Home | History | Annotate | Line # | Download | only in pci
glxsb.c revision 1.5.4.2
      1  1.5.4.2      yamt /*	$NetBSD: glxsb.c,v 1.5.4.2 2009/05/04 08:11:17 yamt Exp $	*/
      2      1.1  jmcneill /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
      3      1.1  jmcneill 
      4      1.1  jmcneill /*
      5      1.1  jmcneill  * Copyright (c) 2006 Tom Cosgrove <tom (at) openbsd.org>
      6      1.1  jmcneill  * Copyright (c) 2003, 2004 Theo de Raadt
      7      1.1  jmcneill  * Copyright (c) 2003 Jason Wright
      8      1.1  jmcneill  *
      9      1.1  jmcneill  * Permission to use, copy, modify, and distribute this software for any
     10      1.1  jmcneill  * purpose with or without fee is hereby granted, provided that the above
     11      1.1  jmcneill  * copyright notice and this permission notice appear in all copies.
     12      1.1  jmcneill  *
     13      1.1  jmcneill  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     14      1.1  jmcneill  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     15      1.1  jmcneill  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     16      1.1  jmcneill  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     17      1.1  jmcneill  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     18      1.1  jmcneill  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     19      1.1  jmcneill  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     20      1.1  jmcneill  */
     21      1.1  jmcneill 
     22      1.1  jmcneill /*
     23      1.1  jmcneill  * Driver for the security block on the AMD Geode LX processors
     24      1.1  jmcneill  * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
     25      1.1  jmcneill  */
     26      1.1  jmcneill 
     27      1.1  jmcneill #include <sys/cdefs.h>
     28  1.5.4.2      yamt __KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.5.4.2 2009/05/04 08:11:17 yamt Exp $");
     29      1.3     lukem 
     30      1.1  jmcneill #include <sys/param.h>
     31      1.1  jmcneill #include <sys/systm.h>
     32      1.1  jmcneill #include <sys/device.h>
     33      1.1  jmcneill #include <sys/malloc.h>
     34      1.1  jmcneill #include <sys/mbuf.h>
     35      1.1  jmcneill #include <sys/types.h>
     36      1.1  jmcneill #include <sys/callout.h>
     37      1.1  jmcneill #include <sys/rnd.h>
     38      1.4        ad #include <sys/bus.h>
     39      1.1  jmcneill 
     40      1.4        ad #include <machine/cpufunc.h>
     41      1.1  jmcneill 
     42      1.1  jmcneill #include <dev/pci/pcivar.h>
     43      1.1  jmcneill #include <dev/pci/pcidevs.h>
     44      1.1  jmcneill 
     45      1.1  jmcneill #include <opencrypto/cryptodev.h>
     46      1.1  jmcneill #include <crypto/rijndael/rijndael.h>
     47      1.1  jmcneill 
     48      1.1  jmcneill #define SB_GLD_MSR_CAP		0x58002000	/* RO - Capabilities */
     49      1.1  jmcneill #define SB_GLD_MSR_CONFIG	0x58002001	/* RW - Master Config */
     50      1.1  jmcneill #define SB_GLD_MSR_SMI		0x58002002	/* RW - SMI */
     51      1.1  jmcneill #define SB_GLD_MSR_ERROR	0x58002003	/* RW - Error */
     52      1.1  jmcneill #define SB_GLD_MSR_PM		0x58002004	/* RW - Power Mgmt */
     53      1.1  jmcneill #define SB_GLD_MSR_DIAG		0x58002005	/* RW - Diagnostic */
     54      1.1  jmcneill #define SB_GLD_MSR_CTRL		0x58002006	/* RW - Security Block Cntrl */
     55      1.1  jmcneill 
     56      1.1  jmcneill 						/* For GLD_MSR_CTRL: */
     57      1.1  jmcneill #define SB_GMC_DIV0		0x0000		/* AES update divisor values */
     58      1.1  jmcneill #define SB_GMC_DIV1		0x0001
     59      1.1  jmcneill #define SB_GMC_DIV2		0x0002
     60      1.1  jmcneill #define SB_GMC_DIV3		0x0003
     61      1.1  jmcneill #define SB_GMC_DIV_MASK		0x0003
     62      1.1  jmcneill #define SB_GMC_SBI		0x0004		/* AES swap bits */
     63      1.1  jmcneill #define SB_GMC_SBY		0x0008		/* AES swap bytes */
     64      1.1  jmcneill #define SB_GMC_TW		0x0010		/* Time write (EEPROM) */
     65      1.1  jmcneill #define SB_GMC_T_SEL0		0x0000		/* RNG post-proc: none */
     66      1.1  jmcneill #define SB_GMC_T_SEL1		0x0100		/* RNG post-proc: LFSR */
     67      1.1  jmcneill #define SB_GMC_T_SEL2		0x0200		/* RNG post-proc: whitener */
     68      1.1  jmcneill #define SB_GMC_T_SEL3		0x0300		/* RNG LFSR+whitener */
     69      1.1  jmcneill #define SB_GMC_T_SEL_MASK	0x0300
     70      1.1  jmcneill #define SB_GMC_T_NE		0x0400		/* Noise (generator) Enable */
     71      1.1  jmcneill #define SB_GMC_T_TM		0x0800		/* RNG test mode */
     72      1.1  jmcneill 						/*     (deterministic) */
     73      1.1  jmcneill 
     74      1.1  jmcneill /* Security Block configuration/control registers (offsets from base) */
     75      1.1  jmcneill 
     76      1.1  jmcneill #define SB_CTL_A		0x0000		/* RW - SB Control A */
     77      1.1  jmcneill #define SB_CTL_B		0x0004		/* RW - SB Control B */
     78      1.1  jmcneill #define SB_AES_INT		0x0008		/* RW - SB AES Interrupt */
     79      1.1  jmcneill #define SB_SOURCE_A		0x0010		/* RW - Source A */
     80      1.1  jmcneill #define SB_DEST_A		0x0014		/* RW - Destination A */
     81      1.1  jmcneill #define SB_LENGTH_A		0x0018		/* RW - Length A */
     82      1.1  jmcneill #define SB_SOURCE_B		0x0020		/* RW - Source B */
     83      1.1  jmcneill #define SB_DEST_B		0x0024		/* RW - Destination B */
     84      1.1  jmcneill #define SB_LENGTH_B		0x0028		/* RW - Length B */
     85      1.1  jmcneill #define SB_WKEY			0x0030		/* WO - Writable Key 0-3 */
     86      1.1  jmcneill #define SB_WKEY_0		0x0030		/* WO - Writable Key 0 */
     87      1.1  jmcneill #define SB_WKEY_1		0x0034		/* WO - Writable Key 1 */
     88      1.1  jmcneill #define SB_WKEY_2		0x0038		/* WO - Writable Key 2 */
     89      1.1  jmcneill #define SB_WKEY_3		0x003C		/* WO - Writable Key 3 */
     90      1.1  jmcneill #define SB_CBC_IV		0x0040		/* RW - CBC IV 0-3 */
     91      1.1  jmcneill #define SB_CBC_IV_0		0x0040		/* RW - CBC IV 0 */
     92      1.1  jmcneill #define SB_CBC_IV_1		0x0044		/* RW - CBC IV 1 */
     93      1.1  jmcneill #define SB_CBC_IV_2		0x0048		/* RW - CBC IV 2 */
     94      1.1  jmcneill #define SB_CBC_IV_3		0x004C		/* RW - CBC IV 3 */
     95      1.1  jmcneill #define SB_RANDOM_NUM		0x0050		/* RW - Random Number */
     96      1.1  jmcneill #define SB_RANDOM_NUM_STATUS	0x0054		/* RW - Random Number Status */
     97      1.1  jmcneill #define SB_EEPROM_COMM		0x0800		/* RW - EEPROM Command */
     98      1.1  jmcneill #define SB_EEPROM_ADDR		0x0804		/* RW - EEPROM Address */
     99      1.1  jmcneill #define SB_EEPROM_DATA		0x0808		/* RW - EEPROM Data */
    100      1.1  jmcneill #define SB_EEPROM_SEC_STATE	0x080C		/* RW - EEPROM Security State */
    101      1.1  jmcneill 
    102      1.1  jmcneill 						/* For SB_CTL_A and _B */
    103      1.1  jmcneill #define SB_CTL_ST		0x0001		/* Start operation (enc/dec) */
    104      1.1  jmcneill #define SB_CTL_ENC		0x0002		/* Encrypt (0 is decrypt) */
    105      1.1  jmcneill #define SB_CTL_DEC		0x0000		/* Decrypt */
    106      1.1  jmcneill #define SB_CTL_WK		0x0004		/* Use writable key (we set) */
    107      1.1  jmcneill #define SB_CTL_DC		0x0008		/* Destination coherent */
    108      1.1  jmcneill #define SB_CTL_SC		0x0010		/* Source coherent */
    109      1.1  jmcneill #define SB_CTL_CBC		0x0020		/* CBC (0 is ECB) */
    110      1.1  jmcneill 
    111      1.1  jmcneill 						/* For SB_AES_INT */
    112      1.1  jmcneill #define SB_AI_DISABLE_AES_A	0x0001		/* Disable AES A compl int */
    113      1.1  jmcneill #define SB_AI_ENABLE_AES_A	0x0000		/* Enable AES A compl int */
    114      1.1  jmcneill #define SB_AI_DISABLE_AES_B	0x0002		/* Disable AES B compl int */
    115      1.1  jmcneill #define SB_AI_ENABLE_AES_B	0x0000		/* Enable AES B compl int */
    116      1.1  jmcneill #define SB_AI_DISABLE_EEPROM	0x0004		/* Disable EEPROM op comp int */
    117      1.1  jmcneill #define SB_AI_ENABLE_EEPROM	0x0000		/* Enable EEPROM op compl int */
    118      1.1  jmcneill #define SB_AI_AES_A_COMPLETE	0x0100		/* AES A operation complete */
    119      1.1  jmcneill #define SB_AI_AES_B_COMPLETE	0x0200		/* AES B operation complete */
    120      1.1  jmcneill #define SB_AI_EEPROM_COMPLETE	0x0400		/* EEPROM operation complete */
    121      1.1  jmcneill 
    122      1.1  jmcneill #define SB_RNS_TRNG_VALID	0x0001		/* in SB_RANDOM_NUM_STATUS */
    123      1.1  jmcneill 
    124      1.1  jmcneill #define SB_MEM_SIZE		0x0810		/* Size of memory block */
    125      1.1  jmcneill 
    126      1.1  jmcneill #define SB_AES_ALIGN		0x0010		/* Source and dest buffers */
    127      1.1  jmcneill 						/* must be 16-byte aligned */
    128      1.1  jmcneill #define SB_AES_BLOCK_SIZE	0x0010
    129      1.1  jmcneill 
    130      1.1  jmcneill /*
    131      1.1  jmcneill  * The Geode LX security block AES acceleration doesn't perform scatter-
    132      1.1  jmcneill  * gather: it just takes source and destination addresses.  Therefore the
    133      1.1  jmcneill  * plain- and ciphertexts need to be contiguous.  To this end, we allocate
    134      1.1  jmcneill  * a buffer for both, and accept the overhead of copying in and out.  If
    135      1.1  jmcneill  * the number of bytes in one operation is bigger than allowed for by the
    136      1.1  jmcneill  * buffer (buffer is twice the size of the max length, as it has both input
    137      1.1  jmcneill  * and output) then we have to perform multiple encryptions/decryptions.
    138      1.1  jmcneill  */
    139      1.1  jmcneill #define GLXSB_MAX_AES_LEN	16384
    140      1.1  jmcneill 
    141      1.1  jmcneill struct glxsb_dma_map {
    142      1.1  jmcneill 	bus_dmamap_t		dma_map;
    143      1.1  jmcneill 	bus_dma_segment_t	dma_seg;
    144      1.1  jmcneill 	int			dma_nsegs;
    145      1.1  jmcneill 	int			dma_size;
    146      1.1  jmcneill 	void *			dma_vaddr;
    147      1.1  jmcneill 	uint32_t		dma_paddr;
    148      1.1  jmcneill };
    149      1.1  jmcneill struct glxsb_session {
    150      1.1  jmcneill 	uint32_t	ses_key[4];
    151      1.1  jmcneill 	uint8_t		ses_iv[SB_AES_BLOCK_SIZE];
    152      1.1  jmcneill 	int		ses_klen;
    153      1.1  jmcneill 	int		ses_used;
    154      1.1  jmcneill };
    155      1.1  jmcneill 
    156      1.1  jmcneill struct glxsb_softc {
    157  1.5.4.1      yamt 	device_t		sc_dev;
    158      1.1  jmcneill 	bus_space_tag_t		sc_iot;
    159      1.1  jmcneill 	bus_space_handle_t	sc_ioh;
    160      1.1  jmcneill 	struct callout		sc_co;
    161      1.1  jmcneill 
    162      1.1  jmcneill 	bus_dma_tag_t		sc_dmat;
    163      1.1  jmcneill 	struct glxsb_dma_map	sc_dma;
    164      1.1  jmcneill 	int32_t			sc_cid;
    165      1.1  jmcneill 	int			sc_nsessions;
    166      1.1  jmcneill 	struct glxsb_session	*sc_sessions;
    167      1.1  jmcneill 
    168      1.1  jmcneill 	rndsource_element_t	sc_rnd_source;
    169      1.1  jmcneill };
    170      1.1  jmcneill 
    171  1.5.4.1      yamt int	glxsb_match(device_t, cfdata_t, void *);
    172  1.5.4.1      yamt void	glxsb_attach(device_t, device_t, void *);
    173      1.1  jmcneill void	glxsb_rnd(void *);
    174      1.1  jmcneill 
    175  1.5.4.1      yamt CFATTACH_DECL_NEW(glxsb, sizeof(struct glxsb_softc),
    176  1.5.4.1      yamt     glxsb_match, glxsb_attach, NULL, NULL);
    177      1.1  jmcneill 
    178      1.1  jmcneill #define GLXSB_SESSION(sid)		((sid) & 0x0fffffff)
    179      1.1  jmcneill #define	GLXSB_SID(crd,ses)		(((crd) << 28) | ((ses) & 0x0fffffff))
    180      1.1  jmcneill 
    181      1.1  jmcneill int glxsb_crypto_setup(struct glxsb_softc *);
    182      1.1  jmcneill int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *);
    183      1.1  jmcneill int glxsb_crypto_process(void *, struct cryptop *, int);
    184      1.1  jmcneill int glxsb_crypto_freesession(void *, uint64_t);
    185      1.1  jmcneill static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
    186      1.1  jmcneill     uint32_t, void *, int, void *);
    187      1.1  jmcneill 
    188      1.1  jmcneill int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
    189      1.1  jmcneill void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
    190      1.1  jmcneill void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
    191      1.1  jmcneill void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
    192      1.1  jmcneill 
    193      1.1  jmcneill int
    194  1.5.4.1      yamt glxsb_match(device_t parent, cfdata_t match, void *aux)
    195      1.1  jmcneill {
    196      1.1  jmcneill 	struct pci_attach_args *pa = aux;
    197      1.1  jmcneill 
    198      1.1  jmcneill 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
    199      1.1  jmcneill 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES)
    200      1.1  jmcneill 		return (1);
    201      1.1  jmcneill 
    202      1.1  jmcneill 	return (0);
    203      1.1  jmcneill }
    204      1.1  jmcneill 
    205      1.1  jmcneill void
    206  1.5.4.1      yamt glxsb_attach(device_t parent, device_t self, void *aux)
    207      1.1  jmcneill {
    208  1.5.4.1      yamt 	struct glxsb_softc *sc = device_private(self);
    209      1.1  jmcneill 	struct pci_attach_args *pa = aux;
    210      1.1  jmcneill 	bus_addr_t membase;
    211      1.1  jmcneill 	bus_size_t memsize;
    212      1.1  jmcneill 	uint64_t msr;
    213      1.1  jmcneill 	uint32_t intr;
    214      1.1  jmcneill 
    215      1.1  jmcneill 	msr = rdmsr(SB_GLD_MSR_CAP);
    216      1.1  jmcneill 	if ((msr & 0xFFFF00) != 0x130400) {
    217      1.1  jmcneill 		printf(": unknown ID 0x%x\n", (int) ((msr & 0xFFFF00) >> 16));
    218      1.1  jmcneill 		return;
    219      1.1  jmcneill 	}
    220      1.1  jmcneill 
    221      1.1  jmcneill 	/* printf(": revision %d", (int) (msr & 0xFF)); */
    222      1.1  jmcneill 
    223      1.1  jmcneill 	/* Map in the security block configuration/control registers */
    224      1.1  jmcneill 	if (pci_mapreg_map(pa, PCI_MAPREG_START,
    225      1.1  jmcneill 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
    226      1.1  jmcneill 	    &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) {
    227      1.1  jmcneill 		printf(": can't find mem space\n");
    228      1.1  jmcneill 		return;
    229      1.1  jmcneill 	}
    230      1.1  jmcneill 
    231  1.5.4.1      yamt 	sc->sc_dev = self;
    232  1.5.4.1      yamt 
    233      1.1  jmcneill 	/*
    234      1.1  jmcneill 	 * Configure the Security Block.
    235      1.1  jmcneill 	 *
    236      1.1  jmcneill 	 * We want to enable the noise generator (T_NE), and enable the
    237      1.1  jmcneill 	 * linear feedback shift register and whitener post-processing
    238      1.1  jmcneill 	 * (T_SEL = 3).  Also ensure that test mode (deterministic values)
    239      1.1  jmcneill 	 * is disabled.
    240      1.1  jmcneill 	 */
    241      1.1  jmcneill 	msr = rdmsr(SB_GLD_MSR_CTRL);
    242      1.1  jmcneill 	msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
    243      1.1  jmcneill 	msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
    244      1.1  jmcneill #if 0
    245      1.1  jmcneill 	msr |= SB_GMC_SBI | SB_GMC_SBY;		/* for AES, if necessary */
    246      1.1  jmcneill #endif
    247      1.1  jmcneill 	wrmsr(SB_GLD_MSR_CTRL, msr);
    248      1.1  jmcneill 
    249  1.5.4.1      yamt 	rnd_attach_source(&sc->sc_rnd_source, device_xname(self),
    250      1.1  jmcneill 			  RND_TYPE_RNG, RND_FLAG_NO_ESTIMATE);
    251      1.1  jmcneill 
    252      1.1  jmcneill 	/* Install a periodic collector for the "true" (AMD's word) RNG */
    253      1.2        ad 	callout_init(&sc->sc_co, 0);
    254      1.1  jmcneill 	callout_setfunc(&sc->sc_co, glxsb_rnd, sc);
    255      1.1  jmcneill 	glxsb_rnd(sc);
    256      1.1  jmcneill 	printf(": RNG");
    257      1.1  jmcneill 
    258      1.1  jmcneill 	/* We don't have an interrupt handler, so disable completion INTs */
    259      1.1  jmcneill 	intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
    260      1.1  jmcneill 	    SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
    261      1.1  jmcneill 	    SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
    262      1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
    263      1.1  jmcneill 
    264      1.1  jmcneill 	sc->sc_dmat = pa->pa_dmat;
    265      1.1  jmcneill 
    266      1.1  jmcneill 	if (glxsb_crypto_setup(sc))
    267      1.1  jmcneill 		printf(" AES");
    268      1.1  jmcneill 
    269      1.1  jmcneill 	printf("\n");
    270      1.1  jmcneill }
    271      1.1  jmcneill 
    272      1.1  jmcneill void
    273      1.1  jmcneill glxsb_rnd(void *v)
    274      1.1  jmcneill {
    275      1.1  jmcneill 	struct glxsb_softc *sc = v;
    276      1.1  jmcneill 	uint32_t status, value;
    277      1.1  jmcneill 	extern int hz;
    278      1.1  jmcneill 
    279      1.1  jmcneill 	status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
    280      1.1  jmcneill 	if (status & SB_RNS_TRNG_VALID) {
    281      1.1  jmcneill 		value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
    282      1.1  jmcneill 		rnd_add_uint32(&sc->sc_rnd_source, value);
    283      1.1  jmcneill 	}
    284      1.1  jmcneill 
    285      1.1  jmcneill 	callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1);
    286      1.1  jmcneill }
    287      1.1  jmcneill 
    288      1.1  jmcneill int
    289      1.1  jmcneill glxsb_crypto_setup(struct glxsb_softc *sc)
    290      1.1  jmcneill {
    291      1.1  jmcneill 
    292      1.1  jmcneill 	/* Allocate a contiguous DMA-able buffer to work in */
    293      1.1  jmcneill 	if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
    294      1.1  jmcneill 		return 0;
    295      1.1  jmcneill 
    296      1.1  jmcneill 	sc->sc_cid = crypto_get_driverid(0);
    297      1.1  jmcneill 	if (sc->sc_cid < 0)
    298      1.1  jmcneill 		return 0;
    299      1.1  jmcneill 
    300      1.1  jmcneill 	crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
    301      1.1  jmcneill 	    glxsb_crypto_newsession, glxsb_crypto_freesession,
    302      1.1  jmcneill 	    glxsb_crypto_process, sc);
    303      1.1  jmcneill 
    304      1.1  jmcneill 	sc->sc_nsessions = 0;
    305      1.1  jmcneill 
    306      1.1  jmcneill 	return 1;
    307      1.1  jmcneill }
    308      1.1  jmcneill 
    309      1.1  jmcneill int
    310      1.1  jmcneill glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri)
    311      1.1  jmcneill {
    312      1.1  jmcneill 	struct glxsb_softc *sc = aux;
    313      1.1  jmcneill 	struct glxsb_session *ses = NULL;
    314      1.1  jmcneill 	int sesn;
    315      1.1  jmcneill 
    316      1.1  jmcneill 	if (sc == NULL || sidp == NULL || cri == NULL ||
    317      1.1  jmcneill 	    cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC ||
    318      1.1  jmcneill 	    cri->cri_klen != 128)
    319      1.1  jmcneill 		return (EINVAL);
    320      1.1  jmcneill 
    321      1.1  jmcneill 	for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
    322      1.1  jmcneill 		if (sc->sc_sessions[sesn].ses_used == 0) {
    323      1.1  jmcneill 			ses = &sc->sc_sessions[sesn];
    324      1.1  jmcneill 			break;
    325      1.1  jmcneill 		}
    326      1.1  jmcneill 	}
    327      1.1  jmcneill 
    328      1.1  jmcneill 	if (ses == NULL) {
    329      1.1  jmcneill 		sesn = sc->sc_nsessions;
    330      1.1  jmcneill 		ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT);
    331      1.1  jmcneill 		if (ses == NULL)
    332      1.1  jmcneill 			return (ENOMEM);
    333      1.1  jmcneill 		if (sesn != 0) {
    334  1.5.4.2      yamt 			memcpy( ses, sc->sc_sessions, sesn * sizeof(*ses));
    335  1.5.4.2      yamt 			memset(sc->sc_sessions, 0, sesn * sizeof(*ses));
    336      1.1  jmcneill 			free(sc->sc_sessions, M_DEVBUF);
    337      1.1  jmcneill 		}
    338      1.1  jmcneill 		sc->sc_sessions = ses;
    339      1.1  jmcneill 		ses = &sc->sc_sessions[sesn];
    340      1.1  jmcneill 		sc->sc_nsessions++;
    341      1.1  jmcneill 	}
    342      1.1  jmcneill 
    343  1.5.4.2      yamt 	memset(ses, 0, sizeof(*ses));
    344      1.1  jmcneill 	ses->ses_used = 1;
    345      1.1  jmcneill 
    346      1.1  jmcneill 	arc4randbytes(ses->ses_iv, sizeof(ses->ses_iv));
    347      1.1  jmcneill 	ses->ses_klen = cri->cri_klen;
    348      1.1  jmcneill 
    349      1.1  jmcneill 	/* Copy the key (Geode LX wants the primary key only) */
    350  1.5.4.2      yamt 	memcpy( ses->ses_key, cri->cri_key, sizeof(ses->ses_key));
    351      1.1  jmcneill 
    352      1.1  jmcneill 	*sidp = GLXSB_SID(0, sesn);
    353      1.1  jmcneill 	return (0);
    354      1.1  jmcneill }
    355      1.1  jmcneill 
    356      1.1  jmcneill int
    357      1.1  jmcneill glxsb_crypto_freesession(void *aux, uint64_t tid)
    358      1.1  jmcneill {
    359      1.1  jmcneill 	struct glxsb_softc *sc = aux;
    360      1.1  jmcneill 	int sesn;
    361      1.1  jmcneill 	uint32_t sid = ((uint32_t)tid) & 0xffffffff;
    362      1.1  jmcneill 
    363      1.1  jmcneill 	if (sc == NULL)
    364      1.1  jmcneill 		return (EINVAL);
    365      1.1  jmcneill 	sesn = GLXSB_SESSION(sid);
    366      1.1  jmcneill 	if (sesn >= sc->sc_nsessions)
    367      1.1  jmcneill 		return (EINVAL);
    368  1.5.4.2      yamt 	memset(&sc->sc_sessions[sesn], 0, sizeof(sc->sc_sessions[sesn]));
    369      1.1  jmcneill 	return (0);
    370      1.1  jmcneill }
    371      1.1  jmcneill 
    372      1.1  jmcneill /*
    373      1.1  jmcneill  * Must be called at splnet() or higher
    374      1.1  jmcneill  */
    375      1.1  jmcneill static __inline void
    376      1.1  jmcneill glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
    377      1.1  jmcneill     uint32_t pdst, void *key, int len, void *iv)
    378      1.1  jmcneill {
    379      1.1  jmcneill 	uint32_t status;
    380      1.1  jmcneill 	int i;
    381      1.1  jmcneill 
    382      1.1  jmcneill 	if (len & 0xF) {
    383      1.1  jmcneill 		printf("%s: len must be a multiple of 16 (not %d)\n",
    384  1.5.4.1      yamt 		    device_xname(sc->sc_dev), len);
    385      1.1  jmcneill 		return;
    386      1.1  jmcneill 	}
    387      1.1  jmcneill 
    388      1.1  jmcneill 	/* Set the source */
    389      1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
    390      1.1  jmcneill 
    391      1.1  jmcneill 	/* Set the destination address */
    392      1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
    393      1.1  jmcneill 
    394      1.1  jmcneill 	/* Set the data length */
    395      1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
    396      1.1  jmcneill 
    397      1.1  jmcneill 	/* Set the IV */
    398      1.1  jmcneill 	if (iv != NULL) {
    399      1.1  jmcneill 		bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
    400      1.1  jmcneill 		    SB_CBC_IV, iv, 4);
    401      1.1  jmcneill 		control |= SB_CTL_CBC;
    402      1.1  jmcneill 	}
    403      1.1  jmcneill 
    404      1.1  jmcneill 	/* Set the key */
    405      1.1  jmcneill 	bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
    406      1.1  jmcneill 
    407      1.1  jmcneill 	/* Ask the security block to do it */
    408      1.1  jmcneill 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
    409      1.1  jmcneill 	    control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
    410      1.1  jmcneill 
    411      1.1  jmcneill 	/*
    412      1.1  jmcneill 	 * Now wait until it is done.
    413      1.1  jmcneill 	 *
    414      1.1  jmcneill 	 * We do a busy wait.  Obviously the number of iterations of
    415      1.1  jmcneill 	 * the loop required to perform the AES operation depends upon
    416      1.1  jmcneill 	 * the number of bytes to process.
    417      1.1  jmcneill 	 *
    418      1.1  jmcneill 	 * On a 500 MHz Geode LX we see
    419      1.1  jmcneill 	 *
    420      1.1  jmcneill 	 *	length (bytes)	typical max iterations
    421      1.1  jmcneill 	 *	    16		   12
    422      1.1  jmcneill 	 *	    64		   22
    423      1.1  jmcneill 	 *	   256		   59
    424      1.1  jmcneill 	 *	  1024		  212
    425      1.1  jmcneill 	 *	  8192		1,537
    426      1.1  jmcneill 	 *
    427      1.1  jmcneill 	 * Since we have a maximum size of operation defined in
    428      1.1  jmcneill 	 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
    429      1.1  jmcneill 	 * to wait.  Allow an order of magnitude longer than it should
    430      1.1  jmcneill 	 * really take, just in case.
    431      1.1  jmcneill 	 */
    432      1.1  jmcneill 	for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
    433      1.1  jmcneill 		status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
    434      1.1  jmcneill 
    435      1.1  jmcneill 		if ((status & SB_CTL_ST) == 0)		/* Done */
    436      1.1  jmcneill 			return;
    437      1.1  jmcneill 	}
    438      1.1  jmcneill 
    439  1.5.4.1      yamt 	aprint_error_dev(sc->sc_dev, "operation failed to complete\n");
    440      1.1  jmcneill }
    441      1.1  jmcneill 
    442      1.1  jmcneill int
    443      1.1  jmcneill glxsb_crypto_process(void *aux, struct cryptop *crp, int hint)
    444      1.1  jmcneill {
    445      1.1  jmcneill 	struct glxsb_softc *sc = aux;
    446      1.1  jmcneill 	struct glxsb_session *ses;
    447      1.1  jmcneill 	struct cryptodesc *crd;
    448      1.1  jmcneill 	char *op_src, *op_dst;
    449      1.1  jmcneill 	uint32_t op_psrc, op_pdst;
    450      1.1  jmcneill 	uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
    451      1.1  jmcneill 	int sesn, err = 0;
    452      1.1  jmcneill 	int len, tlen, xlen;
    453      1.1  jmcneill 	int offset;
    454      1.1  jmcneill 	uint32_t control;
    455      1.1  jmcneill 	int s;
    456      1.1  jmcneill 
    457      1.1  jmcneill 	s = splnet();
    458      1.1  jmcneill 
    459      1.1  jmcneill 	if (crp == NULL || crp->crp_callback == NULL) {
    460      1.1  jmcneill 		err = EINVAL;
    461      1.1  jmcneill 		goto out;
    462      1.1  jmcneill 	}
    463      1.1  jmcneill 	crd = crp->crp_desc;
    464      1.1  jmcneill 	if (crd == NULL || crd->crd_next != NULL ||
    465      1.1  jmcneill 	    crd->crd_alg != CRYPTO_AES_CBC ||
    466      1.1  jmcneill 	    (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
    467      1.1  jmcneill 		err = EINVAL;
    468      1.1  jmcneill 		goto out;
    469      1.1  jmcneill 	}
    470      1.1  jmcneill 
    471      1.1  jmcneill 	sesn = GLXSB_SESSION(crp->crp_sid);
    472      1.1  jmcneill 	if (sesn >= sc->sc_nsessions) {
    473      1.1  jmcneill 		err = EINVAL;
    474      1.1  jmcneill 		goto out;
    475      1.1  jmcneill 	}
    476      1.1  jmcneill 	ses = &sc->sc_sessions[sesn];
    477      1.1  jmcneill 
    478      1.1  jmcneill 	/* How much of our buffer will we need to use? */
    479      1.1  jmcneill 	xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
    480      1.1  jmcneill 	    GLXSB_MAX_AES_LEN : crd->crd_len;
    481      1.1  jmcneill 
    482      1.1  jmcneill 	/*
    483      1.1  jmcneill 	 * XXX Check if we can have input == output on Geode LX.
    484      1.1  jmcneill 	 * XXX In the meantime, use two separate (adjacent) buffers.
    485      1.1  jmcneill 	 */
    486      1.1  jmcneill 	op_src = sc->sc_dma.dma_vaddr;
    487      1.1  jmcneill 	op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
    488      1.1  jmcneill 
    489      1.1  jmcneill 	op_psrc = sc->sc_dma.dma_paddr;
    490      1.1  jmcneill 	op_pdst = sc->sc_dma.dma_paddr + xlen;
    491      1.1  jmcneill 
    492      1.1  jmcneill 	if (crd->crd_flags & CRD_F_ENCRYPT) {
    493      1.1  jmcneill 		control = SB_CTL_ENC;
    494      1.1  jmcneill 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    495  1.5.4.2      yamt 			memcpy( op_iv, crd->crd_iv, sizeof(op_iv));
    496      1.1  jmcneill 		else
    497  1.5.4.2      yamt 			memcpy( op_iv, ses->ses_iv, sizeof(op_iv));
    498      1.1  jmcneill 
    499      1.1  jmcneill 		if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
    500      1.1  jmcneill 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    501      1.1  jmcneill 				m_copyback((struct mbuf *)crp->crp_buf,
    502      1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    503      1.1  jmcneill 			else if (crp->crp_flags & CRYPTO_F_IOV)
    504      1.1  jmcneill 				cuio_copyback((struct uio *)crp->crp_buf,
    505      1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    506      1.1  jmcneill 			else
    507      1.1  jmcneill 				bcopy(op_iv,
    508      1.1  jmcneill 				    (char *)crp->crp_buf + crd->crd_inject,
    509      1.1  jmcneill 				    sizeof(op_iv));
    510      1.1  jmcneill 		}
    511      1.1  jmcneill 	} else {
    512      1.1  jmcneill 		control = SB_CTL_DEC;
    513      1.1  jmcneill 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    514  1.5.4.2      yamt 			memcpy( op_iv, crd->crd_iv, sizeof(op_iv));
    515      1.1  jmcneill 		else {
    516      1.1  jmcneill 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    517      1.1  jmcneill 				m_copydata((struct mbuf *)crp->crp_buf,
    518      1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    519      1.1  jmcneill 			else if (crp->crp_flags & CRYPTO_F_IOV)
    520      1.1  jmcneill 				cuio_copydata((struct uio *)crp->crp_buf,
    521      1.1  jmcneill 				    crd->crd_inject, sizeof(op_iv), op_iv);
    522      1.1  jmcneill 			else
    523      1.1  jmcneill 				bcopy((char *)crp->crp_buf + crd->crd_inject,
    524      1.1  jmcneill 				    op_iv, sizeof(op_iv));
    525      1.1  jmcneill 		}
    526      1.1  jmcneill 	}
    527      1.1  jmcneill 
    528      1.1  jmcneill 	offset = 0;
    529      1.1  jmcneill 	tlen = crd->crd_len;
    530      1.1  jmcneill 	piv = op_iv;
    531      1.1  jmcneill 
    532      1.1  jmcneill 	/* Process the data in GLXSB_MAX_AES_LEN chunks */
    533      1.1  jmcneill 	while (tlen > 0) {
    534      1.1  jmcneill 		len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
    535      1.1  jmcneill 
    536      1.1  jmcneill 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    537      1.1  jmcneill 			m_copydata((struct mbuf *)crp->crp_buf,
    538      1.1  jmcneill 			    crd->crd_skip + offset, len, op_src);
    539      1.1  jmcneill 		else if (crp->crp_flags & CRYPTO_F_IOV)
    540      1.1  jmcneill 			cuio_copydata((struct uio *)crp->crp_buf,
    541      1.1  jmcneill 			    crd->crd_skip + offset, len, op_src);
    542      1.1  jmcneill 		else
    543      1.1  jmcneill 			bcopy((char *)crp->crp_buf + crd->crd_skip + offset,
    544      1.1  jmcneill 			    op_src, len);
    545      1.1  jmcneill 
    546      1.1  jmcneill 		glxsb_dma_pre_op(sc, &sc->sc_dma);
    547      1.1  jmcneill 
    548      1.1  jmcneill 		glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
    549      1.1  jmcneill 		    len, op_iv);
    550      1.1  jmcneill 
    551      1.1  jmcneill 		glxsb_dma_post_op(sc, &sc->sc_dma);
    552      1.1  jmcneill 
    553      1.1  jmcneill 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    554      1.1  jmcneill 			m_copyback((struct mbuf *)crp->crp_buf,
    555      1.1  jmcneill 			    crd->crd_skip + offset, len, op_dst);
    556      1.1  jmcneill 		else if (crp->crp_flags & CRYPTO_F_IOV)
    557      1.1  jmcneill 			cuio_copyback((struct uio *)crp->crp_buf,
    558      1.1  jmcneill 			    crd->crd_skip + offset, len, op_dst);
    559      1.1  jmcneill 		else
    560  1.5.4.2      yamt 			memcpy( (char *)crp->crp_buf + crd->crd_skip + offset, op_dst,
    561      1.1  jmcneill 			    len);
    562      1.1  jmcneill 
    563      1.1  jmcneill 		offset += len;
    564      1.1  jmcneill 		tlen -= len;
    565      1.1  jmcneill 
    566      1.1  jmcneill 		if (tlen <= 0) {	/* Ideally, just == 0 */
    567      1.1  jmcneill 			/* Finished - put the IV in session IV */
    568      1.1  jmcneill 			piv = ses->ses_iv;
    569      1.1  jmcneill 		}
    570      1.1  jmcneill 
    571      1.1  jmcneill 		/*
    572      1.1  jmcneill 		 * Copy out last block for use as next iteration/session IV.
    573      1.1  jmcneill 		 *
    574      1.1  jmcneill 		 * piv is set to op_iv[] before the loop starts, but is
    575      1.1  jmcneill 		 * set to ses->ses_iv if we're going to exit the loop this
    576      1.1  jmcneill 		 * time.
    577      1.1  jmcneill 		 */
    578      1.1  jmcneill 		if (crd->crd_flags & CRD_F_ENCRYPT) {
    579  1.5.4.2      yamt 			memcpy( piv, op_dst + len - sizeof(op_iv), sizeof(op_iv));
    580      1.1  jmcneill 		} else {
    581      1.1  jmcneill 			/* Decryption, only need this if another iteration */
    582      1.1  jmcneill 			if (tlen > 0) {
    583  1.5.4.2      yamt 				memcpy( piv, op_src + len - sizeof(op_iv),
    584      1.1  jmcneill 				    sizeof(op_iv));
    585      1.1  jmcneill 			}
    586      1.1  jmcneill 		}
    587      1.1  jmcneill 	}
    588      1.1  jmcneill 
    589      1.1  jmcneill 	/* All AES processing has now been done. */
    590      1.1  jmcneill 
    591  1.5.4.2      yamt 	memset(sc->sc_dma.dma_vaddr, 0, xlen * 2);
    592      1.1  jmcneill out:
    593      1.1  jmcneill 	crp->crp_etype = err;
    594      1.1  jmcneill 	crypto_done(crp);
    595      1.1  jmcneill 	splx(s);
    596      1.1  jmcneill 	return (err);
    597      1.1  jmcneill }
    598      1.1  jmcneill 
    599      1.1  jmcneill int
    600      1.1  jmcneill glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
    601      1.1  jmcneill {
    602      1.1  jmcneill 	int rc;
    603      1.1  jmcneill 
    604      1.1  jmcneill 	dma->dma_nsegs = 1;
    605      1.1  jmcneill 	dma->dma_size = size;
    606      1.1  jmcneill 
    607      1.1  jmcneill 	rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
    608      1.1  jmcneill 	    0, BUS_DMA_NOWAIT, &dma->dma_map);
    609      1.1  jmcneill 	if (rc != 0) {
    610  1.5.4.1      yamt 		aprint_error_dev(sc->sc_dev, "couldn't create DMA map for %d bytes (%d)\n",
    611      1.5    cegger 		    size, rc);
    612      1.1  jmcneill 
    613      1.1  jmcneill 		goto fail0;
    614      1.1  jmcneill 	}
    615      1.1  jmcneill 
    616      1.1  jmcneill 	rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
    617      1.1  jmcneill 	    &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
    618      1.1  jmcneill 	if (rc != 0) {
    619  1.5.4.1      yamt 		aprint_error_dev(sc->sc_dev, "couldn't allocate DMA memory of %d bytes (%d)\n",
    620      1.5    cegger 		    size, rc);
    621      1.1  jmcneill 
    622      1.1  jmcneill 		goto fail1;
    623      1.1  jmcneill 	}
    624      1.1  jmcneill 
    625      1.1  jmcneill 	rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
    626      1.1  jmcneill 	    &dma->dma_vaddr, BUS_DMA_NOWAIT);
    627      1.1  jmcneill 	if (rc != 0) {
    628  1.5.4.1      yamt 		aprint_error_dev(sc->sc_dev, "couldn't map DMA memory for %d bytes (%d)\n",
    629      1.5    cegger 		    size, rc);
    630      1.1  jmcneill 
    631      1.1  jmcneill 		goto fail2;
    632      1.1  jmcneill 	}
    633      1.1  jmcneill 
    634      1.1  jmcneill 	rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
    635      1.1  jmcneill 	    size, NULL, BUS_DMA_NOWAIT);
    636      1.1  jmcneill 	if (rc != 0) {
    637  1.5.4.1      yamt 		aprint_error_dev(sc->sc_dev, "couldn't load DMA memory for %d bytes (%d)\n",
    638      1.5    cegger 		    size, rc);
    639      1.1  jmcneill 
    640      1.1  jmcneill 		goto fail3;
    641      1.1  jmcneill 	}
    642      1.1  jmcneill 
    643      1.1  jmcneill 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
    644      1.1  jmcneill 
    645      1.1  jmcneill 	return 0;
    646      1.1  jmcneill 
    647      1.1  jmcneill fail3:
    648      1.1  jmcneill 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
    649      1.1  jmcneill fail2:
    650      1.1  jmcneill 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    651      1.1  jmcneill fail1:
    652      1.1  jmcneill 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    653      1.1  jmcneill fail0:
    654      1.1  jmcneill 	return rc;
    655      1.1  jmcneill }
    656      1.1  jmcneill 
    657      1.1  jmcneill void
    658      1.1  jmcneill glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    659      1.1  jmcneill {
    660      1.1  jmcneill 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    661      1.1  jmcneill 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    662      1.1  jmcneill }
    663      1.1  jmcneill 
    664      1.1  jmcneill void
    665      1.1  jmcneill glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    666      1.1  jmcneill {
    667      1.1  jmcneill 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    668      1.1  jmcneill 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    669      1.1  jmcneill }
    670      1.1  jmcneill 
    671      1.1  jmcneill void
    672      1.1  jmcneill glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    673      1.1  jmcneill {
    674      1.1  jmcneill 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
    675      1.1  jmcneill 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
    676      1.1  jmcneill 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    677      1.1  jmcneill 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    678      1.1  jmcneill }
    679