Home | History | Annotate | Line # | Download | only in pci
glxsb.c revision 1.1
      1 /* $NetBSD: glxsb.c,v 1.1 2007/06/15 23:02:20 jmcneill Exp $ */
      2 /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2006 Tom Cosgrove <tom (at) openbsd.org>
      6  * Copyright (c) 2003, 2004 Theo de Raadt
      7  * Copyright (c) 2003 Jason Wright
      8  *
      9  * Permission to use, copy, modify, and distribute this software for any
     10  * purpose with or without fee is hereby granted, provided that the above
     11  * copyright notice and this permission notice appear in all copies.
     12  *
     13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     20  */
     21 
     22 /*
     23  * Driver for the security block on the AMD Geode LX processors
     24  * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
     25  */
     26 
     27 #include <sys/cdefs.h>
     28 #include <sys/param.h>
     29 #include <sys/systm.h>
     30 #include <sys/device.h>
     31 #include <sys/malloc.h>
     32 #include <sys/mbuf.h>
     33 #include <sys/types.h>
     34 #include <sys/callout.h>
     35 #include <sys/rnd.h>
     36 
     37 #include <machine/bus.h>
     38 
     39 #include <dev/pci/pcivar.h>
     40 #include <dev/pci/pcidevs.h>
     41 
     42 #include <opencrypto/cryptodev.h>
     43 #include <crypto/rijndael/rijndael.h>
     44 
     45 #define SB_GLD_MSR_CAP		0x58002000	/* RO - Capabilities */
     46 #define SB_GLD_MSR_CONFIG	0x58002001	/* RW - Master Config */
     47 #define SB_GLD_MSR_SMI		0x58002002	/* RW - SMI */
     48 #define SB_GLD_MSR_ERROR	0x58002003	/* RW - Error */
     49 #define SB_GLD_MSR_PM		0x58002004	/* RW - Power Mgmt */
     50 #define SB_GLD_MSR_DIAG		0x58002005	/* RW - Diagnostic */
     51 #define SB_GLD_MSR_CTRL		0x58002006	/* RW - Security Block Cntrl */
     52 
     53 						/* For GLD_MSR_CTRL: */
     54 #define SB_GMC_DIV0		0x0000		/* AES update divisor values */
     55 #define SB_GMC_DIV1		0x0001
     56 #define SB_GMC_DIV2		0x0002
     57 #define SB_GMC_DIV3		0x0003
     58 #define SB_GMC_DIV_MASK		0x0003
     59 #define SB_GMC_SBI		0x0004		/* AES swap bits */
     60 #define SB_GMC_SBY		0x0008		/* AES swap bytes */
     61 #define SB_GMC_TW		0x0010		/* Time write (EEPROM) */
     62 #define SB_GMC_T_SEL0		0x0000		/* RNG post-proc: none */
     63 #define SB_GMC_T_SEL1		0x0100		/* RNG post-proc: LFSR */
     64 #define SB_GMC_T_SEL2		0x0200		/* RNG post-proc: whitener */
     65 #define SB_GMC_T_SEL3		0x0300		/* RNG LFSR+whitener */
     66 #define SB_GMC_T_SEL_MASK	0x0300
     67 #define SB_GMC_T_NE		0x0400		/* Noise (generator) Enable */
     68 #define SB_GMC_T_TM		0x0800		/* RNG test mode */
     69 						/*     (deterministic) */
     70 
     71 /* Security Block configuration/control registers (offsets from base) */
     72 
     73 #define SB_CTL_A		0x0000		/* RW - SB Control A */
     74 #define SB_CTL_B		0x0004		/* RW - SB Control B */
     75 #define SB_AES_INT		0x0008		/* RW - SB AES Interrupt */
     76 #define SB_SOURCE_A		0x0010		/* RW - Source A */
     77 #define SB_DEST_A		0x0014		/* RW - Destination A */
     78 #define SB_LENGTH_A		0x0018		/* RW - Length A */
     79 #define SB_SOURCE_B		0x0020		/* RW - Source B */
     80 #define SB_DEST_B		0x0024		/* RW - Destination B */
     81 #define SB_LENGTH_B		0x0028		/* RW - Length B */
     82 #define SB_WKEY			0x0030		/* WO - Writable Key 0-3 */
     83 #define SB_WKEY_0		0x0030		/* WO - Writable Key 0 */
     84 #define SB_WKEY_1		0x0034		/* WO - Writable Key 1 */
     85 #define SB_WKEY_2		0x0038		/* WO - Writable Key 2 */
     86 #define SB_WKEY_3		0x003C		/* WO - Writable Key 3 */
     87 #define SB_CBC_IV		0x0040		/* RW - CBC IV 0-3 */
     88 #define SB_CBC_IV_0		0x0040		/* RW - CBC IV 0 */
     89 #define SB_CBC_IV_1		0x0044		/* RW - CBC IV 1 */
     90 #define SB_CBC_IV_2		0x0048		/* RW - CBC IV 2 */
     91 #define SB_CBC_IV_3		0x004C		/* RW - CBC IV 3 */
     92 #define SB_RANDOM_NUM		0x0050		/* RW - Random Number */
     93 #define SB_RANDOM_NUM_STATUS	0x0054		/* RW - Random Number Status */
     94 #define SB_EEPROM_COMM		0x0800		/* RW - EEPROM Command */
     95 #define SB_EEPROM_ADDR		0x0804		/* RW - EEPROM Address */
     96 #define SB_EEPROM_DATA		0x0808		/* RW - EEPROM Data */
     97 #define SB_EEPROM_SEC_STATE	0x080C		/* RW - EEPROM Security State */
     98 
     99 						/* For SB_CTL_A and _B */
    100 #define SB_CTL_ST		0x0001		/* Start operation (enc/dec) */
    101 #define SB_CTL_ENC		0x0002		/* Encrypt (0 is decrypt) */
    102 #define SB_CTL_DEC		0x0000		/* Decrypt */
    103 #define SB_CTL_WK		0x0004		/* Use writable key (we set) */
    104 #define SB_CTL_DC		0x0008		/* Destination coherent */
    105 #define SB_CTL_SC		0x0010		/* Source coherent */
    106 #define SB_CTL_CBC		0x0020		/* CBC (0 is ECB) */
    107 
    108 						/* For SB_AES_INT */
    109 #define SB_AI_DISABLE_AES_A	0x0001		/* Disable AES A compl int */
    110 #define SB_AI_ENABLE_AES_A	0x0000		/* Enable AES A compl int */
    111 #define SB_AI_DISABLE_AES_B	0x0002		/* Disable AES B compl int */
    112 #define SB_AI_ENABLE_AES_B	0x0000		/* Enable AES B compl int */
    113 #define SB_AI_DISABLE_EEPROM	0x0004		/* Disable EEPROM op comp int */
    114 #define SB_AI_ENABLE_EEPROM	0x0000		/* Enable EEPROM op compl int */
    115 #define SB_AI_AES_A_COMPLETE	0x0100		/* AES A operation complete */
    116 #define SB_AI_AES_B_COMPLETE	0x0200		/* AES B operation complete */
    117 #define SB_AI_EEPROM_COMPLETE	0x0400		/* EEPROM operation complete */
    118 
    119 #define SB_RNS_TRNG_VALID	0x0001		/* in SB_RANDOM_NUM_STATUS */
    120 
    121 #define SB_MEM_SIZE		0x0810		/* Size of memory block */
    122 
    123 #define SB_AES_ALIGN		0x0010		/* Source and dest buffers */
    124 						/* must be 16-byte aligned */
    125 #define SB_AES_BLOCK_SIZE	0x0010
    126 
    127 /*
    128  * The Geode LX security block AES acceleration doesn't perform scatter-
    129  * gather: it just takes source and destination addresses.  Therefore the
    130  * plain- and ciphertexts need to be contiguous.  To this end, we allocate
    131  * a buffer for both, and accept the overhead of copying in and out.  If
    132  * the number of bytes in one operation is bigger than allowed for by the
    133  * buffer (buffer is twice the size of the max length, as it has both input
    134  * and output) then we have to perform multiple encryptions/decryptions.
    135  */
    136 #define GLXSB_MAX_AES_LEN	16384
    137 
    138 struct glxsb_dma_map {
    139 	bus_dmamap_t		dma_map;
    140 	bus_dma_segment_t	dma_seg;
    141 	int			dma_nsegs;
    142 	int			dma_size;
    143 	void *			dma_vaddr;
    144 	uint32_t		dma_paddr;
    145 };
    146 struct glxsb_session {
    147 	uint32_t	ses_key[4];
    148 	uint8_t		ses_iv[SB_AES_BLOCK_SIZE];
    149 	int		ses_klen;
    150 	int		ses_used;
    151 };
    152 
    153 struct glxsb_softc {
    154 	struct device		sc_dev;
    155 	bus_space_tag_t		sc_iot;
    156 	bus_space_handle_t	sc_ioh;
    157 	struct callout		sc_co;
    158 
    159 	bus_dma_tag_t		sc_dmat;
    160 	struct glxsb_dma_map	sc_dma;
    161 	int32_t			sc_cid;
    162 	int			sc_nsessions;
    163 	struct glxsb_session	*sc_sessions;
    164 
    165 	rndsource_element_t	sc_rnd_source;
    166 };
    167 
    168 int	glxsb_match(struct device *, struct cfdata *, void *);
    169 void	glxsb_attach(struct device *, struct device *, void *);
    170 void	glxsb_rnd(void *);
    171 
    172 CFATTACH_DECL(glxsb, sizeof(struct glxsb_softc), glxsb_match, glxsb_attach,
    173     NULL, NULL);
    174 
    175 #define GLXSB_SESSION(sid)		((sid) & 0x0fffffff)
    176 #define	GLXSB_SID(crd,ses)		(((crd) << 28) | ((ses) & 0x0fffffff))
    177 
    178 int glxsb_crypto_setup(struct glxsb_softc *);
    179 int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *);
    180 int glxsb_crypto_process(void *, struct cryptop *, int);
    181 int glxsb_crypto_freesession(void *, uint64_t);
    182 static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
    183     uint32_t, void *, int, void *);
    184 
    185 int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
    186 void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
    187 void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
    188 void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
    189 
    190 int
    191 glxsb_match(struct device *parent, struct cfdata *match, void *aux)
    192 {
    193 	struct pci_attach_args *pa = aux;
    194 
    195 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
    196 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES)
    197 		return (1);
    198 
    199 	return (0);
    200 }
    201 
    202 void
    203 glxsb_attach(struct device *parent, struct device *self, void *aux)
    204 {
    205 	struct glxsb_softc *sc = (void *) self;
    206 	struct pci_attach_args *pa = aux;
    207 	bus_addr_t membase;
    208 	bus_size_t memsize;
    209 	uint64_t msr;
    210 	uint32_t intr;
    211 
    212 	msr = rdmsr(SB_GLD_MSR_CAP);
    213 	if ((msr & 0xFFFF00) != 0x130400) {
    214 		printf(": unknown ID 0x%x\n", (int) ((msr & 0xFFFF00) >> 16));
    215 		return;
    216 	}
    217 
    218 	/* printf(": revision %d", (int) (msr & 0xFF)); */
    219 
    220 	/* Map in the security block configuration/control registers */
    221 	if (pci_mapreg_map(pa, PCI_MAPREG_START,
    222 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
    223 	    &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) {
    224 		printf(": can't find mem space\n");
    225 		return;
    226 	}
    227 
    228 	/*
    229 	 * Configure the Security Block.
    230 	 *
    231 	 * We want to enable the noise generator (T_NE), and enable the
    232 	 * linear feedback shift register and whitener post-processing
    233 	 * (T_SEL = 3).  Also ensure that test mode (deterministic values)
    234 	 * is disabled.
    235 	 */
    236 	msr = rdmsr(SB_GLD_MSR_CTRL);
    237 	msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
    238 	msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
    239 #if 0
    240 	msr |= SB_GMC_SBI | SB_GMC_SBY;		/* for AES, if necessary */
    241 #endif
    242 	wrmsr(SB_GLD_MSR_CTRL, msr);
    243 
    244 	rnd_attach_source(&sc->sc_rnd_source, sc->sc_dev.dv_xname,
    245 			  RND_TYPE_RNG, RND_FLAG_NO_ESTIMATE);
    246 
    247 	/* Install a periodic collector for the "true" (AMD's word) RNG */
    248 	callout_init(&sc->sc_co);
    249 	callout_setfunc(&sc->sc_co, glxsb_rnd, sc);
    250 	glxsb_rnd(sc);
    251 	printf(": RNG");
    252 
    253 	/* We don't have an interrupt handler, so disable completion INTs */
    254 	intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
    255 	    SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
    256 	    SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
    257 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
    258 
    259 	sc->sc_dmat = pa->pa_dmat;
    260 
    261 	if (glxsb_crypto_setup(sc))
    262 		printf(" AES");
    263 
    264 	printf("\n");
    265 }
    266 
    267 void
    268 glxsb_rnd(void *v)
    269 {
    270 	struct glxsb_softc *sc = v;
    271 	uint32_t status, value;
    272 	extern int hz;
    273 
    274 	status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
    275 	if (status & SB_RNS_TRNG_VALID) {
    276 		value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
    277 		rnd_add_uint32(&sc->sc_rnd_source, value);
    278 	}
    279 
    280 	callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1);
    281 }
    282 
    283 int
    284 glxsb_crypto_setup(struct glxsb_softc *sc)
    285 {
    286 
    287 	/* Allocate a contiguous DMA-able buffer to work in */
    288 	if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
    289 		return 0;
    290 
    291 	sc->sc_cid = crypto_get_driverid(0);
    292 	if (sc->sc_cid < 0)
    293 		return 0;
    294 
    295 	crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
    296 	    glxsb_crypto_newsession, glxsb_crypto_freesession,
    297 	    glxsb_crypto_process, sc);
    298 
    299 	sc->sc_nsessions = 0;
    300 
    301 	return 1;
    302 }
    303 
    304 int
    305 glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri)
    306 {
    307 	struct glxsb_softc *sc = aux;
    308 	struct glxsb_session *ses = NULL;
    309 	int sesn;
    310 
    311 	if (sc == NULL || sidp == NULL || cri == NULL ||
    312 	    cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC ||
    313 	    cri->cri_klen != 128)
    314 		return (EINVAL);
    315 
    316 	for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
    317 		if (sc->sc_sessions[sesn].ses_used == 0) {
    318 			ses = &sc->sc_sessions[sesn];
    319 			break;
    320 		}
    321 	}
    322 
    323 	if (ses == NULL) {
    324 		sesn = sc->sc_nsessions;
    325 		ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT);
    326 		if (ses == NULL)
    327 			return (ENOMEM);
    328 		if (sesn != 0) {
    329 			bcopy(sc->sc_sessions, ses, sesn * sizeof(*ses));
    330 			bzero(sc->sc_sessions, sesn * sizeof(*ses));
    331 			free(sc->sc_sessions, M_DEVBUF);
    332 		}
    333 		sc->sc_sessions = ses;
    334 		ses = &sc->sc_sessions[sesn];
    335 		sc->sc_nsessions++;
    336 	}
    337 
    338 	bzero(ses, sizeof(*ses));
    339 	ses->ses_used = 1;
    340 
    341 	arc4randbytes(ses->ses_iv, sizeof(ses->ses_iv));
    342 	ses->ses_klen = cri->cri_klen;
    343 
    344 	/* Copy the key (Geode LX wants the primary key only) */
    345 	bcopy(cri->cri_key, ses->ses_key, sizeof(ses->ses_key));
    346 
    347 	*sidp = GLXSB_SID(0, sesn);
    348 	return (0);
    349 }
    350 
    351 int
    352 glxsb_crypto_freesession(void *aux, uint64_t tid)
    353 {
    354 	struct glxsb_softc *sc = aux;
    355 	int sesn;
    356 	uint32_t sid = ((uint32_t)tid) & 0xffffffff;
    357 
    358 	if (sc == NULL)
    359 		return (EINVAL);
    360 	sesn = GLXSB_SESSION(sid);
    361 	if (sesn >= sc->sc_nsessions)
    362 		return (EINVAL);
    363 	bzero(&sc->sc_sessions[sesn], sizeof(sc->sc_sessions[sesn]));
    364 	return (0);
    365 }
    366 
    367 /*
    368  * Must be called at splnet() or higher
    369  */
    370 static __inline void
    371 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
    372     uint32_t pdst, void *key, int len, void *iv)
    373 {
    374 	uint32_t status;
    375 	int i;
    376 
    377 	if (len & 0xF) {
    378 		printf("%s: len must be a multiple of 16 (not %d)\n",
    379 		    sc->sc_dev.dv_xname, len);
    380 		return;
    381 	}
    382 
    383 	/* Set the source */
    384 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
    385 
    386 	/* Set the destination address */
    387 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
    388 
    389 	/* Set the data length */
    390 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
    391 
    392 	/* Set the IV */
    393 	if (iv != NULL) {
    394 		bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
    395 		    SB_CBC_IV, iv, 4);
    396 		control |= SB_CTL_CBC;
    397 	}
    398 
    399 	/* Set the key */
    400 	bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
    401 
    402 	/* Ask the security block to do it */
    403 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
    404 	    control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
    405 
    406 	/*
    407 	 * Now wait until it is done.
    408 	 *
    409 	 * We do a busy wait.  Obviously the number of iterations of
    410 	 * the loop required to perform the AES operation depends upon
    411 	 * the number of bytes to process.
    412 	 *
    413 	 * On a 500 MHz Geode LX we see
    414 	 *
    415 	 *	length (bytes)	typical max iterations
    416 	 *	    16		   12
    417 	 *	    64		   22
    418 	 *	   256		   59
    419 	 *	  1024		  212
    420 	 *	  8192		1,537
    421 	 *
    422 	 * Since we have a maximum size of operation defined in
    423 	 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
    424 	 * to wait.  Allow an order of magnitude longer than it should
    425 	 * really take, just in case.
    426 	 */
    427 	for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
    428 		status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
    429 
    430 		if ((status & SB_CTL_ST) == 0)		/* Done */
    431 			return;
    432 	}
    433 
    434 	printf("%s: operation failed to complete\n", sc->sc_dev.dv_xname);
    435 }
    436 
    437 int
    438 glxsb_crypto_process(void *aux, struct cryptop *crp, int hint)
    439 {
    440 	struct glxsb_softc *sc = aux;
    441 	struct glxsb_session *ses;
    442 	struct cryptodesc *crd;
    443 	char *op_src, *op_dst;
    444 	uint32_t op_psrc, op_pdst;
    445 	uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
    446 	int sesn, err = 0;
    447 	int len, tlen, xlen;
    448 	int offset;
    449 	uint32_t control;
    450 	int s;
    451 
    452 	s = splnet();
    453 
    454 	if (crp == NULL || crp->crp_callback == NULL) {
    455 		err = EINVAL;
    456 		goto out;
    457 	}
    458 	crd = crp->crp_desc;
    459 	if (crd == NULL || crd->crd_next != NULL ||
    460 	    crd->crd_alg != CRYPTO_AES_CBC ||
    461 	    (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
    462 		err = EINVAL;
    463 		goto out;
    464 	}
    465 
    466 	sesn = GLXSB_SESSION(crp->crp_sid);
    467 	if (sesn >= sc->sc_nsessions) {
    468 		err = EINVAL;
    469 		goto out;
    470 	}
    471 	ses = &sc->sc_sessions[sesn];
    472 
    473 	/* How much of our buffer will we need to use? */
    474 	xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
    475 	    GLXSB_MAX_AES_LEN : crd->crd_len;
    476 
    477 	/*
    478 	 * XXX Check if we can have input == output on Geode LX.
    479 	 * XXX In the meantime, use two separate (adjacent) buffers.
    480 	 */
    481 	op_src = sc->sc_dma.dma_vaddr;
    482 	op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
    483 
    484 	op_psrc = sc->sc_dma.dma_paddr;
    485 	op_pdst = sc->sc_dma.dma_paddr + xlen;
    486 
    487 	if (crd->crd_flags & CRD_F_ENCRYPT) {
    488 		control = SB_CTL_ENC;
    489 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    490 			bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
    491 		else
    492 			bcopy(ses->ses_iv, op_iv, sizeof(op_iv));
    493 
    494 		if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
    495 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    496 				m_copyback((struct mbuf *)crp->crp_buf,
    497 				    crd->crd_inject, sizeof(op_iv), op_iv);
    498 			else if (crp->crp_flags & CRYPTO_F_IOV)
    499 				cuio_copyback((struct uio *)crp->crp_buf,
    500 				    crd->crd_inject, sizeof(op_iv), op_iv);
    501 			else
    502 				bcopy(op_iv,
    503 				    (char *)crp->crp_buf + crd->crd_inject,
    504 				    sizeof(op_iv));
    505 		}
    506 	} else {
    507 		control = SB_CTL_DEC;
    508 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    509 			bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
    510 		else {
    511 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    512 				m_copydata((struct mbuf *)crp->crp_buf,
    513 				    crd->crd_inject, sizeof(op_iv), op_iv);
    514 			else if (crp->crp_flags & CRYPTO_F_IOV)
    515 				cuio_copydata((struct uio *)crp->crp_buf,
    516 				    crd->crd_inject, sizeof(op_iv), op_iv);
    517 			else
    518 				bcopy((char *)crp->crp_buf + crd->crd_inject,
    519 				    op_iv, sizeof(op_iv));
    520 		}
    521 	}
    522 
    523 	offset = 0;
    524 	tlen = crd->crd_len;
    525 	piv = op_iv;
    526 
    527 	/* Process the data in GLXSB_MAX_AES_LEN chunks */
    528 	while (tlen > 0) {
    529 		len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
    530 
    531 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    532 			m_copydata((struct mbuf *)crp->crp_buf,
    533 			    crd->crd_skip + offset, len, op_src);
    534 		else if (crp->crp_flags & CRYPTO_F_IOV)
    535 			cuio_copydata((struct uio *)crp->crp_buf,
    536 			    crd->crd_skip + offset, len, op_src);
    537 		else
    538 			bcopy((char *)crp->crp_buf + crd->crd_skip + offset,
    539 			    op_src, len);
    540 
    541 		glxsb_dma_pre_op(sc, &sc->sc_dma);
    542 
    543 		glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
    544 		    len, op_iv);
    545 
    546 		glxsb_dma_post_op(sc, &sc->sc_dma);
    547 
    548 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    549 			m_copyback((struct mbuf *)crp->crp_buf,
    550 			    crd->crd_skip + offset, len, op_dst);
    551 		else if (crp->crp_flags & CRYPTO_F_IOV)
    552 			cuio_copyback((struct uio *)crp->crp_buf,
    553 			    crd->crd_skip + offset, len, op_dst);
    554 		else
    555 			bcopy(op_dst, (char *)crp->crp_buf + crd->crd_skip + offset,
    556 			    len);
    557 
    558 		offset += len;
    559 		tlen -= len;
    560 
    561 		if (tlen <= 0) {	/* Ideally, just == 0 */
    562 			/* Finished - put the IV in session IV */
    563 			piv = ses->ses_iv;
    564 		}
    565 
    566 		/*
    567 		 * Copy out last block for use as next iteration/session IV.
    568 		 *
    569 		 * piv is set to op_iv[] before the loop starts, but is
    570 		 * set to ses->ses_iv if we're going to exit the loop this
    571 		 * time.
    572 		 */
    573 		if (crd->crd_flags & CRD_F_ENCRYPT) {
    574 			bcopy(op_dst + len - sizeof(op_iv), piv, sizeof(op_iv));
    575 		} else {
    576 			/* Decryption, only need this if another iteration */
    577 			if (tlen > 0) {
    578 				bcopy(op_src + len - sizeof(op_iv), piv,
    579 				    sizeof(op_iv));
    580 			}
    581 		}
    582 	}
    583 
    584 	/* All AES processing has now been done. */
    585 
    586 	bzero(sc->sc_dma.dma_vaddr, xlen * 2);
    587 out:
    588 	crp->crp_etype = err;
    589 	crypto_done(crp);
    590 	splx(s);
    591 	return (err);
    592 }
    593 
    594 int
    595 glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
    596 {
    597 	int rc;
    598 
    599 	dma->dma_nsegs = 1;
    600 	dma->dma_size = size;
    601 
    602 	rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
    603 	    0, BUS_DMA_NOWAIT, &dma->dma_map);
    604 	if (rc != 0) {
    605 		printf("%s: couldn't create DMA map for %d bytes (%d)\n",
    606 		    sc->sc_dev.dv_xname, size, rc);
    607 
    608 		goto fail0;
    609 	}
    610 
    611 	rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
    612 	    &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
    613 	if (rc != 0) {
    614 		printf("%s: couldn't allocate DMA memory of %d bytes (%d)\n",
    615 		    sc->sc_dev.dv_xname, size, rc);
    616 
    617 		goto fail1;
    618 	}
    619 
    620 	rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
    621 	    &dma->dma_vaddr, BUS_DMA_NOWAIT);
    622 	if (rc != 0) {
    623 		printf("%s: couldn't map DMA memory for %d bytes (%d)\n",
    624 		    sc->sc_dev.dv_xname, size, rc);
    625 
    626 		goto fail2;
    627 	}
    628 
    629 	rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
    630 	    size, NULL, BUS_DMA_NOWAIT);
    631 	if (rc != 0) {
    632 		printf("%s: couldn't load DMA memory for %d bytes (%d)\n",
    633 		    sc->sc_dev.dv_xname, size, rc);
    634 
    635 		goto fail3;
    636 	}
    637 
    638 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
    639 
    640 	return 0;
    641 
    642 fail3:
    643 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
    644 fail2:
    645 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    646 fail1:
    647 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    648 fail0:
    649 	return rc;
    650 }
    651 
    652 void
    653 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    654 {
    655 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    656 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    657 }
    658 
    659 void
    660 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    661 {
    662 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    663 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    664 }
    665 
    666 void
    667 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    668 {
    669 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
    670 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
    671 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    672 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    673 }
    674