glxsb.c revision 1.1 1 /* $NetBSD: glxsb.c,v 1.1 2007/06/15 23:02:20 jmcneill Exp $ */
2 /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
3
4 /*
5 * Copyright (c) 2006 Tom Cosgrove <tom (at) openbsd.org>
6 * Copyright (c) 2003, 2004 Theo de Raadt
7 * Copyright (c) 2003 Jason Wright
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*
23 * Driver for the security block on the AMD Geode LX processors
24 * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
25 */
26
27 #include <sys/cdefs.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/device.h>
31 #include <sys/malloc.h>
32 #include <sys/mbuf.h>
33 #include <sys/types.h>
34 #include <sys/callout.h>
35 #include <sys/rnd.h>
36
37 #include <machine/bus.h>
38
39 #include <dev/pci/pcivar.h>
40 #include <dev/pci/pcidevs.h>
41
42 #include <opencrypto/cryptodev.h>
43 #include <crypto/rijndael/rijndael.h>
44
45 #define SB_GLD_MSR_CAP 0x58002000 /* RO - Capabilities */
46 #define SB_GLD_MSR_CONFIG 0x58002001 /* RW - Master Config */
47 #define SB_GLD_MSR_SMI 0x58002002 /* RW - SMI */
48 #define SB_GLD_MSR_ERROR 0x58002003 /* RW - Error */
49 #define SB_GLD_MSR_PM 0x58002004 /* RW - Power Mgmt */
50 #define SB_GLD_MSR_DIAG 0x58002005 /* RW - Diagnostic */
51 #define SB_GLD_MSR_CTRL 0x58002006 /* RW - Security Block Cntrl */
52
53 /* For GLD_MSR_CTRL: */
54 #define SB_GMC_DIV0 0x0000 /* AES update divisor values */
55 #define SB_GMC_DIV1 0x0001
56 #define SB_GMC_DIV2 0x0002
57 #define SB_GMC_DIV3 0x0003
58 #define SB_GMC_DIV_MASK 0x0003
59 #define SB_GMC_SBI 0x0004 /* AES swap bits */
60 #define SB_GMC_SBY 0x0008 /* AES swap bytes */
61 #define SB_GMC_TW 0x0010 /* Time write (EEPROM) */
62 #define SB_GMC_T_SEL0 0x0000 /* RNG post-proc: none */
63 #define SB_GMC_T_SEL1 0x0100 /* RNG post-proc: LFSR */
64 #define SB_GMC_T_SEL2 0x0200 /* RNG post-proc: whitener */
65 #define SB_GMC_T_SEL3 0x0300 /* RNG LFSR+whitener */
66 #define SB_GMC_T_SEL_MASK 0x0300
67 #define SB_GMC_T_NE 0x0400 /* Noise (generator) Enable */
68 #define SB_GMC_T_TM 0x0800 /* RNG test mode */
69 /* (deterministic) */
70
71 /* Security Block configuration/control registers (offsets from base) */
72
73 #define SB_CTL_A 0x0000 /* RW - SB Control A */
74 #define SB_CTL_B 0x0004 /* RW - SB Control B */
75 #define SB_AES_INT 0x0008 /* RW - SB AES Interrupt */
76 #define SB_SOURCE_A 0x0010 /* RW - Source A */
77 #define SB_DEST_A 0x0014 /* RW - Destination A */
78 #define SB_LENGTH_A 0x0018 /* RW - Length A */
79 #define SB_SOURCE_B 0x0020 /* RW - Source B */
80 #define SB_DEST_B 0x0024 /* RW - Destination B */
81 #define SB_LENGTH_B 0x0028 /* RW - Length B */
82 #define SB_WKEY 0x0030 /* WO - Writable Key 0-3 */
83 #define SB_WKEY_0 0x0030 /* WO - Writable Key 0 */
84 #define SB_WKEY_1 0x0034 /* WO - Writable Key 1 */
85 #define SB_WKEY_2 0x0038 /* WO - Writable Key 2 */
86 #define SB_WKEY_3 0x003C /* WO - Writable Key 3 */
87 #define SB_CBC_IV 0x0040 /* RW - CBC IV 0-3 */
88 #define SB_CBC_IV_0 0x0040 /* RW - CBC IV 0 */
89 #define SB_CBC_IV_1 0x0044 /* RW - CBC IV 1 */
90 #define SB_CBC_IV_2 0x0048 /* RW - CBC IV 2 */
91 #define SB_CBC_IV_3 0x004C /* RW - CBC IV 3 */
92 #define SB_RANDOM_NUM 0x0050 /* RW - Random Number */
93 #define SB_RANDOM_NUM_STATUS 0x0054 /* RW - Random Number Status */
94 #define SB_EEPROM_COMM 0x0800 /* RW - EEPROM Command */
95 #define SB_EEPROM_ADDR 0x0804 /* RW - EEPROM Address */
96 #define SB_EEPROM_DATA 0x0808 /* RW - EEPROM Data */
97 #define SB_EEPROM_SEC_STATE 0x080C /* RW - EEPROM Security State */
98
99 /* For SB_CTL_A and _B */
100 #define SB_CTL_ST 0x0001 /* Start operation (enc/dec) */
101 #define SB_CTL_ENC 0x0002 /* Encrypt (0 is decrypt) */
102 #define SB_CTL_DEC 0x0000 /* Decrypt */
103 #define SB_CTL_WK 0x0004 /* Use writable key (we set) */
104 #define SB_CTL_DC 0x0008 /* Destination coherent */
105 #define SB_CTL_SC 0x0010 /* Source coherent */
106 #define SB_CTL_CBC 0x0020 /* CBC (0 is ECB) */
107
108 /* For SB_AES_INT */
109 #define SB_AI_DISABLE_AES_A 0x0001 /* Disable AES A compl int */
110 #define SB_AI_ENABLE_AES_A 0x0000 /* Enable AES A compl int */
111 #define SB_AI_DISABLE_AES_B 0x0002 /* Disable AES B compl int */
112 #define SB_AI_ENABLE_AES_B 0x0000 /* Enable AES B compl int */
113 #define SB_AI_DISABLE_EEPROM 0x0004 /* Disable EEPROM op comp int */
114 #define SB_AI_ENABLE_EEPROM 0x0000 /* Enable EEPROM op compl int */
115 #define SB_AI_AES_A_COMPLETE 0x0100 /* AES A operation complete */
116 #define SB_AI_AES_B_COMPLETE 0x0200 /* AES B operation complete */
117 #define SB_AI_EEPROM_COMPLETE 0x0400 /* EEPROM operation complete */
118
119 #define SB_RNS_TRNG_VALID 0x0001 /* in SB_RANDOM_NUM_STATUS */
120
121 #define SB_MEM_SIZE 0x0810 /* Size of memory block */
122
123 #define SB_AES_ALIGN 0x0010 /* Source and dest buffers */
124 /* must be 16-byte aligned */
125 #define SB_AES_BLOCK_SIZE 0x0010
126
127 /*
128 * The Geode LX security block AES acceleration doesn't perform scatter-
129 * gather: it just takes source and destination addresses. Therefore the
130 * plain- and ciphertexts need to be contiguous. To this end, we allocate
131 * a buffer for both, and accept the overhead of copying in and out. If
132 * the number of bytes in one operation is bigger than allowed for by the
133 * buffer (buffer is twice the size of the max length, as it has both input
134 * and output) then we have to perform multiple encryptions/decryptions.
135 */
136 #define GLXSB_MAX_AES_LEN 16384
137
138 struct glxsb_dma_map {
139 bus_dmamap_t dma_map;
140 bus_dma_segment_t dma_seg;
141 int dma_nsegs;
142 int dma_size;
143 void * dma_vaddr;
144 uint32_t dma_paddr;
145 };
146 struct glxsb_session {
147 uint32_t ses_key[4];
148 uint8_t ses_iv[SB_AES_BLOCK_SIZE];
149 int ses_klen;
150 int ses_used;
151 };
152
153 struct glxsb_softc {
154 struct device sc_dev;
155 bus_space_tag_t sc_iot;
156 bus_space_handle_t sc_ioh;
157 struct callout sc_co;
158
159 bus_dma_tag_t sc_dmat;
160 struct glxsb_dma_map sc_dma;
161 int32_t sc_cid;
162 int sc_nsessions;
163 struct glxsb_session *sc_sessions;
164
165 rndsource_element_t sc_rnd_source;
166 };
167
168 int glxsb_match(struct device *, struct cfdata *, void *);
169 void glxsb_attach(struct device *, struct device *, void *);
170 void glxsb_rnd(void *);
171
172 CFATTACH_DECL(glxsb, sizeof(struct glxsb_softc), glxsb_match, glxsb_attach,
173 NULL, NULL);
174
175 #define GLXSB_SESSION(sid) ((sid) & 0x0fffffff)
176 #define GLXSB_SID(crd,ses) (((crd) << 28) | ((ses) & 0x0fffffff))
177
178 int glxsb_crypto_setup(struct glxsb_softc *);
179 int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *);
180 int glxsb_crypto_process(void *, struct cryptop *, int);
181 int glxsb_crypto_freesession(void *, uint64_t);
182 static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
183 uint32_t, void *, int, void *);
184
185 int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
186 void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
187 void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
188 void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
189
190 int
191 glxsb_match(struct device *parent, struct cfdata *match, void *aux)
192 {
193 struct pci_attach_args *pa = aux;
194
195 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
196 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES)
197 return (1);
198
199 return (0);
200 }
201
202 void
203 glxsb_attach(struct device *parent, struct device *self, void *aux)
204 {
205 struct glxsb_softc *sc = (void *) self;
206 struct pci_attach_args *pa = aux;
207 bus_addr_t membase;
208 bus_size_t memsize;
209 uint64_t msr;
210 uint32_t intr;
211
212 msr = rdmsr(SB_GLD_MSR_CAP);
213 if ((msr & 0xFFFF00) != 0x130400) {
214 printf(": unknown ID 0x%x\n", (int) ((msr & 0xFFFF00) >> 16));
215 return;
216 }
217
218 /* printf(": revision %d", (int) (msr & 0xFF)); */
219
220 /* Map in the security block configuration/control registers */
221 if (pci_mapreg_map(pa, PCI_MAPREG_START,
222 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
223 &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) {
224 printf(": can't find mem space\n");
225 return;
226 }
227
228 /*
229 * Configure the Security Block.
230 *
231 * We want to enable the noise generator (T_NE), and enable the
232 * linear feedback shift register and whitener post-processing
233 * (T_SEL = 3). Also ensure that test mode (deterministic values)
234 * is disabled.
235 */
236 msr = rdmsr(SB_GLD_MSR_CTRL);
237 msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
238 msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
239 #if 0
240 msr |= SB_GMC_SBI | SB_GMC_SBY; /* for AES, if necessary */
241 #endif
242 wrmsr(SB_GLD_MSR_CTRL, msr);
243
244 rnd_attach_source(&sc->sc_rnd_source, sc->sc_dev.dv_xname,
245 RND_TYPE_RNG, RND_FLAG_NO_ESTIMATE);
246
247 /* Install a periodic collector for the "true" (AMD's word) RNG */
248 callout_init(&sc->sc_co);
249 callout_setfunc(&sc->sc_co, glxsb_rnd, sc);
250 glxsb_rnd(sc);
251 printf(": RNG");
252
253 /* We don't have an interrupt handler, so disable completion INTs */
254 intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
255 SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
256 SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
257 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
258
259 sc->sc_dmat = pa->pa_dmat;
260
261 if (glxsb_crypto_setup(sc))
262 printf(" AES");
263
264 printf("\n");
265 }
266
267 void
268 glxsb_rnd(void *v)
269 {
270 struct glxsb_softc *sc = v;
271 uint32_t status, value;
272 extern int hz;
273
274 status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
275 if (status & SB_RNS_TRNG_VALID) {
276 value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
277 rnd_add_uint32(&sc->sc_rnd_source, value);
278 }
279
280 callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1);
281 }
282
283 int
284 glxsb_crypto_setup(struct glxsb_softc *sc)
285 {
286
287 /* Allocate a contiguous DMA-able buffer to work in */
288 if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
289 return 0;
290
291 sc->sc_cid = crypto_get_driverid(0);
292 if (sc->sc_cid < 0)
293 return 0;
294
295 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
296 glxsb_crypto_newsession, glxsb_crypto_freesession,
297 glxsb_crypto_process, sc);
298
299 sc->sc_nsessions = 0;
300
301 return 1;
302 }
303
304 int
305 glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri)
306 {
307 struct glxsb_softc *sc = aux;
308 struct glxsb_session *ses = NULL;
309 int sesn;
310
311 if (sc == NULL || sidp == NULL || cri == NULL ||
312 cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC ||
313 cri->cri_klen != 128)
314 return (EINVAL);
315
316 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
317 if (sc->sc_sessions[sesn].ses_used == 0) {
318 ses = &sc->sc_sessions[sesn];
319 break;
320 }
321 }
322
323 if (ses == NULL) {
324 sesn = sc->sc_nsessions;
325 ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT);
326 if (ses == NULL)
327 return (ENOMEM);
328 if (sesn != 0) {
329 bcopy(sc->sc_sessions, ses, sesn * sizeof(*ses));
330 bzero(sc->sc_sessions, sesn * sizeof(*ses));
331 free(sc->sc_sessions, M_DEVBUF);
332 }
333 sc->sc_sessions = ses;
334 ses = &sc->sc_sessions[sesn];
335 sc->sc_nsessions++;
336 }
337
338 bzero(ses, sizeof(*ses));
339 ses->ses_used = 1;
340
341 arc4randbytes(ses->ses_iv, sizeof(ses->ses_iv));
342 ses->ses_klen = cri->cri_klen;
343
344 /* Copy the key (Geode LX wants the primary key only) */
345 bcopy(cri->cri_key, ses->ses_key, sizeof(ses->ses_key));
346
347 *sidp = GLXSB_SID(0, sesn);
348 return (0);
349 }
350
351 int
352 glxsb_crypto_freesession(void *aux, uint64_t tid)
353 {
354 struct glxsb_softc *sc = aux;
355 int sesn;
356 uint32_t sid = ((uint32_t)tid) & 0xffffffff;
357
358 if (sc == NULL)
359 return (EINVAL);
360 sesn = GLXSB_SESSION(sid);
361 if (sesn >= sc->sc_nsessions)
362 return (EINVAL);
363 bzero(&sc->sc_sessions[sesn], sizeof(sc->sc_sessions[sesn]));
364 return (0);
365 }
366
367 /*
368 * Must be called at splnet() or higher
369 */
370 static __inline void
371 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
372 uint32_t pdst, void *key, int len, void *iv)
373 {
374 uint32_t status;
375 int i;
376
377 if (len & 0xF) {
378 printf("%s: len must be a multiple of 16 (not %d)\n",
379 sc->sc_dev.dv_xname, len);
380 return;
381 }
382
383 /* Set the source */
384 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
385
386 /* Set the destination address */
387 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
388
389 /* Set the data length */
390 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
391
392 /* Set the IV */
393 if (iv != NULL) {
394 bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
395 SB_CBC_IV, iv, 4);
396 control |= SB_CTL_CBC;
397 }
398
399 /* Set the key */
400 bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
401
402 /* Ask the security block to do it */
403 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
404 control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
405
406 /*
407 * Now wait until it is done.
408 *
409 * We do a busy wait. Obviously the number of iterations of
410 * the loop required to perform the AES operation depends upon
411 * the number of bytes to process.
412 *
413 * On a 500 MHz Geode LX we see
414 *
415 * length (bytes) typical max iterations
416 * 16 12
417 * 64 22
418 * 256 59
419 * 1024 212
420 * 8192 1,537
421 *
422 * Since we have a maximum size of operation defined in
423 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
424 * to wait. Allow an order of magnitude longer than it should
425 * really take, just in case.
426 */
427 for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
428 status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
429
430 if ((status & SB_CTL_ST) == 0) /* Done */
431 return;
432 }
433
434 printf("%s: operation failed to complete\n", sc->sc_dev.dv_xname);
435 }
436
437 int
438 glxsb_crypto_process(void *aux, struct cryptop *crp, int hint)
439 {
440 struct glxsb_softc *sc = aux;
441 struct glxsb_session *ses;
442 struct cryptodesc *crd;
443 char *op_src, *op_dst;
444 uint32_t op_psrc, op_pdst;
445 uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
446 int sesn, err = 0;
447 int len, tlen, xlen;
448 int offset;
449 uint32_t control;
450 int s;
451
452 s = splnet();
453
454 if (crp == NULL || crp->crp_callback == NULL) {
455 err = EINVAL;
456 goto out;
457 }
458 crd = crp->crp_desc;
459 if (crd == NULL || crd->crd_next != NULL ||
460 crd->crd_alg != CRYPTO_AES_CBC ||
461 (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
462 err = EINVAL;
463 goto out;
464 }
465
466 sesn = GLXSB_SESSION(crp->crp_sid);
467 if (sesn >= sc->sc_nsessions) {
468 err = EINVAL;
469 goto out;
470 }
471 ses = &sc->sc_sessions[sesn];
472
473 /* How much of our buffer will we need to use? */
474 xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
475 GLXSB_MAX_AES_LEN : crd->crd_len;
476
477 /*
478 * XXX Check if we can have input == output on Geode LX.
479 * XXX In the meantime, use two separate (adjacent) buffers.
480 */
481 op_src = sc->sc_dma.dma_vaddr;
482 op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
483
484 op_psrc = sc->sc_dma.dma_paddr;
485 op_pdst = sc->sc_dma.dma_paddr + xlen;
486
487 if (crd->crd_flags & CRD_F_ENCRYPT) {
488 control = SB_CTL_ENC;
489 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
490 bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
491 else
492 bcopy(ses->ses_iv, op_iv, sizeof(op_iv));
493
494 if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
495 if (crp->crp_flags & CRYPTO_F_IMBUF)
496 m_copyback((struct mbuf *)crp->crp_buf,
497 crd->crd_inject, sizeof(op_iv), op_iv);
498 else if (crp->crp_flags & CRYPTO_F_IOV)
499 cuio_copyback((struct uio *)crp->crp_buf,
500 crd->crd_inject, sizeof(op_iv), op_iv);
501 else
502 bcopy(op_iv,
503 (char *)crp->crp_buf + crd->crd_inject,
504 sizeof(op_iv));
505 }
506 } else {
507 control = SB_CTL_DEC;
508 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
509 bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
510 else {
511 if (crp->crp_flags & CRYPTO_F_IMBUF)
512 m_copydata((struct mbuf *)crp->crp_buf,
513 crd->crd_inject, sizeof(op_iv), op_iv);
514 else if (crp->crp_flags & CRYPTO_F_IOV)
515 cuio_copydata((struct uio *)crp->crp_buf,
516 crd->crd_inject, sizeof(op_iv), op_iv);
517 else
518 bcopy((char *)crp->crp_buf + crd->crd_inject,
519 op_iv, sizeof(op_iv));
520 }
521 }
522
523 offset = 0;
524 tlen = crd->crd_len;
525 piv = op_iv;
526
527 /* Process the data in GLXSB_MAX_AES_LEN chunks */
528 while (tlen > 0) {
529 len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
530
531 if (crp->crp_flags & CRYPTO_F_IMBUF)
532 m_copydata((struct mbuf *)crp->crp_buf,
533 crd->crd_skip + offset, len, op_src);
534 else if (crp->crp_flags & CRYPTO_F_IOV)
535 cuio_copydata((struct uio *)crp->crp_buf,
536 crd->crd_skip + offset, len, op_src);
537 else
538 bcopy((char *)crp->crp_buf + crd->crd_skip + offset,
539 op_src, len);
540
541 glxsb_dma_pre_op(sc, &sc->sc_dma);
542
543 glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
544 len, op_iv);
545
546 glxsb_dma_post_op(sc, &sc->sc_dma);
547
548 if (crp->crp_flags & CRYPTO_F_IMBUF)
549 m_copyback((struct mbuf *)crp->crp_buf,
550 crd->crd_skip + offset, len, op_dst);
551 else if (crp->crp_flags & CRYPTO_F_IOV)
552 cuio_copyback((struct uio *)crp->crp_buf,
553 crd->crd_skip + offset, len, op_dst);
554 else
555 bcopy(op_dst, (char *)crp->crp_buf + crd->crd_skip + offset,
556 len);
557
558 offset += len;
559 tlen -= len;
560
561 if (tlen <= 0) { /* Ideally, just == 0 */
562 /* Finished - put the IV in session IV */
563 piv = ses->ses_iv;
564 }
565
566 /*
567 * Copy out last block for use as next iteration/session IV.
568 *
569 * piv is set to op_iv[] before the loop starts, but is
570 * set to ses->ses_iv if we're going to exit the loop this
571 * time.
572 */
573 if (crd->crd_flags & CRD_F_ENCRYPT) {
574 bcopy(op_dst + len - sizeof(op_iv), piv, sizeof(op_iv));
575 } else {
576 /* Decryption, only need this if another iteration */
577 if (tlen > 0) {
578 bcopy(op_src + len - sizeof(op_iv), piv,
579 sizeof(op_iv));
580 }
581 }
582 }
583
584 /* All AES processing has now been done. */
585
586 bzero(sc->sc_dma.dma_vaddr, xlen * 2);
587 out:
588 crp->crp_etype = err;
589 crypto_done(crp);
590 splx(s);
591 return (err);
592 }
593
594 int
595 glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
596 {
597 int rc;
598
599 dma->dma_nsegs = 1;
600 dma->dma_size = size;
601
602 rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
603 0, BUS_DMA_NOWAIT, &dma->dma_map);
604 if (rc != 0) {
605 printf("%s: couldn't create DMA map for %d bytes (%d)\n",
606 sc->sc_dev.dv_xname, size, rc);
607
608 goto fail0;
609 }
610
611 rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
612 &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
613 if (rc != 0) {
614 printf("%s: couldn't allocate DMA memory of %d bytes (%d)\n",
615 sc->sc_dev.dv_xname, size, rc);
616
617 goto fail1;
618 }
619
620 rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
621 &dma->dma_vaddr, BUS_DMA_NOWAIT);
622 if (rc != 0) {
623 printf("%s: couldn't map DMA memory for %d bytes (%d)\n",
624 sc->sc_dev.dv_xname, size, rc);
625
626 goto fail2;
627 }
628
629 rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
630 size, NULL, BUS_DMA_NOWAIT);
631 if (rc != 0) {
632 printf("%s: couldn't load DMA memory for %d bytes (%d)\n",
633 sc->sc_dev.dv_xname, size, rc);
634
635 goto fail3;
636 }
637
638 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
639
640 return 0;
641
642 fail3:
643 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
644 fail2:
645 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
646 fail1:
647 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
648 fail0:
649 return rc;
650 }
651
652 void
653 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
654 {
655 bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
656 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
657 }
658
659 void
660 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
661 {
662 bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
663 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
664 }
665
666 void
667 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
668 {
669 bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
670 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
671 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
672 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
673 }
674