glxsb.c revision 1.11 1 1.11 christos /* $NetBSD: glxsb.c,v 1.11 2014/04/04 14:47:26 christos Exp $ */
2 1.1 jmcneill /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
3 1.1 jmcneill
4 1.1 jmcneill /*
5 1.1 jmcneill * Copyright (c) 2006 Tom Cosgrove <tom (at) openbsd.org>
6 1.1 jmcneill * Copyright (c) 2003, 2004 Theo de Raadt
7 1.1 jmcneill * Copyright (c) 2003 Jason Wright
8 1.1 jmcneill *
9 1.1 jmcneill * Permission to use, copy, modify, and distribute this software for any
10 1.1 jmcneill * purpose with or without fee is hereby granted, provided that the above
11 1.1 jmcneill * copyright notice and this permission notice appear in all copies.
12 1.1 jmcneill *
13 1.1 jmcneill * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 1.1 jmcneill * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 1.1 jmcneill * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 1.1 jmcneill * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 1.1 jmcneill * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 1.1 jmcneill * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 1.1 jmcneill * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 1.1 jmcneill */
21 1.1 jmcneill
22 1.1 jmcneill /*
23 1.1 jmcneill * Driver for the security block on the AMD Geode LX processors
24 1.1 jmcneill * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
25 1.1 jmcneill */
26 1.1 jmcneill
27 1.1 jmcneill #include <sys/cdefs.h>
28 1.11 christos __KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.11 2014/04/04 14:47:26 christos Exp $");
29 1.3 lukem
30 1.1 jmcneill #include <sys/param.h>
31 1.1 jmcneill #include <sys/systm.h>
32 1.1 jmcneill #include <sys/device.h>
33 1.1 jmcneill #include <sys/malloc.h>
34 1.1 jmcneill #include <sys/mbuf.h>
35 1.1 jmcneill #include <sys/types.h>
36 1.1 jmcneill #include <sys/callout.h>
37 1.4 ad #include <sys/bus.h>
38 1.10 tls #include <sys/cprng.h>
39 1.1 jmcneill
40 1.4 ad #include <machine/cpufunc.h>
41 1.1 jmcneill
42 1.1 jmcneill #include <dev/pci/pcivar.h>
43 1.1 jmcneill #include <dev/pci/pcidevs.h>
44 1.1 jmcneill
45 1.1 jmcneill #include <opencrypto/cryptodev.h>
46 1.1 jmcneill #include <crypto/rijndael/rijndael.h>
47 1.1 jmcneill
48 1.1 jmcneill #define SB_GLD_MSR_CAP 0x58002000 /* RO - Capabilities */
49 1.1 jmcneill #define SB_GLD_MSR_CONFIG 0x58002001 /* RW - Master Config */
50 1.1 jmcneill #define SB_GLD_MSR_SMI 0x58002002 /* RW - SMI */
51 1.1 jmcneill #define SB_GLD_MSR_ERROR 0x58002003 /* RW - Error */
52 1.1 jmcneill #define SB_GLD_MSR_PM 0x58002004 /* RW - Power Mgmt */
53 1.1 jmcneill #define SB_GLD_MSR_DIAG 0x58002005 /* RW - Diagnostic */
54 1.1 jmcneill #define SB_GLD_MSR_CTRL 0x58002006 /* RW - Security Block Cntrl */
55 1.1 jmcneill
56 1.1 jmcneill /* For GLD_MSR_CTRL: */
57 1.1 jmcneill #define SB_GMC_DIV0 0x0000 /* AES update divisor values */
58 1.1 jmcneill #define SB_GMC_DIV1 0x0001
59 1.1 jmcneill #define SB_GMC_DIV2 0x0002
60 1.1 jmcneill #define SB_GMC_DIV3 0x0003
61 1.1 jmcneill #define SB_GMC_DIV_MASK 0x0003
62 1.1 jmcneill #define SB_GMC_SBI 0x0004 /* AES swap bits */
63 1.1 jmcneill #define SB_GMC_SBY 0x0008 /* AES swap bytes */
64 1.1 jmcneill #define SB_GMC_TW 0x0010 /* Time write (EEPROM) */
65 1.1 jmcneill #define SB_GMC_T_SEL0 0x0000 /* RNG post-proc: none */
66 1.1 jmcneill #define SB_GMC_T_SEL1 0x0100 /* RNG post-proc: LFSR */
67 1.1 jmcneill #define SB_GMC_T_SEL2 0x0200 /* RNG post-proc: whitener */
68 1.1 jmcneill #define SB_GMC_T_SEL3 0x0300 /* RNG LFSR+whitener */
69 1.1 jmcneill #define SB_GMC_T_SEL_MASK 0x0300
70 1.1 jmcneill #define SB_GMC_T_NE 0x0400 /* Noise (generator) Enable */
71 1.1 jmcneill #define SB_GMC_T_TM 0x0800 /* RNG test mode */
72 1.1 jmcneill /* (deterministic) */
73 1.1 jmcneill
74 1.1 jmcneill /* Security Block configuration/control registers (offsets from base) */
75 1.1 jmcneill
76 1.1 jmcneill #define SB_CTL_A 0x0000 /* RW - SB Control A */
77 1.1 jmcneill #define SB_CTL_B 0x0004 /* RW - SB Control B */
78 1.1 jmcneill #define SB_AES_INT 0x0008 /* RW - SB AES Interrupt */
79 1.1 jmcneill #define SB_SOURCE_A 0x0010 /* RW - Source A */
80 1.1 jmcneill #define SB_DEST_A 0x0014 /* RW - Destination A */
81 1.1 jmcneill #define SB_LENGTH_A 0x0018 /* RW - Length A */
82 1.1 jmcneill #define SB_SOURCE_B 0x0020 /* RW - Source B */
83 1.1 jmcneill #define SB_DEST_B 0x0024 /* RW - Destination B */
84 1.1 jmcneill #define SB_LENGTH_B 0x0028 /* RW - Length B */
85 1.1 jmcneill #define SB_WKEY 0x0030 /* WO - Writable Key 0-3 */
86 1.1 jmcneill #define SB_WKEY_0 0x0030 /* WO - Writable Key 0 */
87 1.1 jmcneill #define SB_WKEY_1 0x0034 /* WO - Writable Key 1 */
88 1.1 jmcneill #define SB_WKEY_2 0x0038 /* WO - Writable Key 2 */
89 1.1 jmcneill #define SB_WKEY_3 0x003C /* WO - Writable Key 3 */
90 1.1 jmcneill #define SB_CBC_IV 0x0040 /* RW - CBC IV 0-3 */
91 1.1 jmcneill #define SB_CBC_IV_0 0x0040 /* RW - CBC IV 0 */
92 1.1 jmcneill #define SB_CBC_IV_1 0x0044 /* RW - CBC IV 1 */
93 1.1 jmcneill #define SB_CBC_IV_2 0x0048 /* RW - CBC IV 2 */
94 1.1 jmcneill #define SB_CBC_IV_3 0x004C /* RW - CBC IV 3 */
95 1.1 jmcneill #define SB_RANDOM_NUM 0x0050 /* RW - Random Number */
96 1.1 jmcneill #define SB_RANDOM_NUM_STATUS 0x0054 /* RW - Random Number Status */
97 1.1 jmcneill #define SB_EEPROM_COMM 0x0800 /* RW - EEPROM Command */
98 1.1 jmcneill #define SB_EEPROM_ADDR 0x0804 /* RW - EEPROM Address */
99 1.1 jmcneill #define SB_EEPROM_DATA 0x0808 /* RW - EEPROM Data */
100 1.1 jmcneill #define SB_EEPROM_SEC_STATE 0x080C /* RW - EEPROM Security State */
101 1.1 jmcneill
102 1.1 jmcneill /* For SB_CTL_A and _B */
103 1.1 jmcneill #define SB_CTL_ST 0x0001 /* Start operation (enc/dec) */
104 1.1 jmcneill #define SB_CTL_ENC 0x0002 /* Encrypt (0 is decrypt) */
105 1.1 jmcneill #define SB_CTL_DEC 0x0000 /* Decrypt */
106 1.1 jmcneill #define SB_CTL_WK 0x0004 /* Use writable key (we set) */
107 1.1 jmcneill #define SB_CTL_DC 0x0008 /* Destination coherent */
108 1.1 jmcneill #define SB_CTL_SC 0x0010 /* Source coherent */
109 1.1 jmcneill #define SB_CTL_CBC 0x0020 /* CBC (0 is ECB) */
110 1.1 jmcneill
111 1.1 jmcneill /* For SB_AES_INT */
112 1.1 jmcneill #define SB_AI_DISABLE_AES_A 0x0001 /* Disable AES A compl int */
113 1.1 jmcneill #define SB_AI_ENABLE_AES_A 0x0000 /* Enable AES A compl int */
114 1.1 jmcneill #define SB_AI_DISABLE_AES_B 0x0002 /* Disable AES B compl int */
115 1.1 jmcneill #define SB_AI_ENABLE_AES_B 0x0000 /* Enable AES B compl int */
116 1.1 jmcneill #define SB_AI_DISABLE_EEPROM 0x0004 /* Disable EEPROM op comp int */
117 1.1 jmcneill #define SB_AI_ENABLE_EEPROM 0x0000 /* Enable EEPROM op compl int */
118 1.1 jmcneill #define SB_AI_AES_A_COMPLETE 0x0100 /* AES A operation complete */
119 1.1 jmcneill #define SB_AI_AES_B_COMPLETE 0x0200 /* AES B operation complete */
120 1.1 jmcneill #define SB_AI_EEPROM_COMPLETE 0x0400 /* EEPROM operation complete */
121 1.1 jmcneill
122 1.1 jmcneill #define SB_RNS_TRNG_VALID 0x0001 /* in SB_RANDOM_NUM_STATUS */
123 1.1 jmcneill
124 1.1 jmcneill #define SB_MEM_SIZE 0x0810 /* Size of memory block */
125 1.1 jmcneill
126 1.1 jmcneill #define SB_AES_ALIGN 0x0010 /* Source and dest buffers */
127 1.1 jmcneill /* must be 16-byte aligned */
128 1.1 jmcneill #define SB_AES_BLOCK_SIZE 0x0010
129 1.1 jmcneill
130 1.1 jmcneill /*
131 1.1 jmcneill * The Geode LX security block AES acceleration doesn't perform scatter-
132 1.1 jmcneill * gather: it just takes source and destination addresses. Therefore the
133 1.1 jmcneill * plain- and ciphertexts need to be contiguous. To this end, we allocate
134 1.1 jmcneill * a buffer for both, and accept the overhead of copying in and out. If
135 1.1 jmcneill * the number of bytes in one operation is bigger than allowed for by the
136 1.1 jmcneill * buffer (buffer is twice the size of the max length, as it has both input
137 1.1 jmcneill * and output) then we have to perform multiple encryptions/decryptions.
138 1.1 jmcneill */
139 1.1 jmcneill #define GLXSB_MAX_AES_LEN 16384
140 1.1 jmcneill
141 1.1 jmcneill struct glxsb_dma_map {
142 1.1 jmcneill bus_dmamap_t dma_map;
143 1.1 jmcneill bus_dma_segment_t dma_seg;
144 1.1 jmcneill int dma_nsegs;
145 1.1 jmcneill int dma_size;
146 1.1 jmcneill void * dma_vaddr;
147 1.1 jmcneill uint32_t dma_paddr;
148 1.1 jmcneill };
149 1.1 jmcneill struct glxsb_session {
150 1.1 jmcneill uint32_t ses_key[4];
151 1.1 jmcneill uint8_t ses_iv[SB_AES_BLOCK_SIZE];
152 1.1 jmcneill int ses_klen;
153 1.1 jmcneill int ses_used;
154 1.1 jmcneill };
155 1.1 jmcneill
156 1.1 jmcneill struct glxsb_softc {
157 1.6 xtraeme device_t sc_dev;
158 1.1 jmcneill bus_space_tag_t sc_iot;
159 1.1 jmcneill bus_space_handle_t sc_ioh;
160 1.1 jmcneill struct callout sc_co;
161 1.1 jmcneill
162 1.1 jmcneill bus_dma_tag_t sc_dmat;
163 1.1 jmcneill struct glxsb_dma_map sc_dma;
164 1.1 jmcneill int32_t sc_cid;
165 1.1 jmcneill int sc_nsessions;
166 1.1 jmcneill struct glxsb_session *sc_sessions;
167 1.1 jmcneill
168 1.10 tls krndsource_t sc_rnd_source;
169 1.1 jmcneill };
170 1.1 jmcneill
171 1.6 xtraeme int glxsb_match(device_t, cfdata_t, void *);
172 1.6 xtraeme void glxsb_attach(device_t, device_t, void *);
173 1.1 jmcneill void glxsb_rnd(void *);
174 1.1 jmcneill
175 1.6 xtraeme CFATTACH_DECL_NEW(glxsb, sizeof(struct glxsb_softc),
176 1.6 xtraeme glxsb_match, glxsb_attach, NULL, NULL);
177 1.1 jmcneill
178 1.1 jmcneill #define GLXSB_SESSION(sid) ((sid) & 0x0fffffff)
179 1.1 jmcneill #define GLXSB_SID(crd,ses) (((crd) << 28) | ((ses) & 0x0fffffff))
180 1.1 jmcneill
181 1.1 jmcneill int glxsb_crypto_setup(struct glxsb_softc *);
182 1.1 jmcneill int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *);
183 1.1 jmcneill int glxsb_crypto_process(void *, struct cryptop *, int);
184 1.1 jmcneill int glxsb_crypto_freesession(void *, uint64_t);
185 1.1 jmcneill static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
186 1.1 jmcneill uint32_t, void *, int, void *);
187 1.1 jmcneill
188 1.1 jmcneill int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
189 1.1 jmcneill void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
190 1.1 jmcneill void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
191 1.1 jmcneill void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
192 1.1 jmcneill
193 1.1 jmcneill int
194 1.6 xtraeme glxsb_match(device_t parent, cfdata_t match, void *aux)
195 1.1 jmcneill {
196 1.1 jmcneill struct pci_attach_args *pa = aux;
197 1.1 jmcneill
198 1.1 jmcneill if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
199 1.1 jmcneill PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES)
200 1.1 jmcneill return (1);
201 1.1 jmcneill
202 1.1 jmcneill return (0);
203 1.1 jmcneill }
204 1.1 jmcneill
205 1.1 jmcneill void
206 1.6 xtraeme glxsb_attach(device_t parent, device_t self, void *aux)
207 1.1 jmcneill {
208 1.6 xtraeme struct glxsb_softc *sc = device_private(self);
209 1.1 jmcneill struct pci_attach_args *pa = aux;
210 1.1 jmcneill bus_addr_t membase;
211 1.1 jmcneill bus_size_t memsize;
212 1.1 jmcneill uint64_t msr;
213 1.1 jmcneill uint32_t intr;
214 1.1 jmcneill
215 1.1 jmcneill msr = rdmsr(SB_GLD_MSR_CAP);
216 1.1 jmcneill if ((msr & 0xFFFF00) != 0x130400) {
217 1.1 jmcneill printf(": unknown ID 0x%x\n", (int) ((msr & 0xFFFF00) >> 16));
218 1.1 jmcneill return;
219 1.1 jmcneill }
220 1.1 jmcneill
221 1.1 jmcneill /* printf(": revision %d", (int) (msr & 0xFF)); */
222 1.1 jmcneill
223 1.1 jmcneill /* Map in the security block configuration/control registers */
224 1.1 jmcneill if (pci_mapreg_map(pa, PCI_MAPREG_START,
225 1.1 jmcneill PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
226 1.1 jmcneill &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) {
227 1.1 jmcneill printf(": can't find mem space\n");
228 1.1 jmcneill return;
229 1.1 jmcneill }
230 1.1 jmcneill
231 1.6 xtraeme sc->sc_dev = self;
232 1.6 xtraeme
233 1.1 jmcneill /*
234 1.1 jmcneill * Configure the Security Block.
235 1.1 jmcneill *
236 1.1 jmcneill * We want to enable the noise generator (T_NE), and enable the
237 1.1 jmcneill * linear feedback shift register and whitener post-processing
238 1.1 jmcneill * (T_SEL = 3). Also ensure that test mode (deterministic values)
239 1.1 jmcneill * is disabled.
240 1.1 jmcneill */
241 1.1 jmcneill msr = rdmsr(SB_GLD_MSR_CTRL);
242 1.1 jmcneill msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
243 1.1 jmcneill msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
244 1.1 jmcneill #if 0
245 1.1 jmcneill msr |= SB_GMC_SBI | SB_GMC_SBY; /* for AES, if necessary */
246 1.1 jmcneill #endif
247 1.1 jmcneill wrmsr(SB_GLD_MSR_CTRL, msr);
248 1.1 jmcneill
249 1.6 xtraeme rnd_attach_source(&sc->sc_rnd_source, device_xname(self),
250 1.1 jmcneill RND_TYPE_RNG, RND_FLAG_NO_ESTIMATE);
251 1.1 jmcneill
252 1.1 jmcneill /* Install a periodic collector for the "true" (AMD's word) RNG */
253 1.2 ad callout_init(&sc->sc_co, 0);
254 1.1 jmcneill callout_setfunc(&sc->sc_co, glxsb_rnd, sc);
255 1.1 jmcneill glxsb_rnd(sc);
256 1.11 christos aprint_normal(": RNG");
257 1.1 jmcneill
258 1.1 jmcneill /* We don't have an interrupt handler, so disable completion INTs */
259 1.1 jmcneill intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
260 1.1 jmcneill SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
261 1.1 jmcneill SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
262 1.1 jmcneill bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
263 1.1 jmcneill
264 1.1 jmcneill sc->sc_dmat = pa->pa_dmat;
265 1.1 jmcneill
266 1.1 jmcneill if (glxsb_crypto_setup(sc))
267 1.11 christos aprint_normal(" AES");
268 1.1 jmcneill
269 1.11 christos aprint_normal("\n");
270 1.1 jmcneill }
271 1.1 jmcneill
272 1.1 jmcneill void
273 1.1 jmcneill glxsb_rnd(void *v)
274 1.1 jmcneill {
275 1.1 jmcneill struct glxsb_softc *sc = v;
276 1.1 jmcneill uint32_t status, value;
277 1.1 jmcneill extern int hz;
278 1.1 jmcneill
279 1.1 jmcneill status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
280 1.1 jmcneill if (status & SB_RNS_TRNG_VALID) {
281 1.1 jmcneill value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
282 1.1 jmcneill rnd_add_uint32(&sc->sc_rnd_source, value);
283 1.1 jmcneill }
284 1.1 jmcneill
285 1.1 jmcneill callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1);
286 1.1 jmcneill }
287 1.1 jmcneill
288 1.1 jmcneill int
289 1.1 jmcneill glxsb_crypto_setup(struct glxsb_softc *sc)
290 1.1 jmcneill {
291 1.1 jmcneill
292 1.1 jmcneill /* Allocate a contiguous DMA-able buffer to work in */
293 1.1 jmcneill if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
294 1.1 jmcneill return 0;
295 1.1 jmcneill
296 1.1 jmcneill sc->sc_cid = crypto_get_driverid(0);
297 1.1 jmcneill if (sc->sc_cid < 0)
298 1.1 jmcneill return 0;
299 1.1 jmcneill
300 1.1 jmcneill crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
301 1.1 jmcneill glxsb_crypto_newsession, glxsb_crypto_freesession,
302 1.1 jmcneill glxsb_crypto_process, sc);
303 1.1 jmcneill
304 1.1 jmcneill sc->sc_nsessions = 0;
305 1.1 jmcneill
306 1.1 jmcneill return 1;
307 1.1 jmcneill }
308 1.1 jmcneill
309 1.1 jmcneill int
310 1.1 jmcneill glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri)
311 1.1 jmcneill {
312 1.1 jmcneill struct glxsb_softc *sc = aux;
313 1.1 jmcneill struct glxsb_session *ses = NULL;
314 1.1 jmcneill int sesn;
315 1.1 jmcneill
316 1.1 jmcneill if (sc == NULL || sidp == NULL || cri == NULL ||
317 1.1 jmcneill cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC ||
318 1.1 jmcneill cri->cri_klen != 128)
319 1.1 jmcneill return (EINVAL);
320 1.1 jmcneill
321 1.1 jmcneill for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
322 1.1 jmcneill if (sc->sc_sessions[sesn].ses_used == 0) {
323 1.1 jmcneill ses = &sc->sc_sessions[sesn];
324 1.1 jmcneill break;
325 1.1 jmcneill }
326 1.1 jmcneill }
327 1.1 jmcneill
328 1.1 jmcneill if (ses == NULL) {
329 1.1 jmcneill sesn = sc->sc_nsessions;
330 1.1 jmcneill ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT);
331 1.1 jmcneill if (ses == NULL)
332 1.1 jmcneill return (ENOMEM);
333 1.1 jmcneill if (sesn != 0) {
334 1.9 cegger memcpy(ses, sc->sc_sessions, sesn * sizeof(*ses));
335 1.7 cegger memset(sc->sc_sessions, 0, sesn * sizeof(*ses));
336 1.1 jmcneill free(sc->sc_sessions, M_DEVBUF);
337 1.1 jmcneill }
338 1.1 jmcneill sc->sc_sessions = ses;
339 1.1 jmcneill ses = &sc->sc_sessions[sesn];
340 1.1 jmcneill sc->sc_nsessions++;
341 1.1 jmcneill }
342 1.1 jmcneill
343 1.7 cegger memset(ses, 0, sizeof(*ses));
344 1.1 jmcneill ses->ses_used = 1;
345 1.1 jmcneill
346 1.10 tls cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
347 1.1 jmcneill ses->ses_klen = cri->cri_klen;
348 1.1 jmcneill
349 1.1 jmcneill /* Copy the key (Geode LX wants the primary key only) */
350 1.9 cegger memcpy(ses->ses_key, cri->cri_key, sizeof(ses->ses_key));
351 1.1 jmcneill
352 1.1 jmcneill *sidp = GLXSB_SID(0, sesn);
353 1.1 jmcneill return (0);
354 1.1 jmcneill }
355 1.1 jmcneill
356 1.1 jmcneill int
357 1.1 jmcneill glxsb_crypto_freesession(void *aux, uint64_t tid)
358 1.1 jmcneill {
359 1.1 jmcneill struct glxsb_softc *sc = aux;
360 1.1 jmcneill int sesn;
361 1.1 jmcneill uint32_t sid = ((uint32_t)tid) & 0xffffffff;
362 1.1 jmcneill
363 1.1 jmcneill if (sc == NULL)
364 1.1 jmcneill return (EINVAL);
365 1.1 jmcneill sesn = GLXSB_SESSION(sid);
366 1.1 jmcneill if (sesn >= sc->sc_nsessions)
367 1.1 jmcneill return (EINVAL);
368 1.7 cegger memset(&sc->sc_sessions[sesn], 0, sizeof(sc->sc_sessions[sesn]));
369 1.1 jmcneill return (0);
370 1.1 jmcneill }
371 1.1 jmcneill
372 1.1 jmcneill /*
373 1.1 jmcneill * Must be called at splnet() or higher
374 1.1 jmcneill */
375 1.1 jmcneill static __inline void
376 1.1 jmcneill glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
377 1.1 jmcneill uint32_t pdst, void *key, int len, void *iv)
378 1.1 jmcneill {
379 1.1 jmcneill uint32_t status;
380 1.1 jmcneill int i;
381 1.1 jmcneill
382 1.1 jmcneill if (len & 0xF) {
383 1.1 jmcneill printf("%s: len must be a multiple of 16 (not %d)\n",
384 1.6 xtraeme device_xname(sc->sc_dev), len);
385 1.1 jmcneill return;
386 1.1 jmcneill }
387 1.1 jmcneill
388 1.1 jmcneill /* Set the source */
389 1.1 jmcneill bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
390 1.1 jmcneill
391 1.1 jmcneill /* Set the destination address */
392 1.1 jmcneill bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
393 1.1 jmcneill
394 1.1 jmcneill /* Set the data length */
395 1.1 jmcneill bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
396 1.1 jmcneill
397 1.1 jmcneill /* Set the IV */
398 1.1 jmcneill if (iv != NULL) {
399 1.1 jmcneill bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
400 1.1 jmcneill SB_CBC_IV, iv, 4);
401 1.1 jmcneill control |= SB_CTL_CBC;
402 1.1 jmcneill }
403 1.1 jmcneill
404 1.1 jmcneill /* Set the key */
405 1.1 jmcneill bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
406 1.1 jmcneill
407 1.1 jmcneill /* Ask the security block to do it */
408 1.1 jmcneill bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
409 1.1 jmcneill control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
410 1.1 jmcneill
411 1.1 jmcneill /*
412 1.1 jmcneill * Now wait until it is done.
413 1.1 jmcneill *
414 1.1 jmcneill * We do a busy wait. Obviously the number of iterations of
415 1.1 jmcneill * the loop required to perform the AES operation depends upon
416 1.1 jmcneill * the number of bytes to process.
417 1.1 jmcneill *
418 1.1 jmcneill * On a 500 MHz Geode LX we see
419 1.1 jmcneill *
420 1.1 jmcneill * length (bytes) typical max iterations
421 1.1 jmcneill * 16 12
422 1.1 jmcneill * 64 22
423 1.1 jmcneill * 256 59
424 1.1 jmcneill * 1024 212
425 1.1 jmcneill * 8192 1,537
426 1.1 jmcneill *
427 1.1 jmcneill * Since we have a maximum size of operation defined in
428 1.1 jmcneill * GLXSB_MAX_AES_LEN, we use this constant to decide how long
429 1.1 jmcneill * to wait. Allow an order of magnitude longer than it should
430 1.1 jmcneill * really take, just in case.
431 1.1 jmcneill */
432 1.1 jmcneill for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
433 1.1 jmcneill status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
434 1.1 jmcneill
435 1.1 jmcneill if ((status & SB_CTL_ST) == 0) /* Done */
436 1.1 jmcneill return;
437 1.1 jmcneill }
438 1.1 jmcneill
439 1.6 xtraeme aprint_error_dev(sc->sc_dev, "operation failed to complete\n");
440 1.1 jmcneill }
441 1.1 jmcneill
442 1.1 jmcneill int
443 1.1 jmcneill glxsb_crypto_process(void *aux, struct cryptop *crp, int hint)
444 1.1 jmcneill {
445 1.1 jmcneill struct glxsb_softc *sc = aux;
446 1.1 jmcneill struct glxsb_session *ses;
447 1.1 jmcneill struct cryptodesc *crd;
448 1.1 jmcneill char *op_src, *op_dst;
449 1.1 jmcneill uint32_t op_psrc, op_pdst;
450 1.1 jmcneill uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
451 1.1 jmcneill int sesn, err = 0;
452 1.1 jmcneill int len, tlen, xlen;
453 1.1 jmcneill int offset;
454 1.1 jmcneill uint32_t control;
455 1.1 jmcneill int s;
456 1.1 jmcneill
457 1.1 jmcneill s = splnet();
458 1.1 jmcneill
459 1.1 jmcneill if (crp == NULL || crp->crp_callback == NULL) {
460 1.1 jmcneill err = EINVAL;
461 1.1 jmcneill goto out;
462 1.1 jmcneill }
463 1.1 jmcneill crd = crp->crp_desc;
464 1.1 jmcneill if (crd == NULL || crd->crd_next != NULL ||
465 1.1 jmcneill crd->crd_alg != CRYPTO_AES_CBC ||
466 1.1 jmcneill (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
467 1.1 jmcneill err = EINVAL;
468 1.1 jmcneill goto out;
469 1.1 jmcneill }
470 1.1 jmcneill
471 1.1 jmcneill sesn = GLXSB_SESSION(crp->crp_sid);
472 1.1 jmcneill if (sesn >= sc->sc_nsessions) {
473 1.1 jmcneill err = EINVAL;
474 1.1 jmcneill goto out;
475 1.1 jmcneill }
476 1.1 jmcneill ses = &sc->sc_sessions[sesn];
477 1.1 jmcneill
478 1.1 jmcneill /* How much of our buffer will we need to use? */
479 1.1 jmcneill xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
480 1.1 jmcneill GLXSB_MAX_AES_LEN : crd->crd_len;
481 1.1 jmcneill
482 1.1 jmcneill /*
483 1.1 jmcneill * XXX Check if we can have input == output on Geode LX.
484 1.1 jmcneill * XXX In the meantime, use two separate (adjacent) buffers.
485 1.1 jmcneill */
486 1.1 jmcneill op_src = sc->sc_dma.dma_vaddr;
487 1.1 jmcneill op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
488 1.1 jmcneill
489 1.1 jmcneill op_psrc = sc->sc_dma.dma_paddr;
490 1.1 jmcneill op_pdst = sc->sc_dma.dma_paddr + xlen;
491 1.1 jmcneill
492 1.1 jmcneill if (crd->crd_flags & CRD_F_ENCRYPT) {
493 1.1 jmcneill control = SB_CTL_ENC;
494 1.1 jmcneill if (crd->crd_flags & CRD_F_IV_EXPLICIT)
495 1.9 cegger memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
496 1.1 jmcneill else
497 1.9 cegger memcpy(op_iv, ses->ses_iv, sizeof(op_iv));
498 1.1 jmcneill
499 1.1 jmcneill if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
500 1.1 jmcneill if (crp->crp_flags & CRYPTO_F_IMBUF)
501 1.1 jmcneill m_copyback((struct mbuf *)crp->crp_buf,
502 1.1 jmcneill crd->crd_inject, sizeof(op_iv), op_iv);
503 1.1 jmcneill else if (crp->crp_flags & CRYPTO_F_IOV)
504 1.1 jmcneill cuio_copyback((struct uio *)crp->crp_buf,
505 1.1 jmcneill crd->crd_inject, sizeof(op_iv), op_iv);
506 1.1 jmcneill else
507 1.1 jmcneill bcopy(op_iv,
508 1.1 jmcneill (char *)crp->crp_buf + crd->crd_inject,
509 1.1 jmcneill sizeof(op_iv));
510 1.1 jmcneill }
511 1.1 jmcneill } else {
512 1.1 jmcneill control = SB_CTL_DEC;
513 1.1 jmcneill if (crd->crd_flags & CRD_F_IV_EXPLICIT)
514 1.9 cegger memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
515 1.1 jmcneill else {
516 1.1 jmcneill if (crp->crp_flags & CRYPTO_F_IMBUF)
517 1.1 jmcneill m_copydata((struct mbuf *)crp->crp_buf,
518 1.1 jmcneill crd->crd_inject, sizeof(op_iv), op_iv);
519 1.1 jmcneill else if (crp->crp_flags & CRYPTO_F_IOV)
520 1.1 jmcneill cuio_copydata((struct uio *)crp->crp_buf,
521 1.1 jmcneill crd->crd_inject, sizeof(op_iv), op_iv);
522 1.1 jmcneill else
523 1.1 jmcneill bcopy((char *)crp->crp_buf + crd->crd_inject,
524 1.1 jmcneill op_iv, sizeof(op_iv));
525 1.1 jmcneill }
526 1.1 jmcneill }
527 1.1 jmcneill
528 1.1 jmcneill offset = 0;
529 1.1 jmcneill tlen = crd->crd_len;
530 1.1 jmcneill piv = op_iv;
531 1.1 jmcneill
532 1.1 jmcneill /* Process the data in GLXSB_MAX_AES_LEN chunks */
533 1.1 jmcneill while (tlen > 0) {
534 1.1 jmcneill len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
535 1.1 jmcneill
536 1.1 jmcneill if (crp->crp_flags & CRYPTO_F_IMBUF)
537 1.1 jmcneill m_copydata((struct mbuf *)crp->crp_buf,
538 1.1 jmcneill crd->crd_skip + offset, len, op_src);
539 1.1 jmcneill else if (crp->crp_flags & CRYPTO_F_IOV)
540 1.1 jmcneill cuio_copydata((struct uio *)crp->crp_buf,
541 1.1 jmcneill crd->crd_skip + offset, len, op_src);
542 1.1 jmcneill else
543 1.1 jmcneill bcopy((char *)crp->crp_buf + crd->crd_skip + offset,
544 1.1 jmcneill op_src, len);
545 1.1 jmcneill
546 1.1 jmcneill glxsb_dma_pre_op(sc, &sc->sc_dma);
547 1.1 jmcneill
548 1.1 jmcneill glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
549 1.1 jmcneill len, op_iv);
550 1.1 jmcneill
551 1.1 jmcneill glxsb_dma_post_op(sc, &sc->sc_dma);
552 1.1 jmcneill
553 1.1 jmcneill if (crp->crp_flags & CRYPTO_F_IMBUF)
554 1.1 jmcneill m_copyback((struct mbuf *)crp->crp_buf,
555 1.1 jmcneill crd->crd_skip + offset, len, op_dst);
556 1.1 jmcneill else if (crp->crp_flags & CRYPTO_F_IOV)
557 1.1 jmcneill cuio_copyback((struct uio *)crp->crp_buf,
558 1.1 jmcneill crd->crd_skip + offset, len, op_dst);
559 1.1 jmcneill else
560 1.9 cegger memcpy((char *)crp->crp_buf + crd->crd_skip + offset, op_dst,
561 1.1 jmcneill len);
562 1.1 jmcneill
563 1.1 jmcneill offset += len;
564 1.1 jmcneill tlen -= len;
565 1.1 jmcneill
566 1.1 jmcneill if (tlen <= 0) { /* Ideally, just == 0 */
567 1.1 jmcneill /* Finished - put the IV in session IV */
568 1.1 jmcneill piv = ses->ses_iv;
569 1.1 jmcneill }
570 1.1 jmcneill
571 1.1 jmcneill /*
572 1.1 jmcneill * Copy out last block for use as next iteration/session IV.
573 1.1 jmcneill *
574 1.1 jmcneill * piv is set to op_iv[] before the loop starts, but is
575 1.1 jmcneill * set to ses->ses_iv if we're going to exit the loop this
576 1.1 jmcneill * time.
577 1.1 jmcneill */
578 1.1 jmcneill if (crd->crd_flags & CRD_F_ENCRYPT) {
579 1.9 cegger memcpy(piv, op_dst + len - sizeof(op_iv), sizeof(op_iv));
580 1.1 jmcneill } else {
581 1.1 jmcneill /* Decryption, only need this if another iteration */
582 1.1 jmcneill if (tlen > 0) {
583 1.9 cegger memcpy(piv, op_src + len - sizeof(op_iv),
584 1.1 jmcneill sizeof(op_iv));
585 1.1 jmcneill }
586 1.1 jmcneill }
587 1.1 jmcneill }
588 1.1 jmcneill
589 1.1 jmcneill /* All AES processing has now been done. */
590 1.1 jmcneill
591 1.7 cegger memset(sc->sc_dma.dma_vaddr, 0, xlen * 2);
592 1.1 jmcneill out:
593 1.1 jmcneill crp->crp_etype = err;
594 1.1 jmcneill crypto_done(crp);
595 1.1 jmcneill splx(s);
596 1.1 jmcneill return (err);
597 1.1 jmcneill }
598 1.1 jmcneill
599 1.1 jmcneill int
600 1.1 jmcneill glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
601 1.1 jmcneill {
602 1.1 jmcneill int rc;
603 1.1 jmcneill
604 1.1 jmcneill dma->dma_nsegs = 1;
605 1.1 jmcneill dma->dma_size = size;
606 1.1 jmcneill
607 1.1 jmcneill rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
608 1.1 jmcneill 0, BUS_DMA_NOWAIT, &dma->dma_map);
609 1.1 jmcneill if (rc != 0) {
610 1.6 xtraeme aprint_error_dev(sc->sc_dev, "couldn't create DMA map for %d bytes (%d)\n",
611 1.5 cegger size, rc);
612 1.1 jmcneill
613 1.1 jmcneill goto fail0;
614 1.1 jmcneill }
615 1.1 jmcneill
616 1.1 jmcneill rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
617 1.1 jmcneill &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
618 1.1 jmcneill if (rc != 0) {
619 1.6 xtraeme aprint_error_dev(sc->sc_dev, "couldn't allocate DMA memory of %d bytes (%d)\n",
620 1.5 cegger size, rc);
621 1.1 jmcneill
622 1.1 jmcneill goto fail1;
623 1.1 jmcneill }
624 1.1 jmcneill
625 1.1 jmcneill rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
626 1.1 jmcneill &dma->dma_vaddr, BUS_DMA_NOWAIT);
627 1.1 jmcneill if (rc != 0) {
628 1.6 xtraeme aprint_error_dev(sc->sc_dev, "couldn't map DMA memory for %d bytes (%d)\n",
629 1.5 cegger size, rc);
630 1.1 jmcneill
631 1.1 jmcneill goto fail2;
632 1.1 jmcneill }
633 1.1 jmcneill
634 1.1 jmcneill rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
635 1.1 jmcneill size, NULL, BUS_DMA_NOWAIT);
636 1.1 jmcneill if (rc != 0) {
637 1.6 xtraeme aprint_error_dev(sc->sc_dev, "couldn't load DMA memory for %d bytes (%d)\n",
638 1.5 cegger size, rc);
639 1.1 jmcneill
640 1.1 jmcneill goto fail3;
641 1.1 jmcneill }
642 1.1 jmcneill
643 1.1 jmcneill dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
644 1.1 jmcneill
645 1.1 jmcneill return 0;
646 1.1 jmcneill
647 1.1 jmcneill fail3:
648 1.1 jmcneill bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
649 1.1 jmcneill fail2:
650 1.1 jmcneill bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
651 1.1 jmcneill fail1:
652 1.1 jmcneill bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
653 1.1 jmcneill fail0:
654 1.1 jmcneill return rc;
655 1.1 jmcneill }
656 1.1 jmcneill
657 1.1 jmcneill void
658 1.1 jmcneill glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
659 1.1 jmcneill {
660 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
661 1.1 jmcneill BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
662 1.1 jmcneill }
663 1.1 jmcneill
664 1.1 jmcneill void
665 1.1 jmcneill glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
666 1.1 jmcneill {
667 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
668 1.1 jmcneill BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
669 1.1 jmcneill }
670 1.1 jmcneill
671 1.1 jmcneill void
672 1.1 jmcneill glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
673 1.1 jmcneill {
674 1.1 jmcneill bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
675 1.1 jmcneill bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
676 1.1 jmcneill bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
677 1.1 jmcneill bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
678 1.1 jmcneill }
679