Home | History | Annotate | Line # | Download | only in pci
glxsb.c revision 1.15
      1  1.15  riastrad /*	$NetBSD: glxsb.c,v 1.15 2020/06/14 23:19:11 riastradh Exp $	*/
      2   1.1  jmcneill /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
      3   1.1  jmcneill 
      4   1.1  jmcneill /*
      5   1.1  jmcneill  * Copyright (c) 2006 Tom Cosgrove <tom (at) openbsd.org>
      6   1.1  jmcneill  * Copyright (c) 2003, 2004 Theo de Raadt
      7   1.1  jmcneill  * Copyright (c) 2003 Jason Wright
      8   1.1  jmcneill  *
      9   1.1  jmcneill  * Permission to use, copy, modify, and distribute this software for any
     10   1.1  jmcneill  * purpose with or without fee is hereby granted, provided that the above
     11   1.1  jmcneill  * copyright notice and this permission notice appear in all copies.
     12   1.1  jmcneill  *
     13   1.1  jmcneill  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     14   1.1  jmcneill  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     15   1.1  jmcneill  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     16   1.1  jmcneill  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     17   1.1  jmcneill  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     18   1.1  jmcneill  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     19   1.1  jmcneill  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     20   1.1  jmcneill  */
     21   1.1  jmcneill 
     22   1.1  jmcneill /*
     23   1.1  jmcneill  * Driver for the security block on the AMD Geode LX processors
     24   1.1  jmcneill  * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
     25   1.1  jmcneill  */
     26   1.1  jmcneill 
     27   1.1  jmcneill #include <sys/cdefs.h>
     28  1.15  riastrad __KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.15 2020/06/14 23:19:11 riastradh Exp $");
     29   1.3     lukem 
     30   1.1  jmcneill #include <sys/param.h>
     31   1.1  jmcneill #include <sys/systm.h>
     32   1.1  jmcneill #include <sys/device.h>
     33   1.1  jmcneill #include <sys/malloc.h>
     34   1.1  jmcneill #include <sys/mbuf.h>
     35   1.1  jmcneill #include <sys/types.h>
     36   1.1  jmcneill #include <sys/callout.h>
     37   1.4        ad #include <sys/bus.h>
     38  1.10       tls #include <sys/cprng.h>
     39  1.13  riastrad #include <sys/rndsource.h>
     40   1.1  jmcneill 
     41   1.4        ad #include <machine/cpufunc.h>
     42   1.1  jmcneill 
     43   1.1  jmcneill #include <dev/pci/pcivar.h>
     44   1.1  jmcneill #include <dev/pci/pcidevs.h>
     45   1.1  jmcneill 
     46   1.1  jmcneill #include <opencrypto/cryptodev.h>
     47   1.1  jmcneill #include <crypto/rijndael/rijndael.h>
     48   1.1  jmcneill 
     49   1.1  jmcneill #define SB_GLD_MSR_CAP		0x58002000	/* RO - Capabilities */
     50   1.1  jmcneill #define SB_GLD_MSR_CONFIG	0x58002001	/* RW - Master Config */
     51   1.1  jmcneill #define SB_GLD_MSR_SMI		0x58002002	/* RW - SMI */
     52   1.1  jmcneill #define SB_GLD_MSR_ERROR	0x58002003	/* RW - Error */
     53   1.1  jmcneill #define SB_GLD_MSR_PM		0x58002004	/* RW - Power Mgmt */
     54   1.1  jmcneill #define SB_GLD_MSR_DIAG		0x58002005	/* RW - Diagnostic */
     55   1.1  jmcneill #define SB_GLD_MSR_CTRL		0x58002006	/* RW - Security Block Cntrl */
     56   1.1  jmcneill 
     57   1.1  jmcneill 						/* For GLD_MSR_CTRL: */
     58   1.1  jmcneill #define SB_GMC_DIV0		0x0000		/* AES update divisor values */
     59   1.1  jmcneill #define SB_GMC_DIV1		0x0001
     60   1.1  jmcneill #define SB_GMC_DIV2		0x0002
     61   1.1  jmcneill #define SB_GMC_DIV3		0x0003
     62   1.1  jmcneill #define SB_GMC_DIV_MASK		0x0003
     63   1.1  jmcneill #define SB_GMC_SBI		0x0004		/* AES swap bits */
     64   1.1  jmcneill #define SB_GMC_SBY		0x0008		/* AES swap bytes */
     65   1.1  jmcneill #define SB_GMC_TW		0x0010		/* Time write (EEPROM) */
     66   1.1  jmcneill #define SB_GMC_T_SEL0		0x0000		/* RNG post-proc: none */
     67   1.1  jmcneill #define SB_GMC_T_SEL1		0x0100		/* RNG post-proc: LFSR */
     68   1.1  jmcneill #define SB_GMC_T_SEL2		0x0200		/* RNG post-proc: whitener */
     69   1.1  jmcneill #define SB_GMC_T_SEL3		0x0300		/* RNG LFSR+whitener */
     70   1.1  jmcneill #define SB_GMC_T_SEL_MASK	0x0300
     71   1.1  jmcneill #define SB_GMC_T_NE		0x0400		/* Noise (generator) Enable */
     72   1.1  jmcneill #define SB_GMC_T_TM		0x0800		/* RNG test mode */
     73   1.1  jmcneill 						/*     (deterministic) */
     74   1.1  jmcneill 
     75   1.1  jmcneill /* Security Block configuration/control registers (offsets from base) */
     76   1.1  jmcneill 
     77   1.1  jmcneill #define SB_CTL_A		0x0000		/* RW - SB Control A */
     78   1.1  jmcneill #define SB_CTL_B		0x0004		/* RW - SB Control B */
     79   1.1  jmcneill #define SB_AES_INT		0x0008		/* RW - SB AES Interrupt */
     80   1.1  jmcneill #define SB_SOURCE_A		0x0010		/* RW - Source A */
     81   1.1  jmcneill #define SB_DEST_A		0x0014		/* RW - Destination A */
     82   1.1  jmcneill #define SB_LENGTH_A		0x0018		/* RW - Length A */
     83   1.1  jmcneill #define SB_SOURCE_B		0x0020		/* RW - Source B */
     84   1.1  jmcneill #define SB_DEST_B		0x0024		/* RW - Destination B */
     85   1.1  jmcneill #define SB_LENGTH_B		0x0028		/* RW - Length B */
     86   1.1  jmcneill #define SB_WKEY			0x0030		/* WO - Writable Key 0-3 */
     87   1.1  jmcneill #define SB_WKEY_0		0x0030		/* WO - Writable Key 0 */
     88   1.1  jmcneill #define SB_WKEY_1		0x0034		/* WO - Writable Key 1 */
     89   1.1  jmcneill #define SB_WKEY_2		0x0038		/* WO - Writable Key 2 */
     90   1.1  jmcneill #define SB_WKEY_3		0x003C		/* WO - Writable Key 3 */
     91   1.1  jmcneill #define SB_CBC_IV		0x0040		/* RW - CBC IV 0-3 */
     92   1.1  jmcneill #define SB_CBC_IV_0		0x0040		/* RW - CBC IV 0 */
     93   1.1  jmcneill #define SB_CBC_IV_1		0x0044		/* RW - CBC IV 1 */
     94   1.1  jmcneill #define SB_CBC_IV_2		0x0048		/* RW - CBC IV 2 */
     95   1.1  jmcneill #define SB_CBC_IV_3		0x004C		/* RW - CBC IV 3 */
     96   1.1  jmcneill #define SB_RANDOM_NUM		0x0050		/* RW - Random Number */
     97   1.1  jmcneill #define SB_RANDOM_NUM_STATUS	0x0054		/* RW - Random Number Status */
     98   1.1  jmcneill #define SB_EEPROM_COMM		0x0800		/* RW - EEPROM Command */
     99   1.1  jmcneill #define SB_EEPROM_ADDR		0x0804		/* RW - EEPROM Address */
    100   1.1  jmcneill #define SB_EEPROM_DATA		0x0808		/* RW - EEPROM Data */
    101   1.1  jmcneill #define SB_EEPROM_SEC_STATE	0x080C		/* RW - EEPROM Security State */
    102   1.1  jmcneill 
    103   1.1  jmcneill 						/* For SB_CTL_A and _B */
    104   1.1  jmcneill #define SB_CTL_ST		0x0001		/* Start operation (enc/dec) */
    105   1.1  jmcneill #define SB_CTL_ENC		0x0002		/* Encrypt (0 is decrypt) */
    106   1.1  jmcneill #define SB_CTL_DEC		0x0000		/* Decrypt */
    107   1.1  jmcneill #define SB_CTL_WK		0x0004		/* Use writable key (we set) */
    108   1.1  jmcneill #define SB_CTL_DC		0x0008		/* Destination coherent */
    109   1.1  jmcneill #define SB_CTL_SC		0x0010		/* Source coherent */
    110   1.1  jmcneill #define SB_CTL_CBC		0x0020		/* CBC (0 is ECB) */
    111   1.1  jmcneill 
    112   1.1  jmcneill 						/* For SB_AES_INT */
    113   1.1  jmcneill #define SB_AI_DISABLE_AES_A	0x0001		/* Disable AES A compl int */
    114   1.1  jmcneill #define SB_AI_ENABLE_AES_A	0x0000		/* Enable AES A compl int */
    115   1.1  jmcneill #define SB_AI_DISABLE_AES_B	0x0002		/* Disable AES B compl int */
    116   1.1  jmcneill #define SB_AI_ENABLE_AES_B	0x0000		/* Enable AES B compl int */
    117   1.1  jmcneill #define SB_AI_DISABLE_EEPROM	0x0004		/* Disable EEPROM op comp int */
    118   1.1  jmcneill #define SB_AI_ENABLE_EEPROM	0x0000		/* Enable EEPROM op compl int */
    119   1.1  jmcneill #define SB_AI_AES_A_COMPLETE	0x0100		/* AES A operation complete */
    120   1.1  jmcneill #define SB_AI_AES_B_COMPLETE	0x0200		/* AES B operation complete */
    121   1.1  jmcneill #define SB_AI_EEPROM_COMPLETE	0x0400		/* EEPROM operation complete */
    122   1.1  jmcneill 
    123   1.1  jmcneill #define SB_RNS_TRNG_VALID	0x0001		/* in SB_RANDOM_NUM_STATUS */
    124   1.1  jmcneill 
    125   1.1  jmcneill #define SB_MEM_SIZE		0x0810		/* Size of memory block */
    126   1.1  jmcneill 
    127   1.1  jmcneill #define SB_AES_ALIGN		0x0010		/* Source and dest buffers */
    128   1.1  jmcneill 						/* must be 16-byte aligned */
    129   1.1  jmcneill #define SB_AES_BLOCK_SIZE	0x0010
    130   1.1  jmcneill 
    131   1.1  jmcneill /*
    132   1.1  jmcneill  * The Geode LX security block AES acceleration doesn't perform scatter-
    133   1.1  jmcneill  * gather: it just takes source and destination addresses.  Therefore the
    134   1.1  jmcneill  * plain- and ciphertexts need to be contiguous.  To this end, we allocate
    135   1.1  jmcneill  * a buffer for both, and accept the overhead of copying in and out.  If
    136   1.1  jmcneill  * the number of bytes in one operation is bigger than allowed for by the
    137   1.1  jmcneill  * buffer (buffer is twice the size of the max length, as it has both input
    138   1.1  jmcneill  * and output) then we have to perform multiple encryptions/decryptions.
    139   1.1  jmcneill  */
    140   1.1  jmcneill #define GLXSB_MAX_AES_LEN	16384
    141   1.1  jmcneill 
    142   1.1  jmcneill struct glxsb_dma_map {
    143   1.1  jmcneill 	bus_dmamap_t		dma_map;
    144   1.1  jmcneill 	bus_dma_segment_t	dma_seg;
    145   1.1  jmcneill 	int			dma_nsegs;
    146   1.1  jmcneill 	int			dma_size;
    147   1.1  jmcneill 	void *			dma_vaddr;
    148   1.1  jmcneill 	uint32_t		dma_paddr;
    149   1.1  jmcneill };
    150   1.1  jmcneill struct glxsb_session {
    151   1.1  jmcneill 	uint32_t	ses_key[4];
    152   1.1  jmcneill 	int		ses_klen;
    153   1.1  jmcneill 	int		ses_used;
    154   1.1  jmcneill };
    155   1.1  jmcneill 
    156   1.1  jmcneill struct glxsb_softc {
    157   1.6   xtraeme 	device_t		sc_dev;
    158   1.1  jmcneill 	bus_space_tag_t		sc_iot;
    159   1.1  jmcneill 	bus_space_handle_t	sc_ioh;
    160   1.1  jmcneill 	struct callout		sc_co;
    161   1.1  jmcneill 
    162   1.1  jmcneill 	bus_dma_tag_t		sc_dmat;
    163   1.1  jmcneill 	struct glxsb_dma_map	sc_dma;
    164   1.1  jmcneill 	int32_t			sc_cid;
    165   1.1  jmcneill 	int			sc_nsessions;
    166   1.1  jmcneill 	struct glxsb_session	*sc_sessions;
    167   1.1  jmcneill 
    168  1.10       tls 	krndsource_t	sc_rnd_source;
    169   1.1  jmcneill };
    170   1.1  jmcneill 
    171   1.6   xtraeme int	glxsb_match(device_t, cfdata_t, void *);
    172   1.6   xtraeme void	glxsb_attach(device_t, device_t, void *);
    173   1.1  jmcneill void	glxsb_rnd(void *);
    174   1.1  jmcneill 
    175   1.6   xtraeme CFATTACH_DECL_NEW(glxsb, sizeof(struct glxsb_softc),
    176   1.6   xtraeme     glxsb_match, glxsb_attach, NULL, NULL);
    177   1.1  jmcneill 
    178   1.1  jmcneill #define GLXSB_SESSION(sid)		((sid) & 0x0fffffff)
    179   1.1  jmcneill #define	GLXSB_SID(crd,ses)		(((crd) << 28) | ((ses) & 0x0fffffff))
    180   1.1  jmcneill 
    181   1.1  jmcneill int glxsb_crypto_setup(struct glxsb_softc *);
    182   1.1  jmcneill int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *);
    183   1.1  jmcneill int glxsb_crypto_process(void *, struct cryptop *, int);
    184   1.1  jmcneill int glxsb_crypto_freesession(void *, uint64_t);
    185   1.1  jmcneill static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
    186   1.1  jmcneill     uint32_t, void *, int, void *);
    187   1.1  jmcneill 
    188   1.1  jmcneill int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
    189   1.1  jmcneill void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
    190   1.1  jmcneill void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
    191   1.1  jmcneill void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
    192   1.1  jmcneill 
    193   1.1  jmcneill int
    194   1.6   xtraeme glxsb_match(device_t parent, cfdata_t match, void *aux)
    195   1.1  jmcneill {
    196   1.1  jmcneill 	struct pci_attach_args *pa = aux;
    197   1.1  jmcneill 
    198   1.1  jmcneill 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
    199   1.1  jmcneill 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES)
    200   1.1  jmcneill 		return (1);
    201   1.1  jmcneill 
    202   1.1  jmcneill 	return (0);
    203   1.1  jmcneill }
    204   1.1  jmcneill 
    205   1.1  jmcneill void
    206   1.6   xtraeme glxsb_attach(device_t parent, device_t self, void *aux)
    207   1.1  jmcneill {
    208   1.6   xtraeme 	struct glxsb_softc *sc = device_private(self);
    209   1.1  jmcneill 	struct pci_attach_args *pa = aux;
    210   1.1  jmcneill 	bus_addr_t membase;
    211   1.1  jmcneill 	bus_size_t memsize;
    212   1.1  jmcneill 	uint64_t msr;
    213   1.1  jmcneill 	uint32_t intr;
    214   1.1  jmcneill 
    215   1.1  jmcneill 	msr = rdmsr(SB_GLD_MSR_CAP);
    216   1.1  jmcneill 	if ((msr & 0xFFFF00) != 0x130400) {
    217  1.14   msaitoh 		aprint_error(": unknown ID 0x%x\n",
    218  1.14   msaitoh 		    (int)((msr & 0xFFFF00) >> 16));
    219   1.1  jmcneill 		return;
    220   1.1  jmcneill 	}
    221   1.1  jmcneill 
    222   1.1  jmcneill 	/* printf(": revision %d", (int) (msr & 0xFF)); */
    223   1.1  jmcneill 
    224   1.1  jmcneill 	/* Map in the security block configuration/control registers */
    225   1.1  jmcneill 	if (pci_mapreg_map(pa, PCI_MAPREG_START,
    226   1.1  jmcneill 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
    227   1.1  jmcneill 	    &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) {
    228  1.14   msaitoh 		aprint_error(": can't find mem space\n");
    229   1.1  jmcneill 		return;
    230   1.1  jmcneill 	}
    231   1.1  jmcneill 
    232   1.6   xtraeme 	sc->sc_dev = self;
    233   1.6   xtraeme 
    234   1.1  jmcneill 	/*
    235   1.1  jmcneill 	 * Configure the Security Block.
    236   1.1  jmcneill 	 *
    237   1.1  jmcneill 	 * We want to enable the noise generator (T_NE), and enable the
    238   1.1  jmcneill 	 * linear feedback shift register and whitener post-processing
    239   1.1  jmcneill 	 * (T_SEL = 3).  Also ensure that test mode (deterministic values)
    240   1.1  jmcneill 	 * is disabled.
    241   1.1  jmcneill 	 */
    242   1.1  jmcneill 	msr = rdmsr(SB_GLD_MSR_CTRL);
    243   1.1  jmcneill 	msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
    244   1.1  jmcneill 	msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
    245   1.1  jmcneill #if 0
    246   1.1  jmcneill 	msr |= SB_GMC_SBI | SB_GMC_SBY;		/* for AES, if necessary */
    247   1.1  jmcneill #endif
    248   1.1  jmcneill 	wrmsr(SB_GLD_MSR_CTRL, msr);
    249   1.1  jmcneill 
    250   1.6   xtraeme 	rnd_attach_source(&sc->sc_rnd_source, device_xname(self),
    251  1.12       tls 			  RND_TYPE_RNG, RND_FLAG_COLLECT_VALUE);
    252   1.1  jmcneill 
    253   1.1  jmcneill 	/* Install a periodic collector for the "true" (AMD's word) RNG */
    254   1.2        ad 	callout_init(&sc->sc_co, 0);
    255   1.1  jmcneill 	callout_setfunc(&sc->sc_co, glxsb_rnd, sc);
    256   1.1  jmcneill 	glxsb_rnd(sc);
    257  1.11  christos 	aprint_normal(": RNG");
    258   1.1  jmcneill 
    259   1.1  jmcneill 	/* We don't have an interrupt handler, so disable completion INTs */
    260   1.1  jmcneill 	intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
    261   1.1  jmcneill 	    SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
    262   1.1  jmcneill 	    SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
    263   1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
    264   1.1  jmcneill 
    265   1.1  jmcneill 	sc->sc_dmat = pa->pa_dmat;
    266   1.1  jmcneill 
    267   1.1  jmcneill 	if (glxsb_crypto_setup(sc))
    268  1.11  christos 		aprint_normal(" AES");
    269   1.1  jmcneill 
    270  1.11  christos 	aprint_normal("\n");
    271   1.1  jmcneill }
    272   1.1  jmcneill 
    273   1.1  jmcneill void
    274   1.1  jmcneill glxsb_rnd(void *v)
    275   1.1  jmcneill {
    276   1.1  jmcneill 	struct glxsb_softc *sc = v;
    277   1.1  jmcneill 	uint32_t status, value;
    278   1.1  jmcneill 	extern int hz;
    279   1.1  jmcneill 
    280   1.1  jmcneill 	status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
    281   1.1  jmcneill 	if (status & SB_RNS_TRNG_VALID) {
    282   1.1  jmcneill 		value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
    283  1.12       tls 		rnd_add_data(&sc->sc_rnd_source, &value, sizeof(value),
    284  1.12       tls 			     sizeof(value) * NBBY);
    285   1.1  jmcneill 	}
    286   1.1  jmcneill 
    287   1.1  jmcneill 	callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1);
    288   1.1  jmcneill }
    289   1.1  jmcneill 
    290   1.1  jmcneill int
    291   1.1  jmcneill glxsb_crypto_setup(struct glxsb_softc *sc)
    292   1.1  jmcneill {
    293   1.1  jmcneill 
    294   1.1  jmcneill 	/* Allocate a contiguous DMA-able buffer to work in */
    295   1.1  jmcneill 	if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
    296   1.1  jmcneill 		return 0;
    297   1.1  jmcneill 
    298   1.1  jmcneill 	sc->sc_cid = crypto_get_driverid(0);
    299   1.1  jmcneill 	if (sc->sc_cid < 0)
    300   1.1  jmcneill 		return 0;
    301   1.1  jmcneill 
    302   1.1  jmcneill 	crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
    303   1.1  jmcneill 	    glxsb_crypto_newsession, glxsb_crypto_freesession,
    304   1.1  jmcneill 	    glxsb_crypto_process, sc);
    305   1.1  jmcneill 
    306   1.1  jmcneill 	sc->sc_nsessions = 0;
    307   1.1  jmcneill 
    308   1.1  jmcneill 	return 1;
    309   1.1  jmcneill }
    310   1.1  jmcneill 
    311   1.1  jmcneill int
    312   1.1  jmcneill glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri)
    313   1.1  jmcneill {
    314   1.1  jmcneill 	struct glxsb_softc *sc = aux;
    315   1.1  jmcneill 	struct glxsb_session *ses = NULL;
    316   1.1  jmcneill 	int sesn;
    317   1.1  jmcneill 
    318   1.1  jmcneill 	if (sc == NULL || sidp == NULL || cri == NULL ||
    319   1.1  jmcneill 	    cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC ||
    320   1.1  jmcneill 	    cri->cri_klen != 128)
    321   1.1  jmcneill 		return (EINVAL);
    322   1.1  jmcneill 
    323   1.1  jmcneill 	for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
    324   1.1  jmcneill 		if (sc->sc_sessions[sesn].ses_used == 0) {
    325   1.1  jmcneill 			ses = &sc->sc_sessions[sesn];
    326   1.1  jmcneill 			break;
    327   1.1  jmcneill 		}
    328   1.1  jmcneill 	}
    329   1.1  jmcneill 
    330   1.1  jmcneill 	if (ses == NULL) {
    331   1.1  jmcneill 		sesn = sc->sc_nsessions;
    332   1.1  jmcneill 		ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT);
    333   1.1  jmcneill 		if (ses == NULL)
    334   1.1  jmcneill 			return (ENOMEM);
    335   1.1  jmcneill 		if (sesn != 0) {
    336   1.9    cegger 			memcpy(ses, sc->sc_sessions, sesn * sizeof(*ses));
    337   1.7    cegger 			memset(sc->sc_sessions, 0, sesn * sizeof(*ses));
    338   1.1  jmcneill 			free(sc->sc_sessions, M_DEVBUF);
    339   1.1  jmcneill 		}
    340   1.1  jmcneill 		sc->sc_sessions = ses;
    341   1.1  jmcneill 		ses = &sc->sc_sessions[sesn];
    342   1.1  jmcneill 		sc->sc_nsessions++;
    343   1.1  jmcneill 	}
    344   1.1  jmcneill 
    345   1.7    cegger 	memset(ses, 0, sizeof(*ses));
    346   1.1  jmcneill 	ses->ses_used = 1;
    347   1.1  jmcneill 
    348   1.1  jmcneill 	ses->ses_klen = cri->cri_klen;
    349   1.1  jmcneill 
    350   1.1  jmcneill 	/* Copy the key (Geode LX wants the primary key only) */
    351   1.9    cegger 	memcpy(ses->ses_key, cri->cri_key, sizeof(ses->ses_key));
    352   1.1  jmcneill 
    353   1.1  jmcneill 	*sidp = GLXSB_SID(0, sesn);
    354   1.1  jmcneill 	return (0);
    355   1.1  jmcneill }
    356   1.1  jmcneill 
    357   1.1  jmcneill int
    358   1.1  jmcneill glxsb_crypto_freesession(void *aux, uint64_t tid)
    359   1.1  jmcneill {
    360   1.1  jmcneill 	struct glxsb_softc *sc = aux;
    361   1.1  jmcneill 	int sesn;
    362   1.1  jmcneill 	uint32_t sid = ((uint32_t)tid) & 0xffffffff;
    363   1.1  jmcneill 
    364   1.1  jmcneill 	if (sc == NULL)
    365   1.1  jmcneill 		return (EINVAL);
    366   1.1  jmcneill 	sesn = GLXSB_SESSION(sid);
    367   1.1  jmcneill 	if (sesn >= sc->sc_nsessions)
    368   1.1  jmcneill 		return (EINVAL);
    369   1.7    cegger 	memset(&sc->sc_sessions[sesn], 0, sizeof(sc->sc_sessions[sesn]));
    370   1.1  jmcneill 	return (0);
    371   1.1  jmcneill }
    372   1.1  jmcneill 
    373   1.1  jmcneill /*
    374   1.1  jmcneill  * Must be called at splnet() or higher
    375   1.1  jmcneill  */
    376   1.1  jmcneill static __inline void
    377   1.1  jmcneill glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
    378   1.1  jmcneill     uint32_t pdst, void *key, int len, void *iv)
    379   1.1  jmcneill {
    380   1.1  jmcneill 	uint32_t status;
    381   1.1  jmcneill 	int i;
    382   1.1  jmcneill 
    383   1.1  jmcneill 	if (len & 0xF) {
    384   1.1  jmcneill 		printf("%s: len must be a multiple of 16 (not %d)\n",
    385   1.6   xtraeme 		    device_xname(sc->sc_dev), len);
    386   1.1  jmcneill 		return;
    387   1.1  jmcneill 	}
    388   1.1  jmcneill 
    389   1.1  jmcneill 	/* Set the source */
    390   1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
    391   1.1  jmcneill 
    392   1.1  jmcneill 	/* Set the destination address */
    393   1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
    394   1.1  jmcneill 
    395   1.1  jmcneill 	/* Set the data length */
    396   1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
    397   1.1  jmcneill 
    398   1.1  jmcneill 	/* Set the IV */
    399   1.1  jmcneill 	if (iv != NULL) {
    400   1.1  jmcneill 		bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
    401   1.1  jmcneill 		    SB_CBC_IV, iv, 4);
    402   1.1  jmcneill 		control |= SB_CTL_CBC;
    403   1.1  jmcneill 	}
    404   1.1  jmcneill 
    405   1.1  jmcneill 	/* Set the key */
    406   1.1  jmcneill 	bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
    407   1.1  jmcneill 
    408   1.1  jmcneill 	/* Ask the security block to do it */
    409   1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
    410   1.1  jmcneill 	    control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
    411   1.1  jmcneill 
    412   1.1  jmcneill 	/*
    413   1.1  jmcneill 	 * Now wait until it is done.
    414   1.1  jmcneill 	 *
    415   1.1  jmcneill 	 * We do a busy wait.  Obviously the number of iterations of
    416   1.1  jmcneill 	 * the loop required to perform the AES operation depends upon
    417   1.1  jmcneill 	 * the number of bytes to process.
    418   1.1  jmcneill 	 *
    419   1.1  jmcneill 	 * On a 500 MHz Geode LX we see
    420   1.1  jmcneill 	 *
    421   1.1  jmcneill 	 *	length (bytes)	typical max iterations
    422   1.1  jmcneill 	 *	    16		   12
    423   1.1  jmcneill 	 *	    64		   22
    424   1.1  jmcneill 	 *	   256		   59
    425   1.1  jmcneill 	 *	  1024		  212
    426   1.1  jmcneill 	 *	  8192		1,537
    427   1.1  jmcneill 	 *
    428   1.1  jmcneill 	 * Since we have a maximum size of operation defined in
    429   1.1  jmcneill 	 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
    430   1.1  jmcneill 	 * to wait.  Allow an order of magnitude longer than it should
    431   1.1  jmcneill 	 * really take, just in case.
    432   1.1  jmcneill 	 */
    433   1.1  jmcneill 	for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
    434   1.1  jmcneill 		status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
    435   1.1  jmcneill 
    436   1.1  jmcneill 		if ((status & SB_CTL_ST) == 0)		/* Done */
    437   1.1  jmcneill 			return;
    438   1.1  jmcneill 	}
    439   1.1  jmcneill 
    440   1.6   xtraeme 	aprint_error_dev(sc->sc_dev, "operation failed to complete\n");
    441   1.1  jmcneill }
    442   1.1  jmcneill 
    443   1.1  jmcneill int
    444   1.1  jmcneill glxsb_crypto_process(void *aux, struct cryptop *crp, int hint)
    445   1.1  jmcneill {
    446   1.1  jmcneill 	struct glxsb_softc *sc = aux;
    447   1.1  jmcneill 	struct glxsb_session *ses;
    448   1.1  jmcneill 	struct cryptodesc *crd;
    449   1.1  jmcneill 	char *op_src, *op_dst;
    450   1.1  jmcneill 	uint32_t op_psrc, op_pdst;
    451  1.15  riastrad 	uint8_t op_iv[SB_AES_BLOCK_SIZE];
    452   1.1  jmcneill 	int sesn, err = 0;
    453   1.1  jmcneill 	int len, tlen, xlen;
    454   1.1  jmcneill 	int offset;
    455   1.1  jmcneill 	uint32_t control;
    456   1.1  jmcneill 	int s;
    457   1.1  jmcneill 
    458   1.1  jmcneill 	s = splnet();
    459   1.1  jmcneill 
    460   1.1  jmcneill 	if (crp == NULL || crp->crp_callback == NULL) {
    461   1.1  jmcneill 		err = EINVAL;
    462   1.1  jmcneill 		goto out;
    463   1.1  jmcneill 	}
    464   1.1  jmcneill 	crd = crp->crp_desc;
    465   1.1  jmcneill 	if (crd == NULL || crd->crd_next != NULL ||
    466   1.1  jmcneill 	    crd->crd_alg != CRYPTO_AES_CBC ||
    467   1.1  jmcneill 	    (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
    468   1.1  jmcneill 		err = EINVAL;
    469   1.1  jmcneill 		goto out;
    470   1.1  jmcneill 	}
    471   1.1  jmcneill 
    472   1.1  jmcneill 	sesn = GLXSB_SESSION(crp->crp_sid);
    473   1.1  jmcneill 	if (sesn >= sc->sc_nsessions) {
    474   1.1  jmcneill 		err = EINVAL;
    475   1.1  jmcneill 		goto out;
    476   1.1  jmcneill 	}
    477   1.1  jmcneill 	ses = &sc->sc_sessions[sesn];
    478   1.1  jmcneill 
    479   1.1  jmcneill 	/* How much of our buffer will we need to use? */
    480   1.1  jmcneill 	xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
    481   1.1  jmcneill 	    GLXSB_MAX_AES_LEN : crd->crd_len;
    482   1.1  jmcneill 
    483   1.1  jmcneill 	/*
    484   1.1  jmcneill 	 * XXX Check if we can have input == output on Geode LX.
    485   1.1  jmcneill 	 * XXX In the meantime, use two separate (adjacent) buffers.
    486   1.1  jmcneill 	 */
    487   1.1  jmcneill 	op_src = sc->sc_dma.dma_vaddr;
    488   1.1  jmcneill 	op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
    489   1.1  jmcneill 
    490   1.1  jmcneill 	op_psrc = sc->sc_dma.dma_paddr;
    491   1.1  jmcneill 	op_pdst = sc->sc_dma.dma_paddr + xlen;
    492   1.1  jmcneill 
    493   1.1  jmcneill 	if (crd->crd_flags & CRD_F_ENCRYPT) {
    494   1.1  jmcneill 		control = SB_CTL_ENC;
    495   1.1  jmcneill 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    496   1.9    cegger 			memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
    497   1.1  jmcneill 		else
    498  1.15  riastrad 			cprng_fast(op_iv, sizeof(op_iv));
    499   1.1  jmcneill 
    500   1.1  jmcneill 		if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
    501   1.1  jmcneill 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    502   1.1  jmcneill 				m_copyback((struct mbuf *)crp->crp_buf,
    503   1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    504   1.1  jmcneill 			else if (crp->crp_flags & CRYPTO_F_IOV)
    505   1.1  jmcneill 				cuio_copyback((struct uio *)crp->crp_buf,
    506   1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    507   1.1  jmcneill 			else
    508   1.1  jmcneill 				bcopy(op_iv,
    509   1.1  jmcneill 				    (char *)crp->crp_buf + crd->crd_inject,
    510   1.1  jmcneill 				    sizeof(op_iv));
    511   1.1  jmcneill 		}
    512   1.1  jmcneill 	} else {
    513   1.1  jmcneill 		control = SB_CTL_DEC;
    514   1.1  jmcneill 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    515   1.9    cegger 			memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
    516   1.1  jmcneill 		else {
    517   1.1  jmcneill 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    518   1.1  jmcneill 				m_copydata((struct mbuf *)crp->crp_buf,
    519   1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    520   1.1  jmcneill 			else if (crp->crp_flags & CRYPTO_F_IOV)
    521   1.1  jmcneill 				cuio_copydata((struct uio *)crp->crp_buf,
    522   1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    523   1.1  jmcneill 			else
    524   1.1  jmcneill 				bcopy((char *)crp->crp_buf + crd->crd_inject,
    525   1.1  jmcneill 				    op_iv, sizeof(op_iv));
    526   1.1  jmcneill 		}
    527   1.1  jmcneill 	}
    528   1.1  jmcneill 
    529   1.1  jmcneill 	offset = 0;
    530   1.1  jmcneill 	tlen = crd->crd_len;
    531   1.1  jmcneill 
    532   1.1  jmcneill 	/* Process the data in GLXSB_MAX_AES_LEN chunks */
    533   1.1  jmcneill 	while (tlen > 0) {
    534   1.1  jmcneill 		len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
    535   1.1  jmcneill 
    536   1.1  jmcneill 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    537   1.1  jmcneill 			m_copydata((struct mbuf *)crp->crp_buf,
    538   1.1  jmcneill 			    crd->crd_skip + offset, len, op_src);
    539   1.1  jmcneill 		else if (crp->crp_flags & CRYPTO_F_IOV)
    540   1.1  jmcneill 			cuio_copydata((struct uio *)crp->crp_buf,
    541   1.1  jmcneill 			    crd->crd_skip + offset, len, op_src);
    542   1.1  jmcneill 		else
    543   1.1  jmcneill 			bcopy((char *)crp->crp_buf + crd->crd_skip + offset,
    544   1.1  jmcneill 			    op_src, len);
    545   1.1  jmcneill 
    546   1.1  jmcneill 		glxsb_dma_pre_op(sc, &sc->sc_dma);
    547   1.1  jmcneill 
    548   1.1  jmcneill 		glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
    549   1.1  jmcneill 		    len, op_iv);
    550   1.1  jmcneill 
    551   1.1  jmcneill 		glxsb_dma_post_op(sc, &sc->sc_dma);
    552   1.1  jmcneill 
    553   1.1  jmcneill 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    554   1.1  jmcneill 			m_copyback((struct mbuf *)crp->crp_buf,
    555   1.1  jmcneill 			    crd->crd_skip + offset, len, op_dst);
    556   1.1  jmcneill 		else if (crp->crp_flags & CRYPTO_F_IOV)
    557   1.1  jmcneill 			cuio_copyback((struct uio *)crp->crp_buf,
    558   1.1  jmcneill 			    crd->crd_skip + offset, len, op_dst);
    559   1.1  jmcneill 		else
    560  1.14   msaitoh 			memcpy((char *)crp->crp_buf + crd->crd_skip + offset,
    561  1.14   msaitoh 			    op_dst, len);
    562   1.1  jmcneill 
    563   1.1  jmcneill 		offset += len;
    564   1.1  jmcneill 		tlen -= len;
    565   1.1  jmcneill 
    566   1.1  jmcneill 		if (crd->crd_flags & CRD_F_ENCRYPT) {
    567  1.15  riastrad 			memcpy(op_iv, op_dst + len - sizeof(op_iv),
    568  1.14   msaitoh 			    sizeof(op_iv));
    569   1.1  jmcneill 		} else {
    570   1.1  jmcneill 			/* Decryption, only need this if another iteration */
    571   1.1  jmcneill 			if (tlen > 0) {
    572  1.15  riastrad 				memcpy(op_iv, op_src + len - sizeof(op_iv),
    573   1.1  jmcneill 				    sizeof(op_iv));
    574   1.1  jmcneill 			}
    575   1.1  jmcneill 		}
    576   1.1  jmcneill 	}
    577   1.1  jmcneill 
    578   1.1  jmcneill 	/* All AES processing has now been done. */
    579   1.1  jmcneill 
    580   1.7    cegger 	memset(sc->sc_dma.dma_vaddr, 0, xlen * 2);
    581   1.1  jmcneill out:
    582   1.1  jmcneill 	crp->crp_etype = err;
    583   1.1  jmcneill 	crypto_done(crp);
    584   1.1  jmcneill 	splx(s);
    585   1.1  jmcneill 	return (err);
    586   1.1  jmcneill }
    587   1.1  jmcneill 
    588   1.1  jmcneill int
    589   1.1  jmcneill glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
    590   1.1  jmcneill {
    591   1.1  jmcneill 	int rc;
    592   1.1  jmcneill 
    593   1.1  jmcneill 	dma->dma_nsegs = 1;
    594   1.1  jmcneill 	dma->dma_size = size;
    595   1.1  jmcneill 
    596   1.1  jmcneill 	rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
    597   1.1  jmcneill 	    0, BUS_DMA_NOWAIT, &dma->dma_map);
    598   1.1  jmcneill 	if (rc != 0) {
    599  1.14   msaitoh 		aprint_error_dev(sc->sc_dev,
    600  1.14   msaitoh 		    "couldn't create DMA map for %d bytes (%d)\n", size, rc);
    601   1.1  jmcneill 
    602   1.1  jmcneill 		goto fail0;
    603   1.1  jmcneill 	}
    604   1.1  jmcneill 
    605   1.1  jmcneill 	rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
    606   1.1  jmcneill 	    &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
    607   1.1  jmcneill 	if (rc != 0) {
    608  1.14   msaitoh 		aprint_error_dev(sc->sc_dev,
    609  1.14   msaitoh 		    "couldn't allocate DMA memory of %d bytes (%d)\n",
    610   1.5    cegger 		    size, rc);
    611   1.1  jmcneill 
    612   1.1  jmcneill 		goto fail1;
    613   1.1  jmcneill 	}
    614   1.1  jmcneill 
    615   1.1  jmcneill 	rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
    616   1.1  jmcneill 	    &dma->dma_vaddr, BUS_DMA_NOWAIT);
    617   1.1  jmcneill 	if (rc != 0) {
    618  1.14   msaitoh 		aprint_error_dev(sc->sc_dev,
    619  1.14   msaitoh 		    "couldn't map DMA memory for %d bytes (%d)\n", size, rc);
    620   1.1  jmcneill 
    621   1.1  jmcneill 		goto fail2;
    622   1.1  jmcneill 	}
    623   1.1  jmcneill 
    624   1.1  jmcneill 	rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
    625   1.1  jmcneill 	    size, NULL, BUS_DMA_NOWAIT);
    626   1.1  jmcneill 	if (rc != 0) {
    627  1.14   msaitoh 		aprint_error_dev(sc->sc_dev,
    628  1.14   msaitoh 		    "couldn't load DMA memory for %d bytes (%d)\n", size, rc);
    629   1.1  jmcneill 
    630   1.1  jmcneill 		goto fail3;
    631   1.1  jmcneill 	}
    632   1.1  jmcneill 
    633   1.1  jmcneill 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
    634   1.1  jmcneill 
    635   1.1  jmcneill 	return 0;
    636   1.1  jmcneill 
    637   1.1  jmcneill fail3:
    638   1.1  jmcneill 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
    639   1.1  jmcneill fail2:
    640   1.1  jmcneill 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    641   1.1  jmcneill fail1:
    642   1.1  jmcneill 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    643   1.1  jmcneill fail0:
    644   1.1  jmcneill 	return rc;
    645   1.1  jmcneill }
    646   1.1  jmcneill 
    647   1.1  jmcneill void
    648   1.1  jmcneill glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    649   1.1  jmcneill {
    650   1.1  jmcneill 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    651   1.1  jmcneill 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    652   1.1  jmcneill }
    653   1.1  jmcneill 
    654   1.1  jmcneill void
    655   1.1  jmcneill glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    656   1.1  jmcneill {
    657   1.1  jmcneill 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    658   1.1  jmcneill 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    659   1.1  jmcneill }
    660   1.1  jmcneill 
    661   1.1  jmcneill void
    662   1.1  jmcneill glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    663   1.1  jmcneill {
    664   1.1  jmcneill 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
    665   1.1  jmcneill 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
    666   1.1  jmcneill 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    667   1.1  jmcneill 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    668   1.1  jmcneill }
    669