glxsb.c revision 1.14 1 /* $NetBSD: glxsb.c,v 1.14 2016/07/14 10:19:05 msaitoh Exp $ */
2 /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
3
4 /*
5 * Copyright (c) 2006 Tom Cosgrove <tom (at) openbsd.org>
6 * Copyright (c) 2003, 2004 Theo de Raadt
7 * Copyright (c) 2003 Jason Wright
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*
23 * Driver for the security block on the AMD Geode LX processors
24 * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
25 */
26
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.14 2016/07/14 10:19:05 msaitoh Exp $");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/device.h>
33 #include <sys/malloc.h>
34 #include <sys/mbuf.h>
35 #include <sys/types.h>
36 #include <sys/callout.h>
37 #include <sys/bus.h>
38 #include <sys/cprng.h>
39 #include <sys/rndsource.h>
40
41 #include <machine/cpufunc.h>
42
43 #include <dev/pci/pcivar.h>
44 #include <dev/pci/pcidevs.h>
45
46 #include <opencrypto/cryptodev.h>
47 #include <crypto/rijndael/rijndael.h>
48
49 #define SB_GLD_MSR_CAP 0x58002000 /* RO - Capabilities */
50 #define SB_GLD_MSR_CONFIG 0x58002001 /* RW - Master Config */
51 #define SB_GLD_MSR_SMI 0x58002002 /* RW - SMI */
52 #define SB_GLD_MSR_ERROR 0x58002003 /* RW - Error */
53 #define SB_GLD_MSR_PM 0x58002004 /* RW - Power Mgmt */
54 #define SB_GLD_MSR_DIAG 0x58002005 /* RW - Diagnostic */
55 #define SB_GLD_MSR_CTRL 0x58002006 /* RW - Security Block Cntrl */
56
57 /* For GLD_MSR_CTRL: */
58 #define SB_GMC_DIV0 0x0000 /* AES update divisor values */
59 #define SB_GMC_DIV1 0x0001
60 #define SB_GMC_DIV2 0x0002
61 #define SB_GMC_DIV3 0x0003
62 #define SB_GMC_DIV_MASK 0x0003
63 #define SB_GMC_SBI 0x0004 /* AES swap bits */
64 #define SB_GMC_SBY 0x0008 /* AES swap bytes */
65 #define SB_GMC_TW 0x0010 /* Time write (EEPROM) */
66 #define SB_GMC_T_SEL0 0x0000 /* RNG post-proc: none */
67 #define SB_GMC_T_SEL1 0x0100 /* RNG post-proc: LFSR */
68 #define SB_GMC_T_SEL2 0x0200 /* RNG post-proc: whitener */
69 #define SB_GMC_T_SEL3 0x0300 /* RNG LFSR+whitener */
70 #define SB_GMC_T_SEL_MASK 0x0300
71 #define SB_GMC_T_NE 0x0400 /* Noise (generator) Enable */
72 #define SB_GMC_T_TM 0x0800 /* RNG test mode */
73 /* (deterministic) */
74
75 /* Security Block configuration/control registers (offsets from base) */
76
77 #define SB_CTL_A 0x0000 /* RW - SB Control A */
78 #define SB_CTL_B 0x0004 /* RW - SB Control B */
79 #define SB_AES_INT 0x0008 /* RW - SB AES Interrupt */
80 #define SB_SOURCE_A 0x0010 /* RW - Source A */
81 #define SB_DEST_A 0x0014 /* RW - Destination A */
82 #define SB_LENGTH_A 0x0018 /* RW - Length A */
83 #define SB_SOURCE_B 0x0020 /* RW - Source B */
84 #define SB_DEST_B 0x0024 /* RW - Destination B */
85 #define SB_LENGTH_B 0x0028 /* RW - Length B */
86 #define SB_WKEY 0x0030 /* WO - Writable Key 0-3 */
87 #define SB_WKEY_0 0x0030 /* WO - Writable Key 0 */
88 #define SB_WKEY_1 0x0034 /* WO - Writable Key 1 */
89 #define SB_WKEY_2 0x0038 /* WO - Writable Key 2 */
90 #define SB_WKEY_3 0x003C /* WO - Writable Key 3 */
91 #define SB_CBC_IV 0x0040 /* RW - CBC IV 0-3 */
92 #define SB_CBC_IV_0 0x0040 /* RW - CBC IV 0 */
93 #define SB_CBC_IV_1 0x0044 /* RW - CBC IV 1 */
94 #define SB_CBC_IV_2 0x0048 /* RW - CBC IV 2 */
95 #define SB_CBC_IV_3 0x004C /* RW - CBC IV 3 */
96 #define SB_RANDOM_NUM 0x0050 /* RW - Random Number */
97 #define SB_RANDOM_NUM_STATUS 0x0054 /* RW - Random Number Status */
98 #define SB_EEPROM_COMM 0x0800 /* RW - EEPROM Command */
99 #define SB_EEPROM_ADDR 0x0804 /* RW - EEPROM Address */
100 #define SB_EEPROM_DATA 0x0808 /* RW - EEPROM Data */
101 #define SB_EEPROM_SEC_STATE 0x080C /* RW - EEPROM Security State */
102
103 /* For SB_CTL_A and _B */
104 #define SB_CTL_ST 0x0001 /* Start operation (enc/dec) */
105 #define SB_CTL_ENC 0x0002 /* Encrypt (0 is decrypt) */
106 #define SB_CTL_DEC 0x0000 /* Decrypt */
107 #define SB_CTL_WK 0x0004 /* Use writable key (we set) */
108 #define SB_CTL_DC 0x0008 /* Destination coherent */
109 #define SB_CTL_SC 0x0010 /* Source coherent */
110 #define SB_CTL_CBC 0x0020 /* CBC (0 is ECB) */
111
112 /* For SB_AES_INT */
113 #define SB_AI_DISABLE_AES_A 0x0001 /* Disable AES A compl int */
114 #define SB_AI_ENABLE_AES_A 0x0000 /* Enable AES A compl int */
115 #define SB_AI_DISABLE_AES_B 0x0002 /* Disable AES B compl int */
116 #define SB_AI_ENABLE_AES_B 0x0000 /* Enable AES B compl int */
117 #define SB_AI_DISABLE_EEPROM 0x0004 /* Disable EEPROM op comp int */
118 #define SB_AI_ENABLE_EEPROM 0x0000 /* Enable EEPROM op compl int */
119 #define SB_AI_AES_A_COMPLETE 0x0100 /* AES A operation complete */
120 #define SB_AI_AES_B_COMPLETE 0x0200 /* AES B operation complete */
121 #define SB_AI_EEPROM_COMPLETE 0x0400 /* EEPROM operation complete */
122
123 #define SB_RNS_TRNG_VALID 0x0001 /* in SB_RANDOM_NUM_STATUS */
124
125 #define SB_MEM_SIZE 0x0810 /* Size of memory block */
126
127 #define SB_AES_ALIGN 0x0010 /* Source and dest buffers */
128 /* must be 16-byte aligned */
129 #define SB_AES_BLOCK_SIZE 0x0010
130
131 /*
132 * The Geode LX security block AES acceleration doesn't perform scatter-
133 * gather: it just takes source and destination addresses. Therefore the
134 * plain- and ciphertexts need to be contiguous. To this end, we allocate
135 * a buffer for both, and accept the overhead of copying in and out. If
136 * the number of bytes in one operation is bigger than allowed for by the
137 * buffer (buffer is twice the size of the max length, as it has both input
138 * and output) then we have to perform multiple encryptions/decryptions.
139 */
140 #define GLXSB_MAX_AES_LEN 16384
141
142 struct glxsb_dma_map {
143 bus_dmamap_t dma_map;
144 bus_dma_segment_t dma_seg;
145 int dma_nsegs;
146 int dma_size;
147 void * dma_vaddr;
148 uint32_t dma_paddr;
149 };
150 struct glxsb_session {
151 uint32_t ses_key[4];
152 uint8_t ses_iv[SB_AES_BLOCK_SIZE];
153 int ses_klen;
154 int ses_used;
155 };
156
157 struct glxsb_softc {
158 device_t sc_dev;
159 bus_space_tag_t sc_iot;
160 bus_space_handle_t sc_ioh;
161 struct callout sc_co;
162
163 bus_dma_tag_t sc_dmat;
164 struct glxsb_dma_map sc_dma;
165 int32_t sc_cid;
166 int sc_nsessions;
167 struct glxsb_session *sc_sessions;
168
169 krndsource_t sc_rnd_source;
170 };
171
172 int glxsb_match(device_t, cfdata_t, void *);
173 void glxsb_attach(device_t, device_t, void *);
174 void glxsb_rnd(void *);
175
176 CFATTACH_DECL_NEW(glxsb, sizeof(struct glxsb_softc),
177 glxsb_match, glxsb_attach, NULL, NULL);
178
179 #define GLXSB_SESSION(sid) ((sid) & 0x0fffffff)
180 #define GLXSB_SID(crd,ses) (((crd) << 28) | ((ses) & 0x0fffffff))
181
182 int glxsb_crypto_setup(struct glxsb_softc *);
183 int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *);
184 int glxsb_crypto_process(void *, struct cryptop *, int);
185 int glxsb_crypto_freesession(void *, uint64_t);
186 static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
187 uint32_t, void *, int, void *);
188
189 int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
190 void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
191 void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
192 void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
193
194 int
195 glxsb_match(device_t parent, cfdata_t match, void *aux)
196 {
197 struct pci_attach_args *pa = aux;
198
199 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
200 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES)
201 return (1);
202
203 return (0);
204 }
205
206 void
207 glxsb_attach(device_t parent, device_t self, void *aux)
208 {
209 struct glxsb_softc *sc = device_private(self);
210 struct pci_attach_args *pa = aux;
211 bus_addr_t membase;
212 bus_size_t memsize;
213 uint64_t msr;
214 uint32_t intr;
215
216 msr = rdmsr(SB_GLD_MSR_CAP);
217 if ((msr & 0xFFFF00) != 0x130400) {
218 aprint_error(": unknown ID 0x%x\n",
219 (int)((msr & 0xFFFF00) >> 16));
220 return;
221 }
222
223 /* printf(": revision %d", (int) (msr & 0xFF)); */
224
225 /* Map in the security block configuration/control registers */
226 if (pci_mapreg_map(pa, PCI_MAPREG_START,
227 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
228 &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) {
229 aprint_error(": can't find mem space\n");
230 return;
231 }
232
233 sc->sc_dev = self;
234
235 /*
236 * Configure the Security Block.
237 *
238 * We want to enable the noise generator (T_NE), and enable the
239 * linear feedback shift register and whitener post-processing
240 * (T_SEL = 3). Also ensure that test mode (deterministic values)
241 * is disabled.
242 */
243 msr = rdmsr(SB_GLD_MSR_CTRL);
244 msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
245 msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
246 #if 0
247 msr |= SB_GMC_SBI | SB_GMC_SBY; /* for AES, if necessary */
248 #endif
249 wrmsr(SB_GLD_MSR_CTRL, msr);
250
251 rnd_attach_source(&sc->sc_rnd_source, device_xname(self),
252 RND_TYPE_RNG, RND_FLAG_COLLECT_VALUE);
253
254 /* Install a periodic collector for the "true" (AMD's word) RNG */
255 callout_init(&sc->sc_co, 0);
256 callout_setfunc(&sc->sc_co, glxsb_rnd, sc);
257 glxsb_rnd(sc);
258 aprint_normal(": RNG");
259
260 /* We don't have an interrupt handler, so disable completion INTs */
261 intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
262 SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
263 SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
264 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
265
266 sc->sc_dmat = pa->pa_dmat;
267
268 if (glxsb_crypto_setup(sc))
269 aprint_normal(" AES");
270
271 aprint_normal("\n");
272 }
273
274 void
275 glxsb_rnd(void *v)
276 {
277 struct glxsb_softc *sc = v;
278 uint32_t status, value;
279 extern int hz;
280
281 status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
282 if (status & SB_RNS_TRNG_VALID) {
283 value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
284 rnd_add_data(&sc->sc_rnd_source, &value, sizeof(value),
285 sizeof(value) * NBBY);
286 }
287
288 callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1);
289 }
290
291 int
292 glxsb_crypto_setup(struct glxsb_softc *sc)
293 {
294
295 /* Allocate a contiguous DMA-able buffer to work in */
296 if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
297 return 0;
298
299 sc->sc_cid = crypto_get_driverid(0);
300 if (sc->sc_cid < 0)
301 return 0;
302
303 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
304 glxsb_crypto_newsession, glxsb_crypto_freesession,
305 glxsb_crypto_process, sc);
306
307 sc->sc_nsessions = 0;
308
309 return 1;
310 }
311
312 int
313 glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri)
314 {
315 struct glxsb_softc *sc = aux;
316 struct glxsb_session *ses = NULL;
317 int sesn;
318
319 if (sc == NULL || sidp == NULL || cri == NULL ||
320 cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC ||
321 cri->cri_klen != 128)
322 return (EINVAL);
323
324 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
325 if (sc->sc_sessions[sesn].ses_used == 0) {
326 ses = &sc->sc_sessions[sesn];
327 break;
328 }
329 }
330
331 if (ses == NULL) {
332 sesn = sc->sc_nsessions;
333 ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT);
334 if (ses == NULL)
335 return (ENOMEM);
336 if (sesn != 0) {
337 memcpy(ses, sc->sc_sessions, sesn * sizeof(*ses));
338 memset(sc->sc_sessions, 0, sesn * sizeof(*ses));
339 free(sc->sc_sessions, M_DEVBUF);
340 }
341 sc->sc_sessions = ses;
342 ses = &sc->sc_sessions[sesn];
343 sc->sc_nsessions++;
344 }
345
346 memset(ses, 0, sizeof(*ses));
347 ses->ses_used = 1;
348
349 cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
350 ses->ses_klen = cri->cri_klen;
351
352 /* Copy the key (Geode LX wants the primary key only) */
353 memcpy(ses->ses_key, cri->cri_key, sizeof(ses->ses_key));
354
355 *sidp = GLXSB_SID(0, sesn);
356 return (0);
357 }
358
359 int
360 glxsb_crypto_freesession(void *aux, uint64_t tid)
361 {
362 struct glxsb_softc *sc = aux;
363 int sesn;
364 uint32_t sid = ((uint32_t)tid) & 0xffffffff;
365
366 if (sc == NULL)
367 return (EINVAL);
368 sesn = GLXSB_SESSION(sid);
369 if (sesn >= sc->sc_nsessions)
370 return (EINVAL);
371 memset(&sc->sc_sessions[sesn], 0, sizeof(sc->sc_sessions[sesn]));
372 return (0);
373 }
374
375 /*
376 * Must be called at splnet() or higher
377 */
378 static __inline void
379 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
380 uint32_t pdst, void *key, int len, void *iv)
381 {
382 uint32_t status;
383 int i;
384
385 if (len & 0xF) {
386 printf("%s: len must be a multiple of 16 (not %d)\n",
387 device_xname(sc->sc_dev), len);
388 return;
389 }
390
391 /* Set the source */
392 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
393
394 /* Set the destination address */
395 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
396
397 /* Set the data length */
398 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
399
400 /* Set the IV */
401 if (iv != NULL) {
402 bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
403 SB_CBC_IV, iv, 4);
404 control |= SB_CTL_CBC;
405 }
406
407 /* Set the key */
408 bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
409
410 /* Ask the security block to do it */
411 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
412 control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
413
414 /*
415 * Now wait until it is done.
416 *
417 * We do a busy wait. Obviously the number of iterations of
418 * the loop required to perform the AES operation depends upon
419 * the number of bytes to process.
420 *
421 * On a 500 MHz Geode LX we see
422 *
423 * length (bytes) typical max iterations
424 * 16 12
425 * 64 22
426 * 256 59
427 * 1024 212
428 * 8192 1,537
429 *
430 * Since we have a maximum size of operation defined in
431 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
432 * to wait. Allow an order of magnitude longer than it should
433 * really take, just in case.
434 */
435 for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
436 status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
437
438 if ((status & SB_CTL_ST) == 0) /* Done */
439 return;
440 }
441
442 aprint_error_dev(sc->sc_dev, "operation failed to complete\n");
443 }
444
445 int
446 glxsb_crypto_process(void *aux, struct cryptop *crp, int hint)
447 {
448 struct glxsb_softc *sc = aux;
449 struct glxsb_session *ses;
450 struct cryptodesc *crd;
451 char *op_src, *op_dst;
452 uint32_t op_psrc, op_pdst;
453 uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
454 int sesn, err = 0;
455 int len, tlen, xlen;
456 int offset;
457 uint32_t control;
458 int s;
459
460 s = splnet();
461
462 if (crp == NULL || crp->crp_callback == NULL) {
463 err = EINVAL;
464 goto out;
465 }
466 crd = crp->crp_desc;
467 if (crd == NULL || crd->crd_next != NULL ||
468 crd->crd_alg != CRYPTO_AES_CBC ||
469 (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
470 err = EINVAL;
471 goto out;
472 }
473
474 sesn = GLXSB_SESSION(crp->crp_sid);
475 if (sesn >= sc->sc_nsessions) {
476 err = EINVAL;
477 goto out;
478 }
479 ses = &sc->sc_sessions[sesn];
480
481 /* How much of our buffer will we need to use? */
482 xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
483 GLXSB_MAX_AES_LEN : crd->crd_len;
484
485 /*
486 * XXX Check if we can have input == output on Geode LX.
487 * XXX In the meantime, use two separate (adjacent) buffers.
488 */
489 op_src = sc->sc_dma.dma_vaddr;
490 op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
491
492 op_psrc = sc->sc_dma.dma_paddr;
493 op_pdst = sc->sc_dma.dma_paddr + xlen;
494
495 if (crd->crd_flags & CRD_F_ENCRYPT) {
496 control = SB_CTL_ENC;
497 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
498 memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
499 else
500 memcpy(op_iv, ses->ses_iv, sizeof(op_iv));
501
502 if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
503 if (crp->crp_flags & CRYPTO_F_IMBUF)
504 m_copyback((struct mbuf *)crp->crp_buf,
505 crd->crd_inject, sizeof(op_iv), op_iv);
506 else if (crp->crp_flags & CRYPTO_F_IOV)
507 cuio_copyback((struct uio *)crp->crp_buf,
508 crd->crd_inject, sizeof(op_iv), op_iv);
509 else
510 bcopy(op_iv,
511 (char *)crp->crp_buf + crd->crd_inject,
512 sizeof(op_iv));
513 }
514 } else {
515 control = SB_CTL_DEC;
516 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
517 memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
518 else {
519 if (crp->crp_flags & CRYPTO_F_IMBUF)
520 m_copydata((struct mbuf *)crp->crp_buf,
521 crd->crd_inject, sizeof(op_iv), op_iv);
522 else if (crp->crp_flags & CRYPTO_F_IOV)
523 cuio_copydata((struct uio *)crp->crp_buf,
524 crd->crd_inject, sizeof(op_iv), op_iv);
525 else
526 bcopy((char *)crp->crp_buf + crd->crd_inject,
527 op_iv, sizeof(op_iv));
528 }
529 }
530
531 offset = 0;
532 tlen = crd->crd_len;
533 piv = op_iv;
534
535 /* Process the data in GLXSB_MAX_AES_LEN chunks */
536 while (tlen > 0) {
537 len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
538
539 if (crp->crp_flags & CRYPTO_F_IMBUF)
540 m_copydata((struct mbuf *)crp->crp_buf,
541 crd->crd_skip + offset, len, op_src);
542 else if (crp->crp_flags & CRYPTO_F_IOV)
543 cuio_copydata((struct uio *)crp->crp_buf,
544 crd->crd_skip + offset, len, op_src);
545 else
546 bcopy((char *)crp->crp_buf + crd->crd_skip + offset,
547 op_src, len);
548
549 glxsb_dma_pre_op(sc, &sc->sc_dma);
550
551 glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
552 len, op_iv);
553
554 glxsb_dma_post_op(sc, &sc->sc_dma);
555
556 if (crp->crp_flags & CRYPTO_F_IMBUF)
557 m_copyback((struct mbuf *)crp->crp_buf,
558 crd->crd_skip + offset, len, op_dst);
559 else if (crp->crp_flags & CRYPTO_F_IOV)
560 cuio_copyback((struct uio *)crp->crp_buf,
561 crd->crd_skip + offset, len, op_dst);
562 else
563 memcpy((char *)crp->crp_buf + crd->crd_skip + offset,
564 op_dst, len);
565
566 offset += len;
567 tlen -= len;
568
569 if (tlen <= 0) { /* Ideally, just == 0 */
570 /* Finished - put the IV in session IV */
571 piv = ses->ses_iv;
572 }
573
574 /*
575 * Copy out last block for use as next iteration/session IV.
576 *
577 * piv is set to op_iv[] before the loop starts, but is
578 * set to ses->ses_iv if we're going to exit the loop this
579 * time.
580 */
581 if (crd->crd_flags & CRD_F_ENCRYPT) {
582 memcpy(piv, op_dst + len - sizeof(op_iv),
583 sizeof(op_iv));
584 } else {
585 /* Decryption, only need this if another iteration */
586 if (tlen > 0) {
587 memcpy(piv, op_src + len - sizeof(op_iv),
588 sizeof(op_iv));
589 }
590 }
591 }
592
593 /* All AES processing has now been done. */
594
595 memset(sc->sc_dma.dma_vaddr, 0, xlen * 2);
596 out:
597 crp->crp_etype = err;
598 crypto_done(crp);
599 splx(s);
600 return (err);
601 }
602
603 int
604 glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
605 {
606 int rc;
607
608 dma->dma_nsegs = 1;
609 dma->dma_size = size;
610
611 rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
612 0, BUS_DMA_NOWAIT, &dma->dma_map);
613 if (rc != 0) {
614 aprint_error_dev(sc->sc_dev,
615 "couldn't create DMA map for %d bytes (%d)\n", size, rc);
616
617 goto fail0;
618 }
619
620 rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
621 &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
622 if (rc != 0) {
623 aprint_error_dev(sc->sc_dev,
624 "couldn't allocate DMA memory of %d bytes (%d)\n",
625 size, rc);
626
627 goto fail1;
628 }
629
630 rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
631 &dma->dma_vaddr, BUS_DMA_NOWAIT);
632 if (rc != 0) {
633 aprint_error_dev(sc->sc_dev,
634 "couldn't map DMA memory for %d bytes (%d)\n", size, rc);
635
636 goto fail2;
637 }
638
639 rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
640 size, NULL, BUS_DMA_NOWAIT);
641 if (rc != 0) {
642 aprint_error_dev(sc->sc_dev,
643 "couldn't load DMA memory for %d bytes (%d)\n", size, rc);
644
645 goto fail3;
646 }
647
648 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
649
650 return 0;
651
652 fail3:
653 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
654 fail2:
655 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
656 fail1:
657 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
658 fail0:
659 return rc;
660 }
661
662 void
663 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
664 {
665 bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
666 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
667 }
668
669 void
670 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
671 {
672 bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
673 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
674 }
675
676 void
677 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
678 {
679 bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
680 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
681 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
682 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
683 }
684