Home | History | Annotate | Line # | Download | only in pci
glxsb.c revision 1.12.4.2
      1  1.12.4.2     skrll /*	$NetBSD: glxsb.c,v 1.12.4.2 2016/10/05 20:55:28 skrll Exp $	*/
      2       1.1  jmcneill /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
      3       1.1  jmcneill 
      4       1.1  jmcneill /*
      5       1.1  jmcneill  * Copyright (c) 2006 Tom Cosgrove <tom (at) openbsd.org>
      6       1.1  jmcneill  * Copyright (c) 2003, 2004 Theo de Raadt
      7       1.1  jmcneill  * Copyright (c) 2003 Jason Wright
      8       1.1  jmcneill  *
      9       1.1  jmcneill  * Permission to use, copy, modify, and distribute this software for any
     10       1.1  jmcneill  * purpose with or without fee is hereby granted, provided that the above
     11       1.1  jmcneill  * copyright notice and this permission notice appear in all copies.
     12       1.1  jmcneill  *
     13       1.1  jmcneill  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     14       1.1  jmcneill  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     15       1.1  jmcneill  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     16       1.1  jmcneill  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     17       1.1  jmcneill  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     18       1.1  jmcneill  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     19       1.1  jmcneill  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     20       1.1  jmcneill  */
     21       1.1  jmcneill 
     22       1.1  jmcneill /*
     23       1.1  jmcneill  * Driver for the security block on the AMD Geode LX processors
     24       1.1  jmcneill  * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
     25       1.1  jmcneill  */
     26       1.1  jmcneill 
     27       1.1  jmcneill #include <sys/cdefs.h>
     28  1.12.4.2     skrll __KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.12.4.2 2016/10/05 20:55:28 skrll Exp $");
     29       1.3     lukem 
     30       1.1  jmcneill #include <sys/param.h>
     31       1.1  jmcneill #include <sys/systm.h>
     32       1.1  jmcneill #include <sys/device.h>
     33       1.1  jmcneill #include <sys/malloc.h>
     34       1.1  jmcneill #include <sys/mbuf.h>
     35       1.1  jmcneill #include <sys/types.h>
     36       1.1  jmcneill #include <sys/callout.h>
     37       1.4        ad #include <sys/bus.h>
     38      1.10       tls #include <sys/cprng.h>
     39  1.12.4.1     skrll #include <sys/rndsource.h>
     40       1.1  jmcneill 
     41       1.4        ad #include <machine/cpufunc.h>
     42       1.1  jmcneill 
     43       1.1  jmcneill #include <dev/pci/pcivar.h>
     44       1.1  jmcneill #include <dev/pci/pcidevs.h>
     45       1.1  jmcneill 
     46       1.1  jmcneill #include <opencrypto/cryptodev.h>
     47       1.1  jmcneill #include <crypto/rijndael/rijndael.h>
     48       1.1  jmcneill 
     49       1.1  jmcneill #define SB_GLD_MSR_CAP		0x58002000	/* RO - Capabilities */
     50       1.1  jmcneill #define SB_GLD_MSR_CONFIG	0x58002001	/* RW - Master Config */
     51       1.1  jmcneill #define SB_GLD_MSR_SMI		0x58002002	/* RW - SMI */
     52       1.1  jmcneill #define SB_GLD_MSR_ERROR	0x58002003	/* RW - Error */
     53       1.1  jmcneill #define SB_GLD_MSR_PM		0x58002004	/* RW - Power Mgmt */
     54       1.1  jmcneill #define SB_GLD_MSR_DIAG		0x58002005	/* RW - Diagnostic */
     55       1.1  jmcneill #define SB_GLD_MSR_CTRL		0x58002006	/* RW - Security Block Cntrl */
     56       1.1  jmcneill 
     57       1.1  jmcneill 						/* For GLD_MSR_CTRL: */
     58       1.1  jmcneill #define SB_GMC_DIV0		0x0000		/* AES update divisor values */
     59       1.1  jmcneill #define SB_GMC_DIV1		0x0001
     60       1.1  jmcneill #define SB_GMC_DIV2		0x0002
     61       1.1  jmcneill #define SB_GMC_DIV3		0x0003
     62       1.1  jmcneill #define SB_GMC_DIV_MASK		0x0003
     63       1.1  jmcneill #define SB_GMC_SBI		0x0004		/* AES swap bits */
     64       1.1  jmcneill #define SB_GMC_SBY		0x0008		/* AES swap bytes */
     65       1.1  jmcneill #define SB_GMC_TW		0x0010		/* Time write (EEPROM) */
     66       1.1  jmcneill #define SB_GMC_T_SEL0		0x0000		/* RNG post-proc: none */
     67       1.1  jmcneill #define SB_GMC_T_SEL1		0x0100		/* RNG post-proc: LFSR */
     68       1.1  jmcneill #define SB_GMC_T_SEL2		0x0200		/* RNG post-proc: whitener */
     69       1.1  jmcneill #define SB_GMC_T_SEL3		0x0300		/* RNG LFSR+whitener */
     70       1.1  jmcneill #define SB_GMC_T_SEL_MASK	0x0300
     71       1.1  jmcneill #define SB_GMC_T_NE		0x0400		/* Noise (generator) Enable */
     72       1.1  jmcneill #define SB_GMC_T_TM		0x0800		/* RNG test mode */
     73       1.1  jmcneill 						/*     (deterministic) */
     74       1.1  jmcneill 
     75       1.1  jmcneill /* Security Block configuration/control registers (offsets from base) */
     76       1.1  jmcneill 
     77       1.1  jmcneill #define SB_CTL_A		0x0000		/* RW - SB Control A */
     78       1.1  jmcneill #define SB_CTL_B		0x0004		/* RW - SB Control B */
     79       1.1  jmcneill #define SB_AES_INT		0x0008		/* RW - SB AES Interrupt */
     80       1.1  jmcneill #define SB_SOURCE_A		0x0010		/* RW - Source A */
     81       1.1  jmcneill #define SB_DEST_A		0x0014		/* RW - Destination A */
     82       1.1  jmcneill #define SB_LENGTH_A		0x0018		/* RW - Length A */
     83       1.1  jmcneill #define SB_SOURCE_B		0x0020		/* RW - Source B */
     84       1.1  jmcneill #define SB_DEST_B		0x0024		/* RW - Destination B */
     85       1.1  jmcneill #define SB_LENGTH_B		0x0028		/* RW - Length B */
     86       1.1  jmcneill #define SB_WKEY			0x0030		/* WO - Writable Key 0-3 */
     87       1.1  jmcneill #define SB_WKEY_0		0x0030		/* WO - Writable Key 0 */
     88       1.1  jmcneill #define SB_WKEY_1		0x0034		/* WO - Writable Key 1 */
     89       1.1  jmcneill #define SB_WKEY_2		0x0038		/* WO - Writable Key 2 */
     90       1.1  jmcneill #define SB_WKEY_3		0x003C		/* WO - Writable Key 3 */
     91       1.1  jmcneill #define SB_CBC_IV		0x0040		/* RW - CBC IV 0-3 */
     92       1.1  jmcneill #define SB_CBC_IV_0		0x0040		/* RW - CBC IV 0 */
     93       1.1  jmcneill #define SB_CBC_IV_1		0x0044		/* RW - CBC IV 1 */
     94       1.1  jmcneill #define SB_CBC_IV_2		0x0048		/* RW - CBC IV 2 */
     95       1.1  jmcneill #define SB_CBC_IV_3		0x004C		/* RW - CBC IV 3 */
     96       1.1  jmcneill #define SB_RANDOM_NUM		0x0050		/* RW - Random Number */
     97       1.1  jmcneill #define SB_RANDOM_NUM_STATUS	0x0054		/* RW - Random Number Status */
     98       1.1  jmcneill #define SB_EEPROM_COMM		0x0800		/* RW - EEPROM Command */
     99       1.1  jmcneill #define SB_EEPROM_ADDR		0x0804		/* RW - EEPROM Address */
    100       1.1  jmcneill #define SB_EEPROM_DATA		0x0808		/* RW - EEPROM Data */
    101       1.1  jmcneill #define SB_EEPROM_SEC_STATE	0x080C		/* RW - EEPROM Security State */
    102       1.1  jmcneill 
    103       1.1  jmcneill 						/* For SB_CTL_A and _B */
    104       1.1  jmcneill #define SB_CTL_ST		0x0001		/* Start operation (enc/dec) */
    105       1.1  jmcneill #define SB_CTL_ENC		0x0002		/* Encrypt (0 is decrypt) */
    106       1.1  jmcneill #define SB_CTL_DEC		0x0000		/* Decrypt */
    107       1.1  jmcneill #define SB_CTL_WK		0x0004		/* Use writable key (we set) */
    108       1.1  jmcneill #define SB_CTL_DC		0x0008		/* Destination coherent */
    109       1.1  jmcneill #define SB_CTL_SC		0x0010		/* Source coherent */
    110       1.1  jmcneill #define SB_CTL_CBC		0x0020		/* CBC (0 is ECB) */
    111       1.1  jmcneill 
    112       1.1  jmcneill 						/* For SB_AES_INT */
    113       1.1  jmcneill #define SB_AI_DISABLE_AES_A	0x0001		/* Disable AES A compl int */
    114       1.1  jmcneill #define SB_AI_ENABLE_AES_A	0x0000		/* Enable AES A compl int */
    115       1.1  jmcneill #define SB_AI_DISABLE_AES_B	0x0002		/* Disable AES B compl int */
    116       1.1  jmcneill #define SB_AI_ENABLE_AES_B	0x0000		/* Enable AES B compl int */
    117       1.1  jmcneill #define SB_AI_DISABLE_EEPROM	0x0004		/* Disable EEPROM op comp int */
    118       1.1  jmcneill #define SB_AI_ENABLE_EEPROM	0x0000		/* Enable EEPROM op compl int */
    119       1.1  jmcneill #define SB_AI_AES_A_COMPLETE	0x0100		/* AES A operation complete */
    120       1.1  jmcneill #define SB_AI_AES_B_COMPLETE	0x0200		/* AES B operation complete */
    121       1.1  jmcneill #define SB_AI_EEPROM_COMPLETE	0x0400		/* EEPROM operation complete */
    122       1.1  jmcneill 
    123       1.1  jmcneill #define SB_RNS_TRNG_VALID	0x0001		/* in SB_RANDOM_NUM_STATUS */
    124       1.1  jmcneill 
    125       1.1  jmcneill #define SB_MEM_SIZE		0x0810		/* Size of memory block */
    126       1.1  jmcneill 
    127       1.1  jmcneill #define SB_AES_ALIGN		0x0010		/* Source and dest buffers */
    128       1.1  jmcneill 						/* must be 16-byte aligned */
    129       1.1  jmcneill #define SB_AES_BLOCK_SIZE	0x0010
    130       1.1  jmcneill 
    131       1.1  jmcneill /*
    132       1.1  jmcneill  * The Geode LX security block AES acceleration doesn't perform scatter-
    133       1.1  jmcneill  * gather: it just takes source and destination addresses.  Therefore the
    134       1.1  jmcneill  * plain- and ciphertexts need to be contiguous.  To this end, we allocate
    135       1.1  jmcneill  * a buffer for both, and accept the overhead of copying in and out.  If
    136       1.1  jmcneill  * the number of bytes in one operation is bigger than allowed for by the
    137       1.1  jmcneill  * buffer (buffer is twice the size of the max length, as it has both input
    138       1.1  jmcneill  * and output) then we have to perform multiple encryptions/decryptions.
    139       1.1  jmcneill  */
    140       1.1  jmcneill #define GLXSB_MAX_AES_LEN	16384
    141       1.1  jmcneill 
    142       1.1  jmcneill struct glxsb_dma_map {
    143       1.1  jmcneill 	bus_dmamap_t		dma_map;
    144       1.1  jmcneill 	bus_dma_segment_t	dma_seg;
    145       1.1  jmcneill 	int			dma_nsegs;
    146       1.1  jmcneill 	int			dma_size;
    147       1.1  jmcneill 	void *			dma_vaddr;
    148       1.1  jmcneill 	uint32_t		dma_paddr;
    149       1.1  jmcneill };
    150       1.1  jmcneill struct glxsb_session {
    151       1.1  jmcneill 	uint32_t	ses_key[4];
    152       1.1  jmcneill 	uint8_t		ses_iv[SB_AES_BLOCK_SIZE];
    153       1.1  jmcneill 	int		ses_klen;
    154       1.1  jmcneill 	int		ses_used;
    155       1.1  jmcneill };
    156       1.1  jmcneill 
    157       1.1  jmcneill struct glxsb_softc {
    158       1.6   xtraeme 	device_t		sc_dev;
    159       1.1  jmcneill 	bus_space_tag_t		sc_iot;
    160       1.1  jmcneill 	bus_space_handle_t	sc_ioh;
    161       1.1  jmcneill 	struct callout		sc_co;
    162       1.1  jmcneill 
    163       1.1  jmcneill 	bus_dma_tag_t		sc_dmat;
    164       1.1  jmcneill 	struct glxsb_dma_map	sc_dma;
    165       1.1  jmcneill 	int32_t			sc_cid;
    166       1.1  jmcneill 	int			sc_nsessions;
    167       1.1  jmcneill 	struct glxsb_session	*sc_sessions;
    168       1.1  jmcneill 
    169      1.10       tls 	krndsource_t	sc_rnd_source;
    170       1.1  jmcneill };
    171       1.1  jmcneill 
    172       1.6   xtraeme int	glxsb_match(device_t, cfdata_t, void *);
    173       1.6   xtraeme void	glxsb_attach(device_t, device_t, void *);
    174       1.1  jmcneill void	glxsb_rnd(void *);
    175       1.1  jmcneill 
    176       1.6   xtraeme CFATTACH_DECL_NEW(glxsb, sizeof(struct glxsb_softc),
    177       1.6   xtraeme     glxsb_match, glxsb_attach, NULL, NULL);
    178       1.1  jmcneill 
    179       1.1  jmcneill #define GLXSB_SESSION(sid)		((sid) & 0x0fffffff)
    180       1.1  jmcneill #define	GLXSB_SID(crd,ses)		(((crd) << 28) | ((ses) & 0x0fffffff))
    181       1.1  jmcneill 
    182       1.1  jmcneill int glxsb_crypto_setup(struct glxsb_softc *);
    183       1.1  jmcneill int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *);
    184       1.1  jmcneill int glxsb_crypto_process(void *, struct cryptop *, int);
    185       1.1  jmcneill int glxsb_crypto_freesession(void *, uint64_t);
    186       1.1  jmcneill static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
    187       1.1  jmcneill     uint32_t, void *, int, void *);
    188       1.1  jmcneill 
    189       1.1  jmcneill int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
    190       1.1  jmcneill void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
    191       1.1  jmcneill void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
    192       1.1  jmcneill void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
    193       1.1  jmcneill 
    194       1.1  jmcneill int
    195       1.6   xtraeme glxsb_match(device_t parent, cfdata_t match, void *aux)
    196       1.1  jmcneill {
    197       1.1  jmcneill 	struct pci_attach_args *pa = aux;
    198       1.1  jmcneill 
    199       1.1  jmcneill 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
    200       1.1  jmcneill 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES)
    201       1.1  jmcneill 		return (1);
    202       1.1  jmcneill 
    203       1.1  jmcneill 	return (0);
    204       1.1  jmcneill }
    205       1.1  jmcneill 
    206       1.1  jmcneill void
    207       1.6   xtraeme glxsb_attach(device_t parent, device_t self, void *aux)
    208       1.1  jmcneill {
    209       1.6   xtraeme 	struct glxsb_softc *sc = device_private(self);
    210       1.1  jmcneill 	struct pci_attach_args *pa = aux;
    211       1.1  jmcneill 	bus_addr_t membase;
    212       1.1  jmcneill 	bus_size_t memsize;
    213       1.1  jmcneill 	uint64_t msr;
    214       1.1  jmcneill 	uint32_t intr;
    215       1.1  jmcneill 
    216       1.1  jmcneill 	msr = rdmsr(SB_GLD_MSR_CAP);
    217       1.1  jmcneill 	if ((msr & 0xFFFF00) != 0x130400) {
    218  1.12.4.2     skrll 		aprint_error(": unknown ID 0x%x\n",
    219  1.12.4.2     skrll 		    (int)((msr & 0xFFFF00) >> 16));
    220       1.1  jmcneill 		return;
    221       1.1  jmcneill 	}
    222       1.1  jmcneill 
    223       1.1  jmcneill 	/* printf(": revision %d", (int) (msr & 0xFF)); */
    224       1.1  jmcneill 
    225       1.1  jmcneill 	/* Map in the security block configuration/control registers */
    226       1.1  jmcneill 	if (pci_mapreg_map(pa, PCI_MAPREG_START,
    227       1.1  jmcneill 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
    228       1.1  jmcneill 	    &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) {
    229  1.12.4.2     skrll 		aprint_error(": can't find mem space\n");
    230       1.1  jmcneill 		return;
    231       1.1  jmcneill 	}
    232       1.1  jmcneill 
    233       1.6   xtraeme 	sc->sc_dev = self;
    234       1.6   xtraeme 
    235       1.1  jmcneill 	/*
    236       1.1  jmcneill 	 * Configure the Security Block.
    237       1.1  jmcneill 	 *
    238       1.1  jmcneill 	 * We want to enable the noise generator (T_NE), and enable the
    239       1.1  jmcneill 	 * linear feedback shift register and whitener post-processing
    240       1.1  jmcneill 	 * (T_SEL = 3).  Also ensure that test mode (deterministic values)
    241       1.1  jmcneill 	 * is disabled.
    242       1.1  jmcneill 	 */
    243       1.1  jmcneill 	msr = rdmsr(SB_GLD_MSR_CTRL);
    244       1.1  jmcneill 	msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
    245       1.1  jmcneill 	msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
    246       1.1  jmcneill #if 0
    247       1.1  jmcneill 	msr |= SB_GMC_SBI | SB_GMC_SBY;		/* for AES, if necessary */
    248       1.1  jmcneill #endif
    249       1.1  jmcneill 	wrmsr(SB_GLD_MSR_CTRL, msr);
    250       1.1  jmcneill 
    251       1.6   xtraeme 	rnd_attach_source(&sc->sc_rnd_source, device_xname(self),
    252      1.12       tls 			  RND_TYPE_RNG, RND_FLAG_COLLECT_VALUE);
    253       1.1  jmcneill 
    254       1.1  jmcneill 	/* Install a periodic collector for the "true" (AMD's word) RNG */
    255       1.2        ad 	callout_init(&sc->sc_co, 0);
    256       1.1  jmcneill 	callout_setfunc(&sc->sc_co, glxsb_rnd, sc);
    257       1.1  jmcneill 	glxsb_rnd(sc);
    258      1.11  christos 	aprint_normal(": RNG");
    259       1.1  jmcneill 
    260       1.1  jmcneill 	/* We don't have an interrupt handler, so disable completion INTs */
    261       1.1  jmcneill 	intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
    262       1.1  jmcneill 	    SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
    263       1.1  jmcneill 	    SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
    264       1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
    265       1.1  jmcneill 
    266       1.1  jmcneill 	sc->sc_dmat = pa->pa_dmat;
    267       1.1  jmcneill 
    268       1.1  jmcneill 	if (glxsb_crypto_setup(sc))
    269      1.11  christos 		aprint_normal(" AES");
    270       1.1  jmcneill 
    271      1.11  christos 	aprint_normal("\n");
    272       1.1  jmcneill }
    273       1.1  jmcneill 
    274       1.1  jmcneill void
    275       1.1  jmcneill glxsb_rnd(void *v)
    276       1.1  jmcneill {
    277       1.1  jmcneill 	struct glxsb_softc *sc = v;
    278       1.1  jmcneill 	uint32_t status, value;
    279       1.1  jmcneill 	extern int hz;
    280       1.1  jmcneill 
    281       1.1  jmcneill 	status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
    282       1.1  jmcneill 	if (status & SB_RNS_TRNG_VALID) {
    283       1.1  jmcneill 		value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
    284      1.12       tls 		rnd_add_data(&sc->sc_rnd_source, &value, sizeof(value),
    285      1.12       tls 			     sizeof(value) * NBBY);
    286       1.1  jmcneill 	}
    287       1.1  jmcneill 
    288       1.1  jmcneill 	callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1);
    289       1.1  jmcneill }
    290       1.1  jmcneill 
    291       1.1  jmcneill int
    292       1.1  jmcneill glxsb_crypto_setup(struct glxsb_softc *sc)
    293       1.1  jmcneill {
    294       1.1  jmcneill 
    295       1.1  jmcneill 	/* Allocate a contiguous DMA-able buffer to work in */
    296       1.1  jmcneill 	if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
    297       1.1  jmcneill 		return 0;
    298       1.1  jmcneill 
    299       1.1  jmcneill 	sc->sc_cid = crypto_get_driverid(0);
    300       1.1  jmcneill 	if (sc->sc_cid < 0)
    301       1.1  jmcneill 		return 0;
    302       1.1  jmcneill 
    303       1.1  jmcneill 	crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
    304       1.1  jmcneill 	    glxsb_crypto_newsession, glxsb_crypto_freesession,
    305       1.1  jmcneill 	    glxsb_crypto_process, sc);
    306       1.1  jmcneill 
    307       1.1  jmcneill 	sc->sc_nsessions = 0;
    308       1.1  jmcneill 
    309       1.1  jmcneill 	return 1;
    310       1.1  jmcneill }
    311       1.1  jmcneill 
    312       1.1  jmcneill int
    313       1.1  jmcneill glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri)
    314       1.1  jmcneill {
    315       1.1  jmcneill 	struct glxsb_softc *sc = aux;
    316       1.1  jmcneill 	struct glxsb_session *ses = NULL;
    317       1.1  jmcneill 	int sesn;
    318       1.1  jmcneill 
    319       1.1  jmcneill 	if (sc == NULL || sidp == NULL || cri == NULL ||
    320       1.1  jmcneill 	    cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC ||
    321       1.1  jmcneill 	    cri->cri_klen != 128)
    322       1.1  jmcneill 		return (EINVAL);
    323       1.1  jmcneill 
    324       1.1  jmcneill 	for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
    325       1.1  jmcneill 		if (sc->sc_sessions[sesn].ses_used == 0) {
    326       1.1  jmcneill 			ses = &sc->sc_sessions[sesn];
    327       1.1  jmcneill 			break;
    328       1.1  jmcneill 		}
    329       1.1  jmcneill 	}
    330       1.1  jmcneill 
    331       1.1  jmcneill 	if (ses == NULL) {
    332       1.1  jmcneill 		sesn = sc->sc_nsessions;
    333       1.1  jmcneill 		ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT);
    334       1.1  jmcneill 		if (ses == NULL)
    335       1.1  jmcneill 			return (ENOMEM);
    336       1.1  jmcneill 		if (sesn != 0) {
    337       1.9    cegger 			memcpy(ses, sc->sc_sessions, sesn * sizeof(*ses));
    338       1.7    cegger 			memset(sc->sc_sessions, 0, sesn * sizeof(*ses));
    339       1.1  jmcneill 			free(sc->sc_sessions, M_DEVBUF);
    340       1.1  jmcneill 		}
    341       1.1  jmcneill 		sc->sc_sessions = ses;
    342       1.1  jmcneill 		ses = &sc->sc_sessions[sesn];
    343       1.1  jmcneill 		sc->sc_nsessions++;
    344       1.1  jmcneill 	}
    345       1.1  jmcneill 
    346       1.7    cegger 	memset(ses, 0, sizeof(*ses));
    347       1.1  jmcneill 	ses->ses_used = 1;
    348       1.1  jmcneill 
    349      1.10       tls 	cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
    350       1.1  jmcneill 	ses->ses_klen = cri->cri_klen;
    351       1.1  jmcneill 
    352       1.1  jmcneill 	/* Copy the key (Geode LX wants the primary key only) */
    353       1.9    cegger 	memcpy(ses->ses_key, cri->cri_key, sizeof(ses->ses_key));
    354       1.1  jmcneill 
    355       1.1  jmcneill 	*sidp = GLXSB_SID(0, sesn);
    356       1.1  jmcneill 	return (0);
    357       1.1  jmcneill }
    358       1.1  jmcneill 
    359       1.1  jmcneill int
    360       1.1  jmcneill glxsb_crypto_freesession(void *aux, uint64_t tid)
    361       1.1  jmcneill {
    362       1.1  jmcneill 	struct glxsb_softc *sc = aux;
    363       1.1  jmcneill 	int sesn;
    364       1.1  jmcneill 	uint32_t sid = ((uint32_t)tid) & 0xffffffff;
    365       1.1  jmcneill 
    366       1.1  jmcneill 	if (sc == NULL)
    367       1.1  jmcneill 		return (EINVAL);
    368       1.1  jmcneill 	sesn = GLXSB_SESSION(sid);
    369       1.1  jmcneill 	if (sesn >= sc->sc_nsessions)
    370       1.1  jmcneill 		return (EINVAL);
    371       1.7    cegger 	memset(&sc->sc_sessions[sesn], 0, sizeof(sc->sc_sessions[sesn]));
    372       1.1  jmcneill 	return (0);
    373       1.1  jmcneill }
    374       1.1  jmcneill 
    375       1.1  jmcneill /*
    376       1.1  jmcneill  * Must be called at splnet() or higher
    377       1.1  jmcneill  */
    378       1.1  jmcneill static __inline void
    379       1.1  jmcneill glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
    380       1.1  jmcneill     uint32_t pdst, void *key, int len, void *iv)
    381       1.1  jmcneill {
    382       1.1  jmcneill 	uint32_t status;
    383       1.1  jmcneill 	int i;
    384       1.1  jmcneill 
    385       1.1  jmcneill 	if (len & 0xF) {
    386       1.1  jmcneill 		printf("%s: len must be a multiple of 16 (not %d)\n",
    387       1.6   xtraeme 		    device_xname(sc->sc_dev), len);
    388       1.1  jmcneill 		return;
    389       1.1  jmcneill 	}
    390       1.1  jmcneill 
    391       1.1  jmcneill 	/* Set the source */
    392       1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
    393       1.1  jmcneill 
    394       1.1  jmcneill 	/* Set the destination address */
    395       1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
    396       1.1  jmcneill 
    397       1.1  jmcneill 	/* Set the data length */
    398       1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
    399       1.1  jmcneill 
    400       1.1  jmcneill 	/* Set the IV */
    401       1.1  jmcneill 	if (iv != NULL) {
    402       1.1  jmcneill 		bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
    403       1.1  jmcneill 		    SB_CBC_IV, iv, 4);
    404       1.1  jmcneill 		control |= SB_CTL_CBC;
    405       1.1  jmcneill 	}
    406       1.1  jmcneill 
    407       1.1  jmcneill 	/* Set the key */
    408       1.1  jmcneill 	bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
    409       1.1  jmcneill 
    410       1.1  jmcneill 	/* Ask the security block to do it */
    411       1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
    412       1.1  jmcneill 	    control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
    413       1.1  jmcneill 
    414       1.1  jmcneill 	/*
    415       1.1  jmcneill 	 * Now wait until it is done.
    416       1.1  jmcneill 	 *
    417       1.1  jmcneill 	 * We do a busy wait.  Obviously the number of iterations of
    418       1.1  jmcneill 	 * the loop required to perform the AES operation depends upon
    419       1.1  jmcneill 	 * the number of bytes to process.
    420       1.1  jmcneill 	 *
    421       1.1  jmcneill 	 * On a 500 MHz Geode LX we see
    422       1.1  jmcneill 	 *
    423       1.1  jmcneill 	 *	length (bytes)	typical max iterations
    424       1.1  jmcneill 	 *	    16		   12
    425       1.1  jmcneill 	 *	    64		   22
    426       1.1  jmcneill 	 *	   256		   59
    427       1.1  jmcneill 	 *	  1024		  212
    428       1.1  jmcneill 	 *	  8192		1,537
    429       1.1  jmcneill 	 *
    430       1.1  jmcneill 	 * Since we have a maximum size of operation defined in
    431       1.1  jmcneill 	 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
    432       1.1  jmcneill 	 * to wait.  Allow an order of magnitude longer than it should
    433       1.1  jmcneill 	 * really take, just in case.
    434       1.1  jmcneill 	 */
    435       1.1  jmcneill 	for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
    436       1.1  jmcneill 		status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
    437       1.1  jmcneill 
    438       1.1  jmcneill 		if ((status & SB_CTL_ST) == 0)		/* Done */
    439       1.1  jmcneill 			return;
    440       1.1  jmcneill 	}
    441       1.1  jmcneill 
    442       1.6   xtraeme 	aprint_error_dev(sc->sc_dev, "operation failed to complete\n");
    443       1.1  jmcneill }
    444       1.1  jmcneill 
    445       1.1  jmcneill int
    446       1.1  jmcneill glxsb_crypto_process(void *aux, struct cryptop *crp, int hint)
    447       1.1  jmcneill {
    448       1.1  jmcneill 	struct glxsb_softc *sc = aux;
    449       1.1  jmcneill 	struct glxsb_session *ses;
    450       1.1  jmcneill 	struct cryptodesc *crd;
    451       1.1  jmcneill 	char *op_src, *op_dst;
    452       1.1  jmcneill 	uint32_t op_psrc, op_pdst;
    453       1.1  jmcneill 	uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
    454       1.1  jmcneill 	int sesn, err = 0;
    455       1.1  jmcneill 	int len, tlen, xlen;
    456       1.1  jmcneill 	int offset;
    457       1.1  jmcneill 	uint32_t control;
    458       1.1  jmcneill 	int s;
    459       1.1  jmcneill 
    460       1.1  jmcneill 	s = splnet();
    461       1.1  jmcneill 
    462       1.1  jmcneill 	if (crp == NULL || crp->crp_callback == NULL) {
    463       1.1  jmcneill 		err = EINVAL;
    464       1.1  jmcneill 		goto out;
    465       1.1  jmcneill 	}
    466       1.1  jmcneill 	crd = crp->crp_desc;
    467       1.1  jmcneill 	if (crd == NULL || crd->crd_next != NULL ||
    468       1.1  jmcneill 	    crd->crd_alg != CRYPTO_AES_CBC ||
    469       1.1  jmcneill 	    (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
    470       1.1  jmcneill 		err = EINVAL;
    471       1.1  jmcneill 		goto out;
    472       1.1  jmcneill 	}
    473       1.1  jmcneill 
    474       1.1  jmcneill 	sesn = GLXSB_SESSION(crp->crp_sid);
    475       1.1  jmcneill 	if (sesn >= sc->sc_nsessions) {
    476       1.1  jmcneill 		err = EINVAL;
    477       1.1  jmcneill 		goto out;
    478       1.1  jmcneill 	}
    479       1.1  jmcneill 	ses = &sc->sc_sessions[sesn];
    480       1.1  jmcneill 
    481       1.1  jmcneill 	/* How much of our buffer will we need to use? */
    482       1.1  jmcneill 	xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
    483       1.1  jmcneill 	    GLXSB_MAX_AES_LEN : crd->crd_len;
    484       1.1  jmcneill 
    485       1.1  jmcneill 	/*
    486       1.1  jmcneill 	 * XXX Check if we can have input == output on Geode LX.
    487       1.1  jmcneill 	 * XXX In the meantime, use two separate (adjacent) buffers.
    488       1.1  jmcneill 	 */
    489       1.1  jmcneill 	op_src = sc->sc_dma.dma_vaddr;
    490       1.1  jmcneill 	op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
    491       1.1  jmcneill 
    492       1.1  jmcneill 	op_psrc = sc->sc_dma.dma_paddr;
    493       1.1  jmcneill 	op_pdst = sc->sc_dma.dma_paddr + xlen;
    494       1.1  jmcneill 
    495       1.1  jmcneill 	if (crd->crd_flags & CRD_F_ENCRYPT) {
    496       1.1  jmcneill 		control = SB_CTL_ENC;
    497       1.1  jmcneill 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    498       1.9    cegger 			memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
    499       1.1  jmcneill 		else
    500       1.9    cegger 			memcpy(op_iv, ses->ses_iv, sizeof(op_iv));
    501       1.1  jmcneill 
    502       1.1  jmcneill 		if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
    503       1.1  jmcneill 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    504       1.1  jmcneill 				m_copyback((struct mbuf *)crp->crp_buf,
    505       1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    506       1.1  jmcneill 			else if (crp->crp_flags & CRYPTO_F_IOV)
    507       1.1  jmcneill 				cuio_copyback((struct uio *)crp->crp_buf,
    508       1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    509       1.1  jmcneill 			else
    510       1.1  jmcneill 				bcopy(op_iv,
    511       1.1  jmcneill 				    (char *)crp->crp_buf + crd->crd_inject,
    512       1.1  jmcneill 				    sizeof(op_iv));
    513       1.1  jmcneill 		}
    514       1.1  jmcneill 	} else {
    515       1.1  jmcneill 		control = SB_CTL_DEC;
    516       1.1  jmcneill 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    517       1.9    cegger 			memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
    518       1.1  jmcneill 		else {
    519       1.1  jmcneill 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    520       1.1  jmcneill 				m_copydata((struct mbuf *)crp->crp_buf,
    521       1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    522       1.1  jmcneill 			else if (crp->crp_flags & CRYPTO_F_IOV)
    523       1.1  jmcneill 				cuio_copydata((struct uio *)crp->crp_buf,
    524       1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    525       1.1  jmcneill 			else
    526       1.1  jmcneill 				bcopy((char *)crp->crp_buf + crd->crd_inject,
    527       1.1  jmcneill 				    op_iv, sizeof(op_iv));
    528       1.1  jmcneill 		}
    529       1.1  jmcneill 	}
    530       1.1  jmcneill 
    531       1.1  jmcneill 	offset = 0;
    532       1.1  jmcneill 	tlen = crd->crd_len;
    533       1.1  jmcneill 	piv = op_iv;
    534       1.1  jmcneill 
    535       1.1  jmcneill 	/* Process the data in GLXSB_MAX_AES_LEN chunks */
    536       1.1  jmcneill 	while (tlen > 0) {
    537       1.1  jmcneill 		len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
    538       1.1  jmcneill 
    539       1.1  jmcneill 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    540       1.1  jmcneill 			m_copydata((struct mbuf *)crp->crp_buf,
    541       1.1  jmcneill 			    crd->crd_skip + offset, len, op_src);
    542       1.1  jmcneill 		else if (crp->crp_flags & CRYPTO_F_IOV)
    543       1.1  jmcneill 			cuio_copydata((struct uio *)crp->crp_buf,
    544       1.1  jmcneill 			    crd->crd_skip + offset, len, op_src);
    545       1.1  jmcneill 		else
    546       1.1  jmcneill 			bcopy((char *)crp->crp_buf + crd->crd_skip + offset,
    547       1.1  jmcneill 			    op_src, len);
    548       1.1  jmcneill 
    549       1.1  jmcneill 		glxsb_dma_pre_op(sc, &sc->sc_dma);
    550       1.1  jmcneill 
    551       1.1  jmcneill 		glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
    552       1.1  jmcneill 		    len, op_iv);
    553       1.1  jmcneill 
    554       1.1  jmcneill 		glxsb_dma_post_op(sc, &sc->sc_dma);
    555       1.1  jmcneill 
    556       1.1  jmcneill 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    557       1.1  jmcneill 			m_copyback((struct mbuf *)crp->crp_buf,
    558       1.1  jmcneill 			    crd->crd_skip + offset, len, op_dst);
    559       1.1  jmcneill 		else if (crp->crp_flags & CRYPTO_F_IOV)
    560       1.1  jmcneill 			cuio_copyback((struct uio *)crp->crp_buf,
    561       1.1  jmcneill 			    crd->crd_skip + offset, len, op_dst);
    562       1.1  jmcneill 		else
    563  1.12.4.2     skrll 			memcpy((char *)crp->crp_buf + crd->crd_skip + offset,
    564  1.12.4.2     skrll 			    op_dst, len);
    565       1.1  jmcneill 
    566       1.1  jmcneill 		offset += len;
    567       1.1  jmcneill 		tlen -= len;
    568       1.1  jmcneill 
    569       1.1  jmcneill 		if (tlen <= 0) {	/* Ideally, just == 0 */
    570       1.1  jmcneill 			/* Finished - put the IV in session IV */
    571       1.1  jmcneill 			piv = ses->ses_iv;
    572       1.1  jmcneill 		}
    573       1.1  jmcneill 
    574       1.1  jmcneill 		/*
    575       1.1  jmcneill 		 * Copy out last block for use as next iteration/session IV.
    576       1.1  jmcneill 		 *
    577       1.1  jmcneill 		 * piv is set to op_iv[] before the loop starts, but is
    578       1.1  jmcneill 		 * set to ses->ses_iv if we're going to exit the loop this
    579       1.1  jmcneill 		 * time.
    580       1.1  jmcneill 		 */
    581       1.1  jmcneill 		if (crd->crd_flags & CRD_F_ENCRYPT) {
    582  1.12.4.2     skrll 			memcpy(piv, op_dst + len - sizeof(op_iv),
    583  1.12.4.2     skrll 			    sizeof(op_iv));
    584       1.1  jmcneill 		} else {
    585       1.1  jmcneill 			/* Decryption, only need this if another iteration */
    586       1.1  jmcneill 			if (tlen > 0) {
    587       1.9    cegger 				memcpy(piv, op_src + len - sizeof(op_iv),
    588       1.1  jmcneill 				    sizeof(op_iv));
    589       1.1  jmcneill 			}
    590       1.1  jmcneill 		}
    591       1.1  jmcneill 	}
    592       1.1  jmcneill 
    593       1.1  jmcneill 	/* All AES processing has now been done. */
    594       1.1  jmcneill 
    595       1.7    cegger 	memset(sc->sc_dma.dma_vaddr, 0, xlen * 2);
    596       1.1  jmcneill out:
    597       1.1  jmcneill 	crp->crp_etype = err;
    598       1.1  jmcneill 	crypto_done(crp);
    599       1.1  jmcneill 	splx(s);
    600       1.1  jmcneill 	return (err);
    601       1.1  jmcneill }
    602       1.1  jmcneill 
    603       1.1  jmcneill int
    604       1.1  jmcneill glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
    605       1.1  jmcneill {
    606       1.1  jmcneill 	int rc;
    607       1.1  jmcneill 
    608       1.1  jmcneill 	dma->dma_nsegs = 1;
    609       1.1  jmcneill 	dma->dma_size = size;
    610       1.1  jmcneill 
    611       1.1  jmcneill 	rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
    612       1.1  jmcneill 	    0, BUS_DMA_NOWAIT, &dma->dma_map);
    613       1.1  jmcneill 	if (rc != 0) {
    614  1.12.4.2     skrll 		aprint_error_dev(sc->sc_dev,
    615  1.12.4.2     skrll 		    "couldn't create DMA map for %d bytes (%d)\n", size, rc);
    616       1.1  jmcneill 
    617       1.1  jmcneill 		goto fail0;
    618       1.1  jmcneill 	}
    619       1.1  jmcneill 
    620       1.1  jmcneill 	rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
    621       1.1  jmcneill 	    &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
    622       1.1  jmcneill 	if (rc != 0) {
    623  1.12.4.2     skrll 		aprint_error_dev(sc->sc_dev,
    624  1.12.4.2     skrll 		    "couldn't allocate DMA memory of %d bytes (%d)\n",
    625       1.5    cegger 		    size, rc);
    626       1.1  jmcneill 
    627       1.1  jmcneill 		goto fail1;
    628       1.1  jmcneill 	}
    629       1.1  jmcneill 
    630       1.1  jmcneill 	rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
    631       1.1  jmcneill 	    &dma->dma_vaddr, BUS_DMA_NOWAIT);
    632       1.1  jmcneill 	if (rc != 0) {
    633  1.12.4.2     skrll 		aprint_error_dev(sc->sc_dev,
    634  1.12.4.2     skrll 		    "couldn't map DMA memory for %d bytes (%d)\n", size, rc);
    635       1.1  jmcneill 
    636       1.1  jmcneill 		goto fail2;
    637       1.1  jmcneill 	}
    638       1.1  jmcneill 
    639       1.1  jmcneill 	rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
    640       1.1  jmcneill 	    size, NULL, BUS_DMA_NOWAIT);
    641       1.1  jmcneill 	if (rc != 0) {
    642  1.12.4.2     skrll 		aprint_error_dev(sc->sc_dev,
    643  1.12.4.2     skrll 		    "couldn't load DMA memory for %d bytes (%d)\n", size, rc);
    644       1.1  jmcneill 
    645       1.1  jmcneill 		goto fail3;
    646       1.1  jmcneill 	}
    647       1.1  jmcneill 
    648       1.1  jmcneill 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
    649       1.1  jmcneill 
    650       1.1  jmcneill 	return 0;
    651       1.1  jmcneill 
    652       1.1  jmcneill fail3:
    653       1.1  jmcneill 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
    654       1.1  jmcneill fail2:
    655       1.1  jmcneill 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    656       1.1  jmcneill fail1:
    657       1.1  jmcneill 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    658       1.1  jmcneill fail0:
    659       1.1  jmcneill 	return rc;
    660       1.1  jmcneill }
    661       1.1  jmcneill 
    662       1.1  jmcneill void
    663       1.1  jmcneill glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    664       1.1  jmcneill {
    665       1.1  jmcneill 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    666       1.1  jmcneill 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    667       1.1  jmcneill }
    668       1.1  jmcneill 
    669       1.1  jmcneill void
    670       1.1  jmcneill glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    671       1.1  jmcneill {
    672       1.1  jmcneill 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    673       1.1  jmcneill 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    674       1.1  jmcneill }
    675       1.1  jmcneill 
    676       1.1  jmcneill void
    677       1.1  jmcneill glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    678       1.1  jmcneill {
    679       1.1  jmcneill 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
    680       1.1  jmcneill 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
    681       1.1  jmcneill 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    682       1.1  jmcneill 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    683       1.1  jmcneill }
    684