Home | History | Annotate | Line # | Download | only in pci
glxsb.c revision 1.14
      1 /*	$NetBSD: glxsb.c,v 1.14 2016/07/14 10:19:05 msaitoh Exp $	*/
      2 /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2006 Tom Cosgrove <tom (at) openbsd.org>
      6  * Copyright (c) 2003, 2004 Theo de Raadt
      7  * Copyright (c) 2003 Jason Wright
      8  *
      9  * Permission to use, copy, modify, and distribute this software for any
     10  * purpose with or without fee is hereby granted, provided that the above
     11  * copyright notice and this permission notice appear in all copies.
     12  *
     13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     20  */
     21 
     22 /*
     23  * Driver for the security block on the AMD Geode LX processors
     24  * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
     25  */
     26 
     27 #include <sys/cdefs.h>
     28 __KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.14 2016/07/14 10:19:05 msaitoh Exp $");
     29 
     30 #include <sys/param.h>
     31 #include <sys/systm.h>
     32 #include <sys/device.h>
     33 #include <sys/malloc.h>
     34 #include <sys/mbuf.h>
     35 #include <sys/types.h>
     36 #include <sys/callout.h>
     37 #include <sys/bus.h>
     38 #include <sys/cprng.h>
     39 #include <sys/rndsource.h>
     40 
     41 #include <machine/cpufunc.h>
     42 
     43 #include <dev/pci/pcivar.h>
     44 #include <dev/pci/pcidevs.h>
     45 
     46 #include <opencrypto/cryptodev.h>
     47 #include <crypto/rijndael/rijndael.h>
     48 
     49 #define SB_GLD_MSR_CAP		0x58002000	/* RO - Capabilities */
     50 #define SB_GLD_MSR_CONFIG	0x58002001	/* RW - Master Config */
     51 #define SB_GLD_MSR_SMI		0x58002002	/* RW - SMI */
     52 #define SB_GLD_MSR_ERROR	0x58002003	/* RW - Error */
     53 #define SB_GLD_MSR_PM		0x58002004	/* RW - Power Mgmt */
     54 #define SB_GLD_MSR_DIAG		0x58002005	/* RW - Diagnostic */
     55 #define SB_GLD_MSR_CTRL		0x58002006	/* RW - Security Block Cntrl */
     56 
     57 						/* For GLD_MSR_CTRL: */
     58 #define SB_GMC_DIV0		0x0000		/* AES update divisor values */
     59 #define SB_GMC_DIV1		0x0001
     60 #define SB_GMC_DIV2		0x0002
     61 #define SB_GMC_DIV3		0x0003
     62 #define SB_GMC_DIV_MASK		0x0003
     63 #define SB_GMC_SBI		0x0004		/* AES swap bits */
     64 #define SB_GMC_SBY		0x0008		/* AES swap bytes */
     65 #define SB_GMC_TW		0x0010		/* Time write (EEPROM) */
     66 #define SB_GMC_T_SEL0		0x0000		/* RNG post-proc: none */
     67 #define SB_GMC_T_SEL1		0x0100		/* RNG post-proc: LFSR */
     68 #define SB_GMC_T_SEL2		0x0200		/* RNG post-proc: whitener */
     69 #define SB_GMC_T_SEL3		0x0300		/* RNG LFSR+whitener */
     70 #define SB_GMC_T_SEL_MASK	0x0300
     71 #define SB_GMC_T_NE		0x0400		/* Noise (generator) Enable */
     72 #define SB_GMC_T_TM		0x0800		/* RNG test mode */
     73 						/*     (deterministic) */
     74 
     75 /* Security Block configuration/control registers (offsets from base) */
     76 
     77 #define SB_CTL_A		0x0000		/* RW - SB Control A */
     78 #define SB_CTL_B		0x0004		/* RW - SB Control B */
     79 #define SB_AES_INT		0x0008		/* RW - SB AES Interrupt */
     80 #define SB_SOURCE_A		0x0010		/* RW - Source A */
     81 #define SB_DEST_A		0x0014		/* RW - Destination A */
     82 #define SB_LENGTH_A		0x0018		/* RW - Length A */
     83 #define SB_SOURCE_B		0x0020		/* RW - Source B */
     84 #define SB_DEST_B		0x0024		/* RW - Destination B */
     85 #define SB_LENGTH_B		0x0028		/* RW - Length B */
     86 #define SB_WKEY			0x0030		/* WO - Writable Key 0-3 */
     87 #define SB_WKEY_0		0x0030		/* WO - Writable Key 0 */
     88 #define SB_WKEY_1		0x0034		/* WO - Writable Key 1 */
     89 #define SB_WKEY_2		0x0038		/* WO - Writable Key 2 */
     90 #define SB_WKEY_3		0x003C		/* WO - Writable Key 3 */
     91 #define SB_CBC_IV		0x0040		/* RW - CBC IV 0-3 */
     92 #define SB_CBC_IV_0		0x0040		/* RW - CBC IV 0 */
     93 #define SB_CBC_IV_1		0x0044		/* RW - CBC IV 1 */
     94 #define SB_CBC_IV_2		0x0048		/* RW - CBC IV 2 */
     95 #define SB_CBC_IV_3		0x004C		/* RW - CBC IV 3 */
     96 #define SB_RANDOM_NUM		0x0050		/* RW - Random Number */
     97 #define SB_RANDOM_NUM_STATUS	0x0054		/* RW - Random Number Status */
     98 #define SB_EEPROM_COMM		0x0800		/* RW - EEPROM Command */
     99 #define SB_EEPROM_ADDR		0x0804		/* RW - EEPROM Address */
    100 #define SB_EEPROM_DATA		0x0808		/* RW - EEPROM Data */
    101 #define SB_EEPROM_SEC_STATE	0x080C		/* RW - EEPROM Security State */
    102 
    103 						/* For SB_CTL_A and _B */
    104 #define SB_CTL_ST		0x0001		/* Start operation (enc/dec) */
    105 #define SB_CTL_ENC		0x0002		/* Encrypt (0 is decrypt) */
    106 #define SB_CTL_DEC		0x0000		/* Decrypt */
    107 #define SB_CTL_WK		0x0004		/* Use writable key (we set) */
    108 #define SB_CTL_DC		0x0008		/* Destination coherent */
    109 #define SB_CTL_SC		0x0010		/* Source coherent */
    110 #define SB_CTL_CBC		0x0020		/* CBC (0 is ECB) */
    111 
    112 						/* For SB_AES_INT */
    113 #define SB_AI_DISABLE_AES_A	0x0001		/* Disable AES A compl int */
    114 #define SB_AI_ENABLE_AES_A	0x0000		/* Enable AES A compl int */
    115 #define SB_AI_DISABLE_AES_B	0x0002		/* Disable AES B compl int */
    116 #define SB_AI_ENABLE_AES_B	0x0000		/* Enable AES B compl int */
    117 #define SB_AI_DISABLE_EEPROM	0x0004		/* Disable EEPROM op comp int */
    118 #define SB_AI_ENABLE_EEPROM	0x0000		/* Enable EEPROM op compl int */
    119 #define SB_AI_AES_A_COMPLETE	0x0100		/* AES A operation complete */
    120 #define SB_AI_AES_B_COMPLETE	0x0200		/* AES B operation complete */
    121 #define SB_AI_EEPROM_COMPLETE	0x0400		/* EEPROM operation complete */
    122 
    123 #define SB_RNS_TRNG_VALID	0x0001		/* in SB_RANDOM_NUM_STATUS */
    124 
    125 #define SB_MEM_SIZE		0x0810		/* Size of memory block */
    126 
    127 #define SB_AES_ALIGN		0x0010		/* Source and dest buffers */
    128 						/* must be 16-byte aligned */
    129 #define SB_AES_BLOCK_SIZE	0x0010
    130 
    131 /*
    132  * The Geode LX security block AES acceleration doesn't perform scatter-
    133  * gather: it just takes source and destination addresses.  Therefore the
    134  * plain- and ciphertexts need to be contiguous.  To this end, we allocate
    135  * a buffer for both, and accept the overhead of copying in and out.  If
    136  * the number of bytes in one operation is bigger than allowed for by the
    137  * buffer (buffer is twice the size of the max length, as it has both input
    138  * and output) then we have to perform multiple encryptions/decryptions.
    139  */
    140 #define GLXSB_MAX_AES_LEN	16384
    141 
    142 struct glxsb_dma_map {
    143 	bus_dmamap_t		dma_map;
    144 	bus_dma_segment_t	dma_seg;
    145 	int			dma_nsegs;
    146 	int			dma_size;
    147 	void *			dma_vaddr;
    148 	uint32_t		dma_paddr;
    149 };
    150 struct glxsb_session {
    151 	uint32_t	ses_key[4];
    152 	uint8_t		ses_iv[SB_AES_BLOCK_SIZE];
    153 	int		ses_klen;
    154 	int		ses_used;
    155 };
    156 
    157 struct glxsb_softc {
    158 	device_t		sc_dev;
    159 	bus_space_tag_t		sc_iot;
    160 	bus_space_handle_t	sc_ioh;
    161 	struct callout		sc_co;
    162 
    163 	bus_dma_tag_t		sc_dmat;
    164 	struct glxsb_dma_map	sc_dma;
    165 	int32_t			sc_cid;
    166 	int			sc_nsessions;
    167 	struct glxsb_session	*sc_sessions;
    168 
    169 	krndsource_t	sc_rnd_source;
    170 };
    171 
    172 int	glxsb_match(device_t, cfdata_t, void *);
    173 void	glxsb_attach(device_t, device_t, void *);
    174 void	glxsb_rnd(void *);
    175 
    176 CFATTACH_DECL_NEW(glxsb, sizeof(struct glxsb_softc),
    177     glxsb_match, glxsb_attach, NULL, NULL);
    178 
    179 #define GLXSB_SESSION(sid)		((sid) & 0x0fffffff)
    180 #define	GLXSB_SID(crd,ses)		(((crd) << 28) | ((ses) & 0x0fffffff))
    181 
    182 int glxsb_crypto_setup(struct glxsb_softc *);
    183 int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *);
    184 int glxsb_crypto_process(void *, struct cryptop *, int);
    185 int glxsb_crypto_freesession(void *, uint64_t);
    186 static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
    187     uint32_t, void *, int, void *);
    188 
    189 int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
    190 void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
    191 void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
    192 void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
    193 
    194 int
    195 glxsb_match(device_t parent, cfdata_t match, void *aux)
    196 {
    197 	struct pci_attach_args *pa = aux;
    198 
    199 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
    200 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES)
    201 		return (1);
    202 
    203 	return (0);
    204 }
    205 
    206 void
    207 glxsb_attach(device_t parent, device_t self, void *aux)
    208 {
    209 	struct glxsb_softc *sc = device_private(self);
    210 	struct pci_attach_args *pa = aux;
    211 	bus_addr_t membase;
    212 	bus_size_t memsize;
    213 	uint64_t msr;
    214 	uint32_t intr;
    215 
    216 	msr = rdmsr(SB_GLD_MSR_CAP);
    217 	if ((msr & 0xFFFF00) != 0x130400) {
    218 		aprint_error(": unknown ID 0x%x\n",
    219 		    (int)((msr & 0xFFFF00) >> 16));
    220 		return;
    221 	}
    222 
    223 	/* printf(": revision %d", (int) (msr & 0xFF)); */
    224 
    225 	/* Map in the security block configuration/control registers */
    226 	if (pci_mapreg_map(pa, PCI_MAPREG_START,
    227 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
    228 	    &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) {
    229 		aprint_error(": can't find mem space\n");
    230 		return;
    231 	}
    232 
    233 	sc->sc_dev = self;
    234 
    235 	/*
    236 	 * Configure the Security Block.
    237 	 *
    238 	 * We want to enable the noise generator (T_NE), and enable the
    239 	 * linear feedback shift register and whitener post-processing
    240 	 * (T_SEL = 3).  Also ensure that test mode (deterministic values)
    241 	 * is disabled.
    242 	 */
    243 	msr = rdmsr(SB_GLD_MSR_CTRL);
    244 	msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
    245 	msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
    246 #if 0
    247 	msr |= SB_GMC_SBI | SB_GMC_SBY;		/* for AES, if necessary */
    248 #endif
    249 	wrmsr(SB_GLD_MSR_CTRL, msr);
    250 
    251 	rnd_attach_source(&sc->sc_rnd_source, device_xname(self),
    252 			  RND_TYPE_RNG, RND_FLAG_COLLECT_VALUE);
    253 
    254 	/* Install a periodic collector for the "true" (AMD's word) RNG */
    255 	callout_init(&sc->sc_co, 0);
    256 	callout_setfunc(&sc->sc_co, glxsb_rnd, sc);
    257 	glxsb_rnd(sc);
    258 	aprint_normal(": RNG");
    259 
    260 	/* We don't have an interrupt handler, so disable completion INTs */
    261 	intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
    262 	    SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
    263 	    SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
    264 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
    265 
    266 	sc->sc_dmat = pa->pa_dmat;
    267 
    268 	if (glxsb_crypto_setup(sc))
    269 		aprint_normal(" AES");
    270 
    271 	aprint_normal("\n");
    272 }
    273 
    274 void
    275 glxsb_rnd(void *v)
    276 {
    277 	struct glxsb_softc *sc = v;
    278 	uint32_t status, value;
    279 	extern int hz;
    280 
    281 	status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
    282 	if (status & SB_RNS_TRNG_VALID) {
    283 		value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
    284 		rnd_add_data(&sc->sc_rnd_source, &value, sizeof(value),
    285 			     sizeof(value) * NBBY);
    286 	}
    287 
    288 	callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1);
    289 }
    290 
    291 int
    292 glxsb_crypto_setup(struct glxsb_softc *sc)
    293 {
    294 
    295 	/* Allocate a contiguous DMA-able buffer to work in */
    296 	if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
    297 		return 0;
    298 
    299 	sc->sc_cid = crypto_get_driverid(0);
    300 	if (sc->sc_cid < 0)
    301 		return 0;
    302 
    303 	crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
    304 	    glxsb_crypto_newsession, glxsb_crypto_freesession,
    305 	    glxsb_crypto_process, sc);
    306 
    307 	sc->sc_nsessions = 0;
    308 
    309 	return 1;
    310 }
    311 
    312 int
    313 glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri)
    314 {
    315 	struct glxsb_softc *sc = aux;
    316 	struct glxsb_session *ses = NULL;
    317 	int sesn;
    318 
    319 	if (sc == NULL || sidp == NULL || cri == NULL ||
    320 	    cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC ||
    321 	    cri->cri_klen != 128)
    322 		return (EINVAL);
    323 
    324 	for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
    325 		if (sc->sc_sessions[sesn].ses_used == 0) {
    326 			ses = &sc->sc_sessions[sesn];
    327 			break;
    328 		}
    329 	}
    330 
    331 	if (ses == NULL) {
    332 		sesn = sc->sc_nsessions;
    333 		ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT);
    334 		if (ses == NULL)
    335 			return (ENOMEM);
    336 		if (sesn != 0) {
    337 			memcpy(ses, sc->sc_sessions, sesn * sizeof(*ses));
    338 			memset(sc->sc_sessions, 0, sesn * sizeof(*ses));
    339 			free(sc->sc_sessions, M_DEVBUF);
    340 		}
    341 		sc->sc_sessions = ses;
    342 		ses = &sc->sc_sessions[sesn];
    343 		sc->sc_nsessions++;
    344 	}
    345 
    346 	memset(ses, 0, sizeof(*ses));
    347 	ses->ses_used = 1;
    348 
    349 	cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
    350 	ses->ses_klen = cri->cri_klen;
    351 
    352 	/* Copy the key (Geode LX wants the primary key only) */
    353 	memcpy(ses->ses_key, cri->cri_key, sizeof(ses->ses_key));
    354 
    355 	*sidp = GLXSB_SID(0, sesn);
    356 	return (0);
    357 }
    358 
    359 int
    360 glxsb_crypto_freesession(void *aux, uint64_t tid)
    361 {
    362 	struct glxsb_softc *sc = aux;
    363 	int sesn;
    364 	uint32_t sid = ((uint32_t)tid) & 0xffffffff;
    365 
    366 	if (sc == NULL)
    367 		return (EINVAL);
    368 	sesn = GLXSB_SESSION(sid);
    369 	if (sesn >= sc->sc_nsessions)
    370 		return (EINVAL);
    371 	memset(&sc->sc_sessions[sesn], 0, sizeof(sc->sc_sessions[sesn]));
    372 	return (0);
    373 }
    374 
    375 /*
    376  * Must be called at splnet() or higher
    377  */
    378 static __inline void
    379 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
    380     uint32_t pdst, void *key, int len, void *iv)
    381 {
    382 	uint32_t status;
    383 	int i;
    384 
    385 	if (len & 0xF) {
    386 		printf("%s: len must be a multiple of 16 (not %d)\n",
    387 		    device_xname(sc->sc_dev), len);
    388 		return;
    389 	}
    390 
    391 	/* Set the source */
    392 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
    393 
    394 	/* Set the destination address */
    395 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
    396 
    397 	/* Set the data length */
    398 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
    399 
    400 	/* Set the IV */
    401 	if (iv != NULL) {
    402 		bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
    403 		    SB_CBC_IV, iv, 4);
    404 		control |= SB_CTL_CBC;
    405 	}
    406 
    407 	/* Set the key */
    408 	bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
    409 
    410 	/* Ask the security block to do it */
    411 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
    412 	    control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
    413 
    414 	/*
    415 	 * Now wait until it is done.
    416 	 *
    417 	 * We do a busy wait.  Obviously the number of iterations of
    418 	 * the loop required to perform the AES operation depends upon
    419 	 * the number of bytes to process.
    420 	 *
    421 	 * On a 500 MHz Geode LX we see
    422 	 *
    423 	 *	length (bytes)	typical max iterations
    424 	 *	    16		   12
    425 	 *	    64		   22
    426 	 *	   256		   59
    427 	 *	  1024		  212
    428 	 *	  8192		1,537
    429 	 *
    430 	 * Since we have a maximum size of operation defined in
    431 	 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
    432 	 * to wait.  Allow an order of magnitude longer than it should
    433 	 * really take, just in case.
    434 	 */
    435 	for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
    436 		status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
    437 
    438 		if ((status & SB_CTL_ST) == 0)		/* Done */
    439 			return;
    440 	}
    441 
    442 	aprint_error_dev(sc->sc_dev, "operation failed to complete\n");
    443 }
    444 
    445 int
    446 glxsb_crypto_process(void *aux, struct cryptop *crp, int hint)
    447 {
    448 	struct glxsb_softc *sc = aux;
    449 	struct glxsb_session *ses;
    450 	struct cryptodesc *crd;
    451 	char *op_src, *op_dst;
    452 	uint32_t op_psrc, op_pdst;
    453 	uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
    454 	int sesn, err = 0;
    455 	int len, tlen, xlen;
    456 	int offset;
    457 	uint32_t control;
    458 	int s;
    459 
    460 	s = splnet();
    461 
    462 	if (crp == NULL || crp->crp_callback == NULL) {
    463 		err = EINVAL;
    464 		goto out;
    465 	}
    466 	crd = crp->crp_desc;
    467 	if (crd == NULL || crd->crd_next != NULL ||
    468 	    crd->crd_alg != CRYPTO_AES_CBC ||
    469 	    (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
    470 		err = EINVAL;
    471 		goto out;
    472 	}
    473 
    474 	sesn = GLXSB_SESSION(crp->crp_sid);
    475 	if (sesn >= sc->sc_nsessions) {
    476 		err = EINVAL;
    477 		goto out;
    478 	}
    479 	ses = &sc->sc_sessions[sesn];
    480 
    481 	/* How much of our buffer will we need to use? */
    482 	xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
    483 	    GLXSB_MAX_AES_LEN : crd->crd_len;
    484 
    485 	/*
    486 	 * XXX Check if we can have input == output on Geode LX.
    487 	 * XXX In the meantime, use two separate (adjacent) buffers.
    488 	 */
    489 	op_src = sc->sc_dma.dma_vaddr;
    490 	op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
    491 
    492 	op_psrc = sc->sc_dma.dma_paddr;
    493 	op_pdst = sc->sc_dma.dma_paddr + xlen;
    494 
    495 	if (crd->crd_flags & CRD_F_ENCRYPT) {
    496 		control = SB_CTL_ENC;
    497 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    498 			memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
    499 		else
    500 			memcpy(op_iv, ses->ses_iv, sizeof(op_iv));
    501 
    502 		if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
    503 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    504 				m_copyback((struct mbuf *)crp->crp_buf,
    505 				    crd->crd_inject, sizeof(op_iv), op_iv);
    506 			else if (crp->crp_flags & CRYPTO_F_IOV)
    507 				cuio_copyback((struct uio *)crp->crp_buf,
    508 				    crd->crd_inject, sizeof(op_iv), op_iv);
    509 			else
    510 				bcopy(op_iv,
    511 				    (char *)crp->crp_buf + crd->crd_inject,
    512 				    sizeof(op_iv));
    513 		}
    514 	} else {
    515 		control = SB_CTL_DEC;
    516 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    517 			memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
    518 		else {
    519 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    520 				m_copydata((struct mbuf *)crp->crp_buf,
    521 				    crd->crd_inject, sizeof(op_iv), op_iv);
    522 			else if (crp->crp_flags & CRYPTO_F_IOV)
    523 				cuio_copydata((struct uio *)crp->crp_buf,
    524 				    crd->crd_inject, sizeof(op_iv), op_iv);
    525 			else
    526 				bcopy((char *)crp->crp_buf + crd->crd_inject,
    527 				    op_iv, sizeof(op_iv));
    528 		}
    529 	}
    530 
    531 	offset = 0;
    532 	tlen = crd->crd_len;
    533 	piv = op_iv;
    534 
    535 	/* Process the data in GLXSB_MAX_AES_LEN chunks */
    536 	while (tlen > 0) {
    537 		len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
    538 
    539 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    540 			m_copydata((struct mbuf *)crp->crp_buf,
    541 			    crd->crd_skip + offset, len, op_src);
    542 		else if (crp->crp_flags & CRYPTO_F_IOV)
    543 			cuio_copydata((struct uio *)crp->crp_buf,
    544 			    crd->crd_skip + offset, len, op_src);
    545 		else
    546 			bcopy((char *)crp->crp_buf + crd->crd_skip + offset,
    547 			    op_src, len);
    548 
    549 		glxsb_dma_pre_op(sc, &sc->sc_dma);
    550 
    551 		glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
    552 		    len, op_iv);
    553 
    554 		glxsb_dma_post_op(sc, &sc->sc_dma);
    555 
    556 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    557 			m_copyback((struct mbuf *)crp->crp_buf,
    558 			    crd->crd_skip + offset, len, op_dst);
    559 		else if (crp->crp_flags & CRYPTO_F_IOV)
    560 			cuio_copyback((struct uio *)crp->crp_buf,
    561 			    crd->crd_skip + offset, len, op_dst);
    562 		else
    563 			memcpy((char *)crp->crp_buf + crd->crd_skip + offset,
    564 			    op_dst, len);
    565 
    566 		offset += len;
    567 		tlen -= len;
    568 
    569 		if (tlen <= 0) {	/* Ideally, just == 0 */
    570 			/* Finished - put the IV in session IV */
    571 			piv = ses->ses_iv;
    572 		}
    573 
    574 		/*
    575 		 * Copy out last block for use as next iteration/session IV.
    576 		 *
    577 		 * piv is set to op_iv[] before the loop starts, but is
    578 		 * set to ses->ses_iv if we're going to exit the loop this
    579 		 * time.
    580 		 */
    581 		if (crd->crd_flags & CRD_F_ENCRYPT) {
    582 			memcpy(piv, op_dst + len - sizeof(op_iv),
    583 			    sizeof(op_iv));
    584 		} else {
    585 			/* Decryption, only need this if another iteration */
    586 			if (tlen > 0) {
    587 				memcpy(piv, op_src + len - sizeof(op_iv),
    588 				    sizeof(op_iv));
    589 			}
    590 		}
    591 	}
    592 
    593 	/* All AES processing has now been done. */
    594 
    595 	memset(sc->sc_dma.dma_vaddr, 0, xlen * 2);
    596 out:
    597 	crp->crp_etype = err;
    598 	crypto_done(crp);
    599 	splx(s);
    600 	return (err);
    601 }
    602 
    603 int
    604 glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
    605 {
    606 	int rc;
    607 
    608 	dma->dma_nsegs = 1;
    609 	dma->dma_size = size;
    610 
    611 	rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
    612 	    0, BUS_DMA_NOWAIT, &dma->dma_map);
    613 	if (rc != 0) {
    614 		aprint_error_dev(sc->sc_dev,
    615 		    "couldn't create DMA map for %d bytes (%d)\n", size, rc);
    616 
    617 		goto fail0;
    618 	}
    619 
    620 	rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
    621 	    &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
    622 	if (rc != 0) {
    623 		aprint_error_dev(sc->sc_dev,
    624 		    "couldn't allocate DMA memory of %d bytes (%d)\n",
    625 		    size, rc);
    626 
    627 		goto fail1;
    628 	}
    629 
    630 	rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
    631 	    &dma->dma_vaddr, BUS_DMA_NOWAIT);
    632 	if (rc != 0) {
    633 		aprint_error_dev(sc->sc_dev,
    634 		    "couldn't map DMA memory for %d bytes (%d)\n", size, rc);
    635 
    636 		goto fail2;
    637 	}
    638 
    639 	rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
    640 	    size, NULL, BUS_DMA_NOWAIT);
    641 	if (rc != 0) {
    642 		aprint_error_dev(sc->sc_dev,
    643 		    "couldn't load DMA memory for %d bytes (%d)\n", size, rc);
    644 
    645 		goto fail3;
    646 	}
    647 
    648 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
    649 
    650 	return 0;
    651 
    652 fail3:
    653 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
    654 fail2:
    655 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    656 fail1:
    657 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    658 fail0:
    659 	return rc;
    660 }
    661 
    662 void
    663 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    664 {
    665 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    666 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    667 }
    668 
    669 void
    670 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    671 {
    672 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    673 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    674 }
    675 
    676 void
    677 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    678 {
    679 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
    680 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
    681 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    682 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    683 }
    684