill 		err = EINVAL;
    468        1.1  jmcneill 		goto out;
    469        1.1  jmcneill 	}
    470        1.1  jmcneill 
    471        1.1  jmcneill 	sesn = GLXSB_SESSION(crp->crp_sid);
    472        1.1  jmcneill 	if (sesn >= sc->sc_nsessions) {
    473        1.1  jmcneill 		err = EINVAL;
    474        1.1  jmcneill 		goto out;
    475        1.1  jmcneill 	}
    476        1.1  jmcneill 	ses = &sc->sc_sessions[sesn];
    477        1.1  jmcneill 
    478        1.1  jmcneill 	/* How much of our buffer will we need to use? */
    479        1.1  jmcneill 	xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
    480        1.1  jmcneill 	    GLXSB_MAX_AES_LEN : crd->crd_len;
    481        1.1  jmcneill 
    482        1.1  jmcneill 	/*
    483        1.1  jmcneill 	 * XXX Check if we can have input == output on Geode LX.
    484        1.1  jmcneill 	 * XXX In the meantime, use two separate (adjacent) buffers.
    485        1.1  jmcneill 	 */
    486        1.1  jmcneill 	op_src = sc->sc_dma.dma_vaddr;
    487        1.1  jmcneill 	op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
    488        1.1  jmcneill 
    489        1.1  jmcneill 	op_psrc = sc->sc_dma.dma_paddr;
    490        1.1  jmcneill 	op_pdst = sc->sc_dma.dma_paddr + xlen;
    491        1.1  jmcneill 
    492        1.1  jmcneill 	if (crd->crd_flags & CRD_F_ENCRYPT) {
    493        1.1  jmcneill 		control = SB_CTL_ENC;
    494        1.1  jmcneill 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    495        1.9    cegger 			memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
    496        1.1  jmcneill 		else
    497        1.9    cegger 			memcpy(op_iv, ses->ses_iv, sizeof(op_iv));
    498        1.1  jmcneill 
    499        1.1  jmcneill 		if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
    500        1.1  jmcneill 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    501        1.1  jmcneill 				m_copyback((struct mbuf *)crp->crp_buf,
    502        1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    503        1.1  jmcneill 			else if (crp->crp_flags & CRYPTO_F_IOV)
    504        1.1  jmcneill 				cuio_copyback((struct uio *)crp->crp_buf,
    505        1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    506        1.1  jmcneill 			else
    507        1.1  jmcneill 				bcopy(op_iv,
    508        1.1  jmcneill 				    (char *)crp->crp_buf + crd->crd_inject,
    509        1.1  jmcneill 				    sizeof(op_iv));
    510        1.1  jmcneill 		}
    511        1.1  jmcneill 	} else {
    512        1.1  jmcneill 		control = SB_CTL_DEC;
    513        1.1  jmcneill 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    514        1.9    cegger 			memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
    515        1.1  jmcneill 		else {
    516        1.1  jmcneill 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    517        1.1  jmcneill 				m_copydata((struct mbuf *)crp->crp_buf,
    518        1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    519        1.1  jmcneill 			else if (crp->crp_flags & CRYPTO_F_IOV)
    520        1.1  jmcneill 				cuio_copydata((struct uio *)crp->crp_buf,
    521        1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    522        1.1  jmcneill 			else
    523        1.1  jmcneill 				bcopy((char *)crp->crp_buf + crd->crd_inject,
    524        1.1  jmcneill 				    op_iv, sizeof(op_iv));
    525        1.1  jmcneill 		}
    526        1.1  jmcneill 	}
    527        1.1  jmcneill 
    528        1.1  jmcneill 	offset = 0;
    529        1.1  jmcneill 	tlen = crd->crd_len;
    530        1.1  jmcneill 	piv = op_iv;
    531        1.1  jmcneill 
    532        1.1  jmcneill 	/* Process the data in GLXSB_MAX_AES_LEN chunks */
    533        1.1  jmcneill 	while (tlen > 0) {
    534        1.1  jmcneill 		len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
    535        1.1  jmcneill 
    536        1.1  jmcneill 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    537        1.1  jmcneill 			m_copydata((struct mbuf *)crp->crp_buf,
    538        1.1  jmcneill 			    crd->crd_skip + offset, len, op_src);
    539        1.1  jmcneill 		else if (crp->crp_flags & CRYPTO_F_IOV)
    540        1.1  jmcneill 			cuio_copydata((struct uio *)crp->crp_buf,
    541        1.1  jmcneill 			    crd->crd_skip + offset, len, op_src);
    542        1.1  jmcneill 		else
    543        1.1  jmcneill 			bcopy((char *)crp->crp_buf + crd->crd_skip + offset,
    544        1.1  jmcneill 			    op_src, len);
    545        1.1  jmcneill 
    546        1.1  jmcneill 		glxsb_dma_pre_op(sc, &sc->sc_dma);
    547        1.1  jmcneill 
    548        1.1  jmcneill 		glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
    549        1.1  jmcneill 		    len, op_iv);
    550        1.1  jmcneill 
    551        1.1  jmcneill 		glxsb_dma_post_op(sc, &sc->sc_dma);
    552        1.1  jmcneill 
    553        1.1  jmcneill 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    554        1.1  jmcneill 			m_copyback((struct mbuf *)crp->crp_buf,
    555        1.1  jmcneill 			    crd->crd_skip + offset, len, op_dst);
    556        1.1  jmcneill 		else if (crp->crp_flags & CRYPTO_F_IOV)
    557        1.1  jmcneill 			cuio_copyback((struct uio *)crp->crp_buf,
    558        1.1  jmcneill 			    crd->crd_skip + offset, len, op_dst);
    559        1.1  jmcneill 		else
    560        1.9    cegger 			memcpy((char *)crp->crp_buf + crd->crd_skip + offset, op_dst,
    561        1.1  jmcneill 			    len);
    562        1.1  jmcneill 
    563        1.1  jmcneill 		offset += len;
    564        1.1  jmcneill 		tlen -= len;
    565        1.1  jmcneill 
    566        1.1  jmcneill 		if (tlen <= 0) {	/* Ideally, just == 0 */
    567        1.1  jmcneill 			/* Finished - put the IV in session IV */
    568        1.1  jmcneill 			piv = ses->ses_iv;
    569        1.1  jmcneill 		}
    570        1.1  jmcneill 
    571        1.1  jmcneill 		/*
    572        1.1  jmcneill 		 * Copy out last block for use as next iteration/session IV.
    573        1.1  jmcneill 		 *
    574        1.1  jmcneill 		 * piv is set to op_iv[] before the loop starts, but is
    575        1.1  jmcneill 		 * set to ses->ses_iv if we're going to exit the loop this
    576        1.1  jmcneill 		 * time.
    577        1.1  jmcneill 		 */
    578        1.1  jmcneill 		if (crd->crd_flags & CRD_F_ENCRYPT) {
    579        1.9    cegger 			memcpy(piv, op_dst + len - sizeof(op_iv), sizeof(op_iv));
    580        1.1  jmcneill 		} else {
    581        1.1  jmcneill 			/* Decryption, only need this if another iteration */
    582        1.1  jmcneill 			if (tlen > 0) {
    583        1.9    cegger 				memcpy(piv, op_src + len - sizeof(op_iv),
    584        1.1  jmcneill 				    sizeof(op_iv));
    585        1.1  jmcneill 			}
    586        1.1  jmcneill 		}
    587        1.1  jmcneill 	}
    588        1.1  jmcneill 
    589        1.1  jmcneill 	/* All AES processing has now been done. */
    590        1.1  jmcneill 
    591        1.7    cegger 	memset(sc->sc_dma.dma_vaddr, 0, xlen * 2);
    592        1.1  jmcneill out:
    593        1.1  jmcneill 	crp->crp_etype = err;
    594        1.1  jmcneill 	crypto_done(crp);
    595        1.1  jmcneill 	splx(s);
    596        1.1  jmcneill 	return (err);
    597        1.1  jmcneill }
    598        1.1  jmcneill 
    599        1.1  jmcneill int
    600        1.1  jmcneill glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
    601        1.1  jmcneill {
    602        1.1  jmcneill 	int rc;
    603        1.1  jmcneill 
    604        1.1  jmcneill 	dma->dma_nsegs = 1;
    605        1.1  jmcneill 	dma->dma_size = size;
    606        1.1  jmcneill 
    607        1.1  jmcneill 	rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
    608        1.1  jmcneill 	    0, BUS_DMA_NOWAIT, &dma->dma_map);
    609        1.1  jmcneill 	if (rc != 0) {
    610        1.6   xtraeme 		aprint_error_dev(sc->sc_dev, "couldn't create DMA map for %d bytes (%d)\n",
    611        1.5    cegger 		    size, rc);
    612        1.1  jmcneill 
    613        1.1  jmcneill 		goto fail0;
    614        1.1  jmcneill 	}
    615        1.1  jmcneill 
    616        1.1  jmcneill 	rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
    617        1.1  jmcneill 	    &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
    618        1.1  jmcneill 	if (rc != 0) {
    619        1.6   xtraeme 		aprint_error_dev(sc->sc_dev, "couldn't allocate DMA memory of %d bytes (%d)\n",
    620        1.5    cegger 		    size, rc);
    621        1.1  jmcneill 
    622        1.1  jmcneill 		goto fail1;
    623        1.1  jmcneill 	}
    624        1.1  jmcneill 
    625        1.1  jmcneill 	rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
    626        1.1  jmcneill 	    &dma->dma_vaddr, BUS_DMA_NOWAIT);
    627        1.1  jmcneill 	if (rc != 0) {
    628        1.6   xtraeme 		aprint_error_dev(sc->sc_dev, "couldn't map DMA memory for %d bytes (%d)\n",
    629        1.5    cegger 		    size, rc);
    630        1.1  jmcneill 
    631        1.1  jmcneill 		goto fail2;
    632        1.1  jmcneill 	}
    633        1.1  jmcneill 
    634        1.1  jmcneill 	rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
    635        1.1  jmcneill 	    size, NULL, BUS_DMA_NOWAIT);
    636        1.1  jmcneill 	if (rc != 0) {
    637        1.6   xtraeme 		aprint_error_dev(sc->sc_dev, "couldn't load DMA memory for %d bytes (%d)\n",
    638        1.5    cegger 		    size, rc);
    639        1.1  jmcneill 
    640        1.1  jmcneill 		goto fail3;
    641        1.1  jmcneill 	}
    642        1.1  jmcneill 
    643        1.1  jmcneill 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
    644        1.1  jmcneill 
    645        1.1  jmcneill 	return 0;
    646        1.1  jmcneill 
    647        1.1  jmcneill fail3:
    648        1.1  jmcneill 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
    649        1.1  jmcneill fail2:
    650        1.1  jmcneill 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    651        1.1  jmcneill fail1:
    652        1.1  jmcneill 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    653        1.1  jmcneill fail0:
    654        1.1  jmcneill 	return rc;
    655        1.1  jmcneill }
    656        1.1  jmcneill 
    657        1.1  jmcneill void
    658        1.1  jmcneill glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    659        1.1  jmcneill {
    660        1.1  jmcneill 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    661        1.1  jmcneill 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    662        1.1  jmcneill }
    663        1.1  jmcneill 
    664        1.1  jmcneill void
    665        1.1  jmcneill glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    666        1.1  jmcneill {
    667        1.1  jmcneill 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    668        1.1  jmcneill 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    669        1.1  jmcneill }
    670        1.1  jmcneill 
    671        1.1  jmcneill void
    672        1.1  jmcneill glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    673        1.1  jmcneill {
    674        1.1  jmcneill 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
    675        1.1  jmcneill 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
    676        1.1  jmcneill 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    677        1.1  jmcneill 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    678        1.1  jmcneill }
    679