Home | History | Annotate | Line # | Download | only in pci
glxsb.c revision 1.3
      1  1.3     lukem /*	$NetBSD: glxsb.c,v 1.3 2007/12/11 12:00:55 lukem Exp $	*/
      2  1.1  jmcneill /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
      3  1.1  jmcneill 
      4  1.1  jmcneill /*
      5  1.1  jmcneill  * Copyright (c) 2006 Tom Cosgrove <tom (at) openbsd.org>
      6  1.1  jmcneill  * Copyright (c) 2003, 2004 Theo de Raadt
      7  1.1  jmcneill  * Copyright (c) 2003 Jason Wright
      8  1.1  jmcneill  *
      9  1.1  jmcneill  * Permission to use, copy, modify, and distribute this software for any
     10  1.1  jmcneill  * purpose with or without fee is hereby granted, provided that the above
     11  1.1  jmcneill  * copyright notice and this permission notice appear in all copies.
     12  1.1  jmcneill  *
     13  1.1  jmcneill  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     14  1.1  jmcneill  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     15  1.1  jmcneill  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     16  1.1  jmcneill  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     17  1.1  jmcneill  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     18  1.1  jmcneill  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     19  1.1  jmcneill  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     20  1.1  jmcneill  */
     21  1.1  jmcneill 
     22  1.1  jmcneill /*
     23  1.1  jmcneill  * Driver for the security block on the AMD Geode LX processors
     24  1.1  jmcneill  * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
     25  1.1  jmcneill  */
     26  1.1  jmcneill 
     27  1.1  jmcneill #include <sys/cdefs.h>
     28  1.3     lukem __KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.3 2007/12/11 12:00:55 lukem Exp $");
     29  1.3     lukem 
     30  1.1  jmcneill #include <sys/param.h>
     31  1.1  jmcneill #include <sys/systm.h>
     32  1.1  jmcneill #include <sys/device.h>
     33  1.1  jmcneill #include <sys/malloc.h>
     34  1.1  jmcneill #include <sys/mbuf.h>
     35  1.1  jmcneill #include <sys/types.h>
     36  1.1  jmcneill #include <sys/callout.h>
     37  1.1  jmcneill #include <sys/rnd.h>
     38  1.1  jmcneill 
     39  1.1  jmcneill #include <machine/bus.h>
     40  1.1  jmcneill 
     41  1.1  jmcneill #include <dev/pci/pcivar.h>
     42  1.1  jmcneill #include <dev/pci/pcidevs.h>
     43  1.1  jmcneill 
     44  1.1  jmcneill #include <opencrypto/cryptodev.h>
     45  1.1  jmcneill #include <crypto/rijndael/rijndael.h>
     46  1.1  jmcneill 
     47  1.1  jmcneill #define SB_GLD_MSR_CAP		0x58002000	/* RO - Capabilities */
     48  1.1  jmcneill #define SB_GLD_MSR_CONFIG	0x58002001	/* RW - Master Config */
     49  1.1  jmcneill #define SB_GLD_MSR_SMI		0x58002002	/* RW - SMI */
     50  1.1  jmcneill #define SB_GLD_MSR_ERROR	0x58002003	/* RW - Error */
     51  1.1  jmcneill #define SB_GLD_MSR_PM		0x58002004	/* RW - Power Mgmt */
     52  1.1  jmcneill #define SB_GLD_MSR_DIAG		0x58002005	/* RW - Diagnostic */
     53  1.1  jmcneill #define SB_GLD_MSR_CTRL		0x58002006	/* RW - Security Block Cntrl */
     54  1.1  jmcneill 
     55  1.1  jmcneill 						/* For GLD_MSR_CTRL: */
     56  1.1  jmcneill #define SB_GMC_DIV0		0x0000		/* AES update divisor values */
     57  1.1  jmcneill #define SB_GMC_DIV1		0x0001
     58  1.1  jmcneill #define SB_GMC_DIV2		0x0002
     59  1.1  jmcneill #define SB_GMC_DIV3		0x0003
     60  1.1  jmcneill #define SB_GMC_DIV_MASK		0x0003
     61  1.1  jmcneill #define SB_GMC_SBI		0x0004		/* AES swap bits */
     62  1.1  jmcneill #define SB_GMC_SBY		0x0008		/* AES swap bytes */
     63  1.1  jmcneill #define SB_GMC_TW		0x0010		/* Time write (EEPROM) */
     64  1.1  jmcneill #define SB_GMC_T_SEL0		0x0000		/* RNG post-proc: none */
     65  1.1  jmcneill #define SB_GMC_T_SEL1		0x0100		/* RNG post-proc: LFSR */
     66  1.1  jmcneill #define SB_GMC_T_SEL2		0x0200		/* RNG post-proc: whitener */
     67  1.1  jmcneill #define SB_GMC_T_SEL3		0x0300		/* RNG LFSR+whitener */
     68  1.1  jmcneill #define SB_GMC_T_SEL_MASK	0x0300
     69  1.1  jmcneill #define SB_GMC_T_NE		0x0400		/* Noise (generator) Enable */
     70  1.1  jmcneill #define SB_GMC_T_TM		0x0800		/* RNG test mode */
     71  1.1  jmcneill 						/*     (deterministic) */
     72  1.1  jmcneill 
     73  1.1  jmcneill /* Security Block configuration/control registers (offsets from base) */
     74  1.1  jmcneill 
     75  1.1  jmcneill #define SB_CTL_A		0x0000		/* RW - SB Control A */
     76  1.1  jmcneill #define SB_CTL_B		0x0004		/* RW - SB Control B */
     77  1.1  jmcneill #define SB_AES_INT		0x0008		/* RW - SB AES Interrupt */
     78  1.1  jmcneill #define SB_SOURCE_A		0x0010		/* RW - Source A */
     79  1.1  jmcneill #define SB_DEST_A		0x0014		/* RW - Destination A */
     80  1.1  jmcneill #define SB_LENGTH_A		0x0018		/* RW - Length A */
     81  1.1  jmcneill #define SB_SOURCE_B		0x0020		/* RW - Source B */
     82  1.1  jmcneill #define SB_DEST_B		0x0024		/* RW - Destination B */
     83  1.1  jmcneill #define SB_LENGTH_B		0x0028		/* RW - Length B */
     84  1.1  jmcneill #define SB_WKEY			0x0030		/* WO - Writable Key 0-3 */
     85  1.1  jmcneill #define SB_WKEY_0		0x0030		/* WO - Writable Key 0 */
     86  1.1  jmcneill #define SB_WKEY_1		0x0034		/* WO - Writable Key 1 */
     87  1.1  jmcneill #define SB_WKEY_2		0x0038		/* WO - Writable Key 2 */
     88  1.1  jmcneill #define SB_WKEY_3		0x003C		/* WO - Writable Key 3 */
     89  1.1  jmcneill #define SB_CBC_IV		0x0040		/* RW - CBC IV 0-3 */
     90  1.1  jmcneill #define SB_CBC_IV_0		0x0040		/* RW - CBC IV 0 */
     91  1.1  jmcneill #define SB_CBC_IV_1		0x0044		/* RW - CBC IV 1 */
     92  1.1  jmcneill #define SB_CBC_IV_2		0x0048		/* RW - CBC IV 2 */
     93  1.1  jmcneill #define SB_CBC_IV_3		0x004C		/* RW - CBC IV 3 */
     94  1.1  jmcneill #define SB_RANDOM_NUM		0x0050		/* RW - Random Number */
     95  1.1  jmcneill #define SB_RANDOM_NUM_STATUS	0x0054		/* RW - Random Number Status */
     96  1.1  jmcneill #define SB_EEPROM_COMM		0x0800		/* RW - EEPROM Command */
     97  1.1  jmcneill #define SB_EEPROM_ADDR		0x0804		/* RW - EEPROM Address */
     98  1.1  jmcneill #define SB_EEPROM_DATA		0x0808		/* RW - EEPROM Data */
     99  1.1  jmcneill #define SB_EEPROM_SEC_STATE	0x080C		/* RW - EEPROM Security State */
    100  1.1  jmcneill 
    101  1.1  jmcneill 						/* For SB_CTL_A and _B */
    102  1.1  jmcneill #define SB_CTL_ST		0x0001		/* Start operation (enc/dec) */
    103  1.1  jmcneill #define SB_CTL_ENC		0x0002		/* Encrypt (0 is decrypt) */
    104  1.1  jmcneill #define SB_CTL_DEC		0x0000		/* Decrypt */
    105  1.1  jmcneill #define SB_CTL_WK		0x0004		/* Use writable key (we set) */
    106  1.1  jmcneill #define SB_CTL_DC		0x0008		/* Destination coherent */
    107  1.1  jmcneill #define SB_CTL_SC		0x0010		/* Source coherent */
    108  1.1  jmcneill #define SB_CTL_CBC		0x0020		/* CBC (0 is ECB) */
    109  1.1  jmcneill 
    110  1.1  jmcneill 						/* For SB_AES_INT */
    111  1.1  jmcneill #define SB_AI_DISABLE_AES_A	0x0001		/* Disable AES A compl int */
    112  1.1  jmcneill #define SB_AI_ENABLE_AES_A	0x0000		/* Enable AES A compl int */
    113  1.1  jmcneill #define SB_AI_DISABLE_AES_B	0x0002		/* Disable AES B compl int */
    114  1.1  jmcneill #define SB_AI_ENABLE_AES_B	0x0000		/* Enable AES B compl int */
    115  1.1  jmcneill #define SB_AI_DISABLE_EEPROM	0x0004		/* Disable EEPROM op comp int */
    116  1.1  jmcneill #define SB_AI_ENABLE_EEPROM	0x0000		/* Enable EEPROM op compl int */
    117  1.1  jmcneill #define SB_AI_AES_A_COMPLETE	0x0100		/* AES A operation complete */
    118  1.1  jmcneill #define SB_AI_AES_B_COMPLETE	0x0200		/* AES B operation complete */
    119  1.1  jmcneill #define SB_AI_EEPROM_COMPLETE	0x0400		/* EEPROM operation complete */
    120  1.1  jmcneill 
    121  1.1  jmcneill #define SB_RNS_TRNG_VALID	0x0001		/* in SB_RANDOM_NUM_STATUS */
    122  1.1  jmcneill 
    123  1.1  jmcneill #define SB_MEM_SIZE		0x0810		/* Size of memory block */
    124  1.1  jmcneill 
    125  1.1  jmcneill #define SB_AES_ALIGN		0x0010		/* Source and dest buffers */
    126  1.1  jmcneill 						/* must be 16-byte aligned */
    127  1.1  jmcneill #define SB_AES_BLOCK_SIZE	0x0010
    128  1.1  jmcneill 
    129  1.1  jmcneill /*
    130  1.1  jmcneill  * The Geode LX security block AES acceleration doesn't perform scatter-
    131  1.1  jmcneill  * gather: it just takes source and destination addresses.  Therefore the
    132  1.1  jmcneill  * plain- and ciphertexts need to be contiguous.  To this end, we allocate
    133  1.1  jmcneill  * a buffer for both, and accept the overhead of copying in and out.  If
    134  1.1  jmcneill  * the number of bytes in one operation is bigger than allowed for by the
    135  1.1  jmcneill  * buffer (buffer is twice the size of the max length, as it has both input
    136  1.1  jmcneill  * and output) then we have to perform multiple encryptions/decryptions.
    137  1.1  jmcneill  */
    138  1.1  jmcneill #define GLXSB_MAX_AES_LEN	16384
    139  1.1  jmcneill 
    140  1.1  jmcneill struct glxsb_dma_map {
    141  1.1  jmcneill 	bus_dmamap_t		dma_map;
    142  1.1  jmcneill 	bus_dma_segment_t	dma_seg;
    143  1.1  jmcneill 	int			dma_nsegs;
    144  1.1  jmcneill 	int			dma_size;
    145  1.1  jmcneill 	void *			dma_vaddr;
    146  1.1  jmcneill 	uint32_t		dma_paddr;
    147  1.1  jmcneill };
    148  1.1  jmcneill struct glxsb_session {
    149  1.1  jmcneill 	uint32_t	ses_key[4];
    150  1.1  jmcneill 	uint8_t		ses_iv[SB_AES_BLOCK_SIZE];
    151  1.1  jmcneill 	int		ses_klen;
    152  1.1  jmcneill 	int		ses_used;
    153  1.1  jmcneill };
    154  1.1  jmcneill 
    155  1.1  jmcneill struct glxsb_softc {
    156  1.1  jmcneill 	struct device		sc_dev;
    157  1.1  jmcneill 	bus_space_tag_t		sc_iot;
    158  1.1  jmcneill 	bus_space_handle_t	sc_ioh;
    159  1.1  jmcneill 	struct callout		sc_co;
    160  1.1  jmcneill 
    161  1.1  jmcneill 	bus_dma_tag_t		sc_dmat;
    162  1.1  jmcneill 	struct glxsb_dma_map	sc_dma;
    163  1.1  jmcneill 	int32_t			sc_cid;
    164  1.1  jmcneill 	int			sc_nsessions;
    165  1.1  jmcneill 	struct glxsb_session	*sc_sessions;
    166  1.1  jmcneill 
    167  1.1  jmcneill 	rndsource_element_t	sc_rnd_source;
    168  1.1  jmcneill };
    169  1.1  jmcneill 
    170  1.1  jmcneill int	glxsb_match(struct device *, struct cfdata *, void *);
    171  1.1  jmcneill void	glxsb_attach(struct device *, struct device *, void *);
    172  1.1  jmcneill void	glxsb_rnd(void *);
    173  1.1  jmcneill 
    174  1.1  jmcneill CFATTACH_DECL(glxsb, sizeof(struct glxsb_softc), glxsb_match, glxsb_attach,
    175  1.1  jmcneill     NULL, NULL);
    176  1.1  jmcneill 
    177  1.1  jmcneill #define GLXSB_SESSION(sid)		((sid) & 0x0fffffff)
    178  1.1  jmcneill #define	GLXSB_SID(crd,ses)		(((crd) << 28) | ((ses) & 0x0fffffff))
    179  1.1  jmcneill 
    180  1.1  jmcneill int glxsb_crypto_setup(struct glxsb_softc *);
    181  1.1  jmcneill int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *);
    182  1.1  jmcneill int glxsb_crypto_process(void *, struct cryptop *, int);
    183  1.1  jmcneill int glxsb_crypto_freesession(void *, uint64_t);
    184  1.1  jmcneill static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
    185  1.1  jmcneill     uint32_t, void *, int, void *);
    186  1.1  jmcneill 
    187  1.1  jmcneill int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
    188  1.1  jmcneill void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
    189  1.1  jmcneill void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
    190  1.1  jmcneill void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
    191  1.1  jmcneill 
    192  1.1  jmcneill int
    193  1.1  jmcneill glxsb_match(struct device *parent, struct cfdata *match, void *aux)
    194  1.1  jmcneill {
    195  1.1  jmcneill 	struct pci_attach_args *pa = aux;
    196  1.1  jmcneill 
    197  1.1  jmcneill 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
    198  1.1  jmcneill 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES)
    199  1.1  jmcneill 		return (1);
    200  1.1  jmcneill 
    201  1.1  jmcneill 	return (0);
    202  1.1  jmcneill }
    203  1.1  jmcneill 
    204  1.1  jmcneill void
    205  1.1  jmcneill glxsb_attach(struct device *parent, struct device *self, void *aux)
    206  1.1  jmcneill {
    207  1.1  jmcneill 	struct glxsb_softc *sc = (void *) self;
    208  1.1  jmcneill 	struct pci_attach_args *pa = aux;
    209  1.1  jmcneill 	bus_addr_t membase;
    210  1.1  jmcneill 	bus_size_t memsize;
    211  1.1  jmcneill 	uint64_t msr;
    212  1.1  jmcneill 	uint32_t intr;
    213  1.1  jmcneill 
    214  1.1  jmcneill 	msr = rdmsr(SB_GLD_MSR_CAP);
    215  1.1  jmcneill 	if ((msr & 0xFFFF00) != 0x130400) {
    216  1.1  jmcneill 		printf(": unknown ID 0x%x\n", (int) ((msr & 0xFFFF00) >> 16));
    217  1.1  jmcneill 		return;
    218  1.1  jmcneill 	}
    219  1.1  jmcneill 
    220  1.1  jmcneill 	/* printf(": revision %d", (int) (msr & 0xFF)); */
    221  1.1  jmcneill 
    222  1.1  jmcneill 	/* Map in the security block configuration/control registers */
    223  1.1  jmcneill 	if (pci_mapreg_map(pa, PCI_MAPREG_START,
    224  1.1  jmcneill 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
    225  1.1  jmcneill 	    &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) {
    226  1.1  jmcneill 		printf(": can't find mem space\n");
    227  1.1  jmcneill 		return;
    228  1.1  jmcneill 	}
    229  1.1  jmcneill 
    230  1.1  jmcneill 	/*
    231  1.1  jmcneill 	 * Configure the Security Block.
    232  1.1  jmcneill 	 *
    233  1.1  jmcneill 	 * We want to enable the noise generator (T_NE), and enable the
    234  1.1  jmcneill 	 * linear feedback shift register and whitener post-processing
    235  1.1  jmcneill 	 * (T_SEL = 3).  Also ensure that test mode (deterministic values)
    236  1.1  jmcneill 	 * is disabled.
    237  1.1  jmcneill 	 */
    238  1.1  jmcneill 	msr = rdmsr(SB_GLD_MSR_CTRL);
    239  1.1  jmcneill 	msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
    240  1.1  jmcneill 	msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
    241  1.1  jmcneill #if 0
    242  1.1  jmcneill 	msr |= SB_GMC_SBI | SB_GMC_SBY;		/* for AES, if necessary */
    243  1.1  jmcneill #endif
    244  1.1  jmcneill 	wrmsr(SB_GLD_MSR_CTRL, msr);
    245  1.1  jmcneill 
    246  1.1  jmcneill 	rnd_attach_source(&sc->sc_rnd_source, sc->sc_dev.dv_xname,
    247  1.1  jmcneill 			  RND_TYPE_RNG, RND_FLAG_NO_ESTIMATE);
    248  1.1  jmcneill 
    249  1.1  jmcneill 	/* Install a periodic collector for the "true" (AMD's word) RNG */
    250  1.2        ad 	callout_init(&sc->sc_co, 0);
    251  1.1  jmcneill 	callout_setfunc(&sc->sc_co, glxsb_rnd, sc);
    252  1.1  jmcneill 	glxsb_rnd(sc);
    253  1.1  jmcneill 	printf(": RNG");
    254  1.1  jmcneill 
    255  1.1  jmcneill 	/* We don't have an interrupt handler, so disable completion INTs */
    256  1.1  jmcneill 	intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
    257  1.1  jmcneill 	    SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
    258  1.1  jmcneill 	    SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
    259  1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
    260  1.1  jmcneill 
    261  1.1  jmcneill 	sc->sc_dmat = pa->pa_dmat;
    262  1.1  jmcneill 
    263  1.1  jmcneill 	if (glxsb_crypto_setup(sc))
    264  1.1  jmcneill 		printf(" AES");
    265  1.1  jmcneill 
    266  1.1  jmcneill 	printf("\n");
    267  1.1  jmcneill }
    268  1.1  jmcneill 
    269  1.1  jmcneill void
    270  1.1  jmcneill glxsb_rnd(void *v)
    271  1.1  jmcneill {
    272  1.1  jmcneill 	struct glxsb_softc *sc = v;
    273  1.1  jmcneill 	uint32_t status, value;
    274  1.1  jmcneill 	extern int hz;
    275  1.1  jmcneill 
    276  1.1  jmcneill 	status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
    277  1.1  jmcneill 	if (status & SB_RNS_TRNG_VALID) {
    278  1.1  jmcneill 		value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
    279  1.1  jmcneill 		rnd_add_uint32(&sc->sc_rnd_source, value);
    280  1.1  jmcneill 	}
    281  1.1  jmcneill 
    282  1.1  jmcneill 	callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1);
    283  1.1  jmcneill }
    284  1.1  jmcneill 
    285  1.1  jmcneill int
    286  1.1  jmcneill glxsb_crypto_setup(struct glxsb_softc *sc)
    287  1.1  jmcneill {
    288  1.1  jmcneill 
    289  1.1  jmcneill 	/* Allocate a contiguous DMA-able buffer to work in */
    290  1.1  jmcneill 	if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
    291  1.1  jmcneill 		return 0;
    292  1.1  jmcneill 
    293  1.1  jmcneill 	sc->sc_cid = crypto_get_driverid(0);
    294  1.1  jmcneill 	if (sc->sc_cid < 0)
    295  1.1  jmcneill 		return 0;
    296  1.1  jmcneill 
    297  1.1  jmcneill 	crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
    298  1.1  jmcneill 	    glxsb_crypto_newsession, glxsb_crypto_freesession,
    299  1.1  jmcneill 	    glxsb_crypto_process, sc);
    300  1.1  jmcneill 
    301  1.1  jmcneill 	sc->sc_nsessions = 0;
    302  1.1  jmcneill 
    303  1.1  jmcneill 	return 1;
    304  1.1  jmcneill }
    305  1.1  jmcneill 
    306  1.1  jmcneill int
    307  1.1  jmcneill glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri)
    308  1.1  jmcneill {
    309  1.1  jmcneill 	struct glxsb_softc *sc = aux;
    310  1.1  jmcneill 	struct glxsb_session *ses = NULL;
    311  1.1  jmcneill 	int sesn;
    312  1.1  jmcneill 
    313  1.1  jmcneill 	if (sc == NULL || sidp == NULL || cri == NULL ||
    314  1.1  jmcneill 	    cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC ||
    315  1.1  jmcneill 	    cri->cri_klen != 128)
    316  1.1  jmcneill 		return (EINVAL);
    317  1.1  jmcneill 
    318  1.1  jmcneill 	for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
    319  1.1  jmcneill 		if (sc->sc_sessions[sesn].ses_used == 0) {
    320  1.1  jmcneill 			ses = &sc->sc_sessions[sesn];
    321  1.1  jmcneill 			break;
    322  1.1  jmcneill 		}
    323  1.1  jmcneill 	}
    324  1.1  jmcneill 
    325  1.1  jmcneill 	if (ses == NULL) {
    326  1.1  jmcneill 		sesn = sc->sc_nsessions;
    327  1.1  jmcneill 		ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT);
    328  1.1  jmcneill 		if (ses == NULL)
    329  1.1  jmcneill 			return (ENOMEM);
    330  1.1  jmcneill 		if (sesn != 0) {
    331  1.1  jmcneill 			bcopy(sc->sc_sessions, ses, sesn * sizeof(*ses));
    332  1.1  jmcneill 			bzero(sc->sc_sessions, sesn * sizeof(*ses));
    333  1.1  jmcneill 			free(sc->sc_sessions, M_DEVBUF);
    334  1.1  jmcneill 		}
    335  1.1  jmcneill 		sc->sc_sessions = ses;
    336  1.1  jmcneill 		ses = &sc->sc_sessions[sesn];
    337  1.1  jmcneill 		sc->sc_nsessions++;
    338  1.1  jmcneill 	}
    339  1.1  jmcneill 
    340  1.1  jmcneill 	bzero(ses, sizeof(*ses));
    341  1.1  jmcneill 	ses->ses_used = 1;
    342  1.1  jmcneill 
    343  1.1  jmcneill 	arc4randbytes(ses->ses_iv, sizeof(ses->ses_iv));
    344  1.1  jmcneill 	ses->ses_klen = cri->cri_klen;
    345  1.1  jmcneill 
    346  1.1  jmcneill 	/* Copy the key (Geode LX wants the primary key only) */
    347  1.1  jmcneill 	bcopy(cri->cri_key, ses->ses_key, sizeof(ses->ses_key));
    348  1.1  jmcneill 
    349  1.1  jmcneill 	*sidp = GLXSB_SID(0, sesn);
    350  1.1  jmcneill 	return (0);
    351  1.1  jmcneill }
    352  1.1  jmcneill 
    353  1.1  jmcneill int
    354  1.1  jmcneill glxsb_crypto_freesession(void *aux, uint64_t tid)
    355  1.1  jmcneill {
    356  1.1  jmcneill 	struct glxsb_softc *sc = aux;
    357  1.1  jmcneill 	int sesn;
    358  1.1  jmcneill 	uint32_t sid = ((uint32_t)tid) & 0xffffffff;
    359  1.1  jmcneill 
    360  1.1  jmcneill 	if (sc == NULL)
    361  1.1  jmcneill 		return (EINVAL);
    362  1.1  jmcneill 	sesn = GLXSB_SESSION(sid);
    363  1.1  jmcneill 	if (sesn >= sc->sc_nsessions)
    364  1.1  jmcneill 		return (EINVAL);
    365  1.1  jmcneill 	bzero(&sc->sc_sessions[sesn], sizeof(sc->sc_sessions[sesn]));
    366  1.1  jmcneill 	return (0);
    367  1.1  jmcneill }
    368  1.1  jmcneill 
    369  1.1  jmcneill /*
    370  1.1  jmcneill  * Must be called at splnet() or higher
    371  1.1  jmcneill  */
    372  1.1  jmcneill static __inline void
    373  1.1  jmcneill glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
    374  1.1  jmcneill     uint32_t pdst, void *key, int len, void *iv)
    375  1.1  jmcneill {
    376  1.1  jmcneill 	uint32_t status;
    377  1.1  jmcneill 	int i;
    378  1.1  jmcneill 
    379  1.1  jmcneill 	if (len & 0xF) {
    380  1.1  jmcneill 		printf("%s: len must be a multiple of 16 (not %d)\n",
    381  1.1  jmcneill 		    sc->sc_dev.dv_xname, len);
    382  1.1  jmcneill 		return;
    383  1.1  jmcneill 	}
    384  1.1  jmcneill 
    385  1.1  jmcneill 	/* Set the source */
    386  1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
    387  1.1  jmcneill 
    388  1.1  jmcneill 	/* Set the destination address */
    389  1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
    390  1.1  jmcneill 
    391  1.1  jmcneill 	/* Set the data length */
    392  1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
    393  1.1  jmcneill 
    394  1.1  jmcneill 	/* Set the IV */
    395  1.1  jmcneill 	if (iv != NULL) {
    396  1.1  jmcneill 		bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
    397  1.1  jmcneill 		    SB_CBC_IV, iv, 4);
    398  1.1  jmcneill 		control |= SB_CTL_CBC;
    399  1.1  jmcneill 	}
    400  1.1  jmcneill 
    401  1.1  jmcneill 	/* Set the key */
    402  1.1  jmcneill 	bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
    403  1.1  jmcneill 
    404  1.1  jmcneill 	/* Ask the security block to do it */
    405  1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
    406  1.1  jmcneill 	    control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
    407  1.1  jmcneill 
    408  1.1  jmcneill 	/*
    409  1.1  jmcneill 	 * Now wait until it is done.
    410  1.1  jmcneill 	 *
    411  1.1  jmcneill 	 * We do a busy wait.  Obviously the number of iterations of
    412  1.1  jmcneill 	 * the loop required to perform the AES operation depends upon
    413  1.1  jmcneill 	 * the number of bytes to process.
    414  1.1  jmcneill 	 *
    415  1.1  jmcneill 	 * On a 500 MHz Geode LX we see
    416  1.1  jmcneill 	 *
    417  1.1  jmcneill 	 *	length (bytes)	typical max iterations
    418  1.1  jmcneill 	 *	    16		   12
    419  1.1  jmcneill 	 *	    64		   22
    420  1.1  jmcneill 	 *	   256		   59
    421  1.1  jmcneill 	 *	  1024		  212
    422  1.1  jmcneill 	 *	  8192		1,537
    423  1.1  jmcneill 	 *
    424  1.1  jmcneill 	 * Since we have a maximum size of operation defined in
    425  1.1  jmcneill 	 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
    426  1.1  jmcneill 	 * to wait.  Allow an order of magnitude longer than it should
    427  1.1  jmcneill 	 * really take, just in case.
    428  1.1  jmcneill 	 */
    429  1.1  jmcneill 	for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
    430  1.1  jmcneill 		status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
    431  1.1  jmcneill 
    432  1.1  jmcneill 		if ((status & SB_CTL_ST) == 0)		/* Done */
    433  1.1  jmcneill 			return;
    434  1.1  jmcneill 	}
    435  1.1  jmcneill 
    436  1.1  jmcneill 	printf("%s: operation failed to complete\n", sc->sc_dev.dv_xname);
    437  1.1  jmcneill }
    438  1.1  jmcneill 
    439  1.1  jmcneill int
    440  1.1  jmcneill glxsb_crypto_process(void *aux, struct cryptop *crp, int hint)
    441  1.1  jmcneill {
    442  1.1  jmcneill 	struct glxsb_softc *sc = aux;
    443  1.1  jmcneill 	struct glxsb_session *ses;
    444  1.1  jmcneill 	struct cryptodesc *crd;
    445  1.1  jmcneill 	char *op_src, *op_dst;
    446  1.1  jmcneill 	uint32_t op_psrc, op_pdst;
    447  1.1  jmcneill 	uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
    448  1.1  jmcneill 	int sesn, err = 0;
    449  1.1  jmcneill 	int len, tlen, xlen;
    450  1.1  jmcneill 	int offset;
    451  1.1  jmcneill 	uint32_t control;
    452  1.1  jmcneill 	int s;
    453  1.1  jmcneill 
    454  1.1  jmcneill 	s = splnet();
    455  1.1  jmcneill 
    456  1.1  jmcneill 	if (crp == NULL || crp->crp_callback == NULL) {
    457  1.1  jmcneill 		err = EINVAL;
    458  1.1  jmcneill 		goto out;
    459  1.1  jmcneill 	}
    460  1.1  jmcneill 	crd = crp->crp_desc;
    461  1.1  jmcneill 	if (crd == NULL || crd->crd_next != NULL ||
    462  1.1  jmcneill 	    crd->crd_alg != CRYPTO_AES_CBC ||
    463  1.1  jmcneill 	    (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
    464  1.1  jmcneill 		err = EINVAL;
    465  1.1  jmcneill 		goto out;
    466  1.1  jmcneill 	}
    467  1.1  jmcneill 
    468  1.1  jmcneill 	sesn = GLXSB_SESSION(crp->crp_sid);
    469  1.1  jmcneill 	if (sesn >= sc->sc_nsessions) {
    470  1.1  jmcneill 		err = EINVAL;
    471  1.1  jmcneill 		goto out;
    472  1.1  jmcneill 	}
    473  1.1  jmcneill 	ses = &sc->sc_sessions[sesn];
    474  1.1  jmcneill 
    475  1.1  jmcneill 	/* How much of our buffer will we need to use? */
    476  1.1  jmcneill 	xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
    477  1.1  jmcneill 	    GLXSB_MAX_AES_LEN : crd->crd_len;
    478  1.1  jmcneill 
    479  1.1  jmcneill 	/*
    480  1.1  jmcneill 	 * XXX Check if we can have input == output on Geode LX.
    481  1.1  jmcneill 	 * XXX In the meantime, use two separate (adjacent) buffers.
    482  1.1  jmcneill 	 */
    483  1.1  jmcneill 	op_src = sc->sc_dma.dma_vaddr;
    484  1.1  jmcneill 	op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
    485  1.1  jmcneill 
    486  1.1  jmcneill 	op_psrc = sc->sc_dma.dma_paddr;
    487  1.1  jmcneill 	op_pdst = sc->sc_dma.dma_paddr + xlen;
    488  1.1  jmcneill 
    489  1.1  jmcneill 	if (crd->crd_flags & CRD_F_ENCRYPT) {
    490  1.1  jmcneill 		control = SB_CTL_ENC;
    491  1.1  jmcneill 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    492  1.1  jmcneill 			bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
    493  1.1  jmcneill 		else
    494  1.1  jmcneill 			bcopy(ses->ses_iv, op_iv, sizeof(op_iv));
    495  1.1  jmcneill 
    496  1.1  jmcneill 		if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
    497  1.1  jmcneill 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    498  1.1  jmcneill 				m_copyback((struct mbuf *)crp->crp_buf,
    499  1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    500  1.1  jmcneill 			else if (crp->crp_flags & CRYPTO_F_IOV)
    501  1.1  jmcneill 				cuio_copyback((struct uio *)crp->crp_buf,
    502  1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    503  1.1  jmcneill 			else
    504  1.1  jmcneill 				bcopy(op_iv,
    505  1.1  jmcneill 				    (char *)crp->crp_buf + crd->crd_inject,
    506  1.1  jmcneill 				    sizeof(op_iv));
    507  1.1  jmcneill 		}
    508  1.1  jmcneill 	} else {
    509  1.1  jmcneill 		control = SB_CTL_DEC;
    510  1.1  jmcneill 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    511  1.1  jmcneill 			bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
    512  1.1  jmcneill 		else {
    513  1.1  jmcneill 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    514  1.1  jmcneill 				m_copydata((struct mbuf *)crp->crp_buf,
    515  1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    516  1.1  jmcneill 			else if (crp->crp_flags & CRYPTO_F_IOV)
    517  1.1  jmcneill 				cuio_copydata((struct uio *)crp->crp_buf,
    518  1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    519  1.1  jmcneill 			else
    520  1.1  jmcneill 				bcopy((char *)crp->crp_buf + crd->crd_inject,
    521  1.1  jmcneill 				    op_iv, sizeof(op_iv));
    522  1.1  jmcneill 		}
    523  1.1  jmcneill 	}
    524  1.1  jmcneill 
    525  1.1  jmcneill 	offset = 0;
    526  1.1  jmcneill 	tlen = crd->crd_len;
    527  1.1  jmcneill 	piv = op_iv;
    528  1.1  jmcneill 
    529  1.1  jmcneill 	/* Process the data in GLXSB_MAX_AES_LEN chunks */
    530  1.1  jmcneill 	while (tlen > 0) {
    531  1.1  jmcneill 		len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
    532  1.1  jmcneill 
    533  1.1  jmcneill 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    534  1.1  jmcneill 			m_copydata((struct mbuf *)crp->crp_buf,
    535  1.1  jmcneill 			    crd->crd_skip + offset, len, op_src);
    536  1.1  jmcneill 		else if (crp->crp_flags & CRYPTO_F_IOV)
    537  1.1  jmcneill 			cuio_copydata((struct uio *)crp->crp_buf,
    538  1.1  jmcneill 			    crd->crd_skip + offset, len, op_src);
    539  1.1  jmcneill 		else
    540  1.1  jmcneill 			bcopy((char *)crp->crp_buf + crd->crd_skip + offset,
    541  1.1  jmcneill 			    op_src, len);
    542  1.1  jmcneill 
    543  1.1  jmcneill 		glxsb_dma_pre_op(sc, &sc->sc_dma);
    544  1.1  jmcneill 
    545  1.1  jmcneill 		glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
    546  1.1  jmcneill 		    len, op_iv);
    547  1.1  jmcneill 
    548  1.1  jmcneill 		glxsb_dma_post_op(sc, &sc->sc_dma);
    549  1.1  jmcneill 
    550  1.1  jmcneill 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    551  1.1  jmcneill 			m_copyback((struct mbuf *)crp->crp_buf,
    552  1.1  jmcneill 			    crd->crd_skip + offset, len, op_dst);
    553  1.1  jmcneill 		else if (crp->crp_flags & CRYPTO_F_IOV)
    554  1.1  jmcneill 			cuio_copyback((struct uio *)crp->crp_buf,
    555  1.1  jmcneill 			    crd->crd_skip + offset, len, op_dst);
    556  1.1  jmcneill 		else
    557  1.1  jmcneill 			bcopy(op_dst, (char *)crp->crp_buf + crd->crd_skip + offset,
    558  1.1  jmcneill 			    len);
    559  1.1  jmcneill 
    560  1.1  jmcneill 		offset += len;
    561  1.1  jmcneill 		tlen -= len;
    562  1.1  jmcneill 
    563  1.1  jmcneill 		if (tlen <= 0) {	/* Ideally, just == 0 */
    564  1.1  jmcneill 			/* Finished - put the IV in session IV */
    565  1.1  jmcneill 			piv = ses->ses_iv;
    566  1.1  jmcneill 		}
    567  1.1  jmcneill 
    568  1.1  jmcneill 		/*
    569  1.1  jmcneill 		 * Copy out last block for use as next iteration/session IV.
    570  1.1  jmcneill 		 *
    571  1.1  jmcneill 		 * piv is set to op_iv[] before the loop starts, but is
    572  1.1  jmcneill 		 * set to ses->ses_iv if we're going to exit the loop this
    573  1.1  jmcneill 		 * time.
    574  1.1  jmcneill 		 */
    575  1.1  jmcneill 		if (crd->crd_flags & CRD_F_ENCRYPT) {
    576  1.1  jmcneill 			bcopy(op_dst + len - sizeof(op_iv), piv, sizeof(op_iv));
    577  1.1  jmcneill 		} else {
    578  1.1  jmcneill 			/* Decryption, only need this if another iteration */
    579  1.1  jmcneill 			if (tlen > 0) {
    580  1.1  jmcneill 				bcopy(op_src + len - sizeof(op_iv), piv,
    581  1.1  jmcneill 				    sizeof(op_iv));
    582  1.1  jmcneill 			}
    583  1.1  jmcneill 		}
    584  1.1  jmcneill 	}
    585  1.1  jmcneill 
    586  1.1  jmcneill 	/* All AES processing has now been done. */
    587  1.1  jmcneill 
    588  1.1  jmcneill 	bzero(sc->sc_dma.dma_vaddr, xlen * 2);
    589  1.1  jmcneill out:
    590  1.1  jmcneill 	crp->crp_etype = err;
    591  1.1  jmcneill 	crypto_done(crp);
    592  1.1  jmcneill 	splx(s);
    593  1.1  jmcneill 	return (err);
    594  1.1  jmcneill }
    595  1.1  jmcneill 
    596  1.1  jmcneill int
    597  1.1  jmcneill glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
    598  1.1  jmcneill {
    599  1.1  jmcneill 	int rc;
    600  1.1  jmcneill 
    601  1.1  jmcneill 	dma->dma_nsegs = 1;
    602  1.1  jmcneill 	dma->dma_size = size;
    603  1.1  jmcneill 
    604  1.1  jmcneill 	rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
    605  1.1  jmcneill 	    0, BUS_DMA_NOWAIT, &dma->dma_map);
    606  1.1  jmcneill 	if (rc != 0) {
    607  1.1  jmcneill 		printf("%s: couldn't create DMA map for %d bytes (%d)\n",
    608  1.1  jmcneill 		    sc->sc_dev.dv_xname, size, rc);
    609  1.1  jmcneill 
    610  1.1  jmcneill 		goto fail0;
    611  1.1  jmcneill 	}
    612  1.1  jmcneill 
    613  1.1  jmcneill 	rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
    614  1.1  jmcneill 	    &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
    615  1.1  jmcneill 	if (rc != 0) {
    616  1.1  jmcneill 		printf("%s: couldn't allocate DMA memory of %d bytes (%d)\n",
    617  1.1  jmcneill 		    sc->sc_dev.dv_xname, size, rc);
    618  1.1  jmcneill 
    619  1.1  jmcneill 		goto fail1;
    620  1.1  jmcneill 	}
    621  1.1  jmcneill 
    622  1.1  jmcneill 	rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
    623  1.1  jmcneill 	    &dma->dma_vaddr, BUS_DMA_NOWAIT);
    624  1.1  jmcneill 	if (rc != 0) {
    625  1.1  jmcneill 		printf("%s: couldn't map DMA memory for %d bytes (%d)\n",
    626  1.1  jmcneill 		    sc->sc_dev.dv_xname, size, rc);
    627  1.1  jmcneill 
    628  1.1  jmcneill 		goto fail2;
    629  1.1  jmcneill 	}
    630  1.1  jmcneill 
    631  1.1  jmcneill 	rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
    632  1.1  jmcneill 	    size, NULL, BUS_DMA_NOWAIT);
    633  1.1  jmcneill 	if (rc != 0) {
    634  1.1  jmcneill 		printf("%s: couldn't load DMA memory for %d bytes (%d)\n",
    635  1.1  jmcneill 		    sc->sc_dev.dv_xname, size, rc);
    636  1.1  jmcneill 
    637  1.1  jmcneill 		goto fail3;
    638  1.1  jmcneill 	}
    639  1.1  jmcneill 
    640  1.1  jmcneill 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
    641  1.1  jmcneill 
    642  1.1  jmcneill 	return 0;
    643  1.1  jmcneill 
    644  1.1  jmcneill fail3:
    645  1.1  jmcneill 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
    646  1.1  jmcneill fail2:
    647  1.1  jmcneill 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    648  1.1  jmcneill fail1:
    649  1.1  jmcneill 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    650  1.1  jmcneill fail0:
    651  1.1  jmcneill 	return rc;
    652  1.1  jmcneill }
    653  1.1  jmcneill 
    654  1.1  jmcneill void
    655  1.1  jmcneill glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    656  1.1  jmcneill {
    657  1.1  jmcneill 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    658  1.1  jmcneill 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    659  1.1  jmcneill }
    660  1.1  jmcneill 
    661  1.1  jmcneill void
    662  1.1  jmcneill glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    663  1.1  jmcneill {
    664  1.1  jmcneill 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    665  1.1  jmcneill 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    666  1.1  jmcneill }
    667  1.1  jmcneill 
    668  1.1  jmcneill void
    669  1.1  jmcneill glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    670  1.1  jmcneill {
    671  1.1  jmcneill 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
    672  1.1  jmcneill 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
    673  1.1  jmcneill 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    674  1.1  jmcneill 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    675  1.1  jmcneill }
    676