glxsb.c revision 1.2.14.1 1 /* $NetBSD: glxsb.c,v 1.2.14.1 2008/01/09 01:46:46 matt Exp $ */
2
3 /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
4
5 /*
6 * Copyright (c) 2006 Tom Cosgrove <tom (at) openbsd.org>
7 * Copyright (c) 2003, 2004 Theo de Raadt
8 * Copyright (c) 2003 Jason Wright
9 *
10 * Permission to use, copy, modify, and distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23 /*
24 * Driver for the security block on the AMD Geode LX processors
25 * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.2.14.1 2008/01/09 01:46:46 matt Exp $");
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/device.h>
34 #include <sys/malloc.h>
35 #include <sys/mbuf.h>
36 #include <sys/types.h>
37 #include <sys/callout.h>
38 #include <sys/rnd.h>
39 #include <sys/bus.h>
40
41 #include <machine/cpufunc.h>
42
43 #include <dev/pci/pcivar.h>
44 #include <dev/pci/pcidevs.h>
45
46 #include <opencrypto/cryptodev.h>
47 #include <crypto/rijndael/rijndael.h>
48
49 #define SB_GLD_MSR_CAP 0x58002000 /* RO - Capabilities */
50 #define SB_GLD_MSR_CONFIG 0x58002001 /* RW - Master Config */
51 #define SB_GLD_MSR_SMI 0x58002002 /* RW - SMI */
52 #define SB_GLD_MSR_ERROR 0x58002003 /* RW - Error */
53 #define SB_GLD_MSR_PM 0x58002004 /* RW - Power Mgmt */
54 #define SB_GLD_MSR_DIAG 0x58002005 /* RW - Diagnostic */
55 #define SB_GLD_MSR_CTRL 0x58002006 /* RW - Security Block Cntrl */
56
57 /* For GLD_MSR_CTRL: */
58 #define SB_GMC_DIV0 0x0000 /* AES update divisor values */
59 #define SB_GMC_DIV1 0x0001
60 #define SB_GMC_DIV2 0x0002
61 #define SB_GMC_DIV3 0x0003
62 #define SB_GMC_DIV_MASK 0x0003
63 #define SB_GMC_SBI 0x0004 /* AES swap bits */
64 #define SB_GMC_SBY 0x0008 /* AES swap bytes */
65 #define SB_GMC_TW 0x0010 /* Time write (EEPROM) */
66 #define SB_GMC_T_SEL0 0x0000 /* RNG post-proc: none */
67 #define SB_GMC_T_SEL1 0x0100 /* RNG post-proc: LFSR */
68 #define SB_GMC_T_SEL2 0x0200 /* RNG post-proc: whitener */
69 #define SB_GMC_T_SEL3 0x0300 /* RNG LFSR+whitener */
70 #define SB_GMC_T_SEL_MASK 0x0300
71 #define SB_GMC_T_NE 0x0400 /* Noise (generator) Enable */
72 #define SB_GMC_T_TM 0x0800 /* RNG test mode */
73 /* (deterministic) */
74
75 /* Security Block configuration/control registers (offsets from base) */
76
77 #define SB_CTL_A 0x0000 /* RW - SB Control A */
78 #define SB_CTL_B 0x0004 /* RW - SB Control B */
79 #define SB_AES_INT 0x0008 /* RW - SB AES Interrupt */
80 #define SB_SOURCE_A 0x0010 /* RW - Source A */
81 #define SB_DEST_A 0x0014 /* RW - Destination A */
82 #define SB_LENGTH_A 0x0018 /* RW - Length A */
83 #define SB_SOURCE_B 0x0020 /* RW - Source B */
84 #define SB_DEST_B 0x0024 /* RW - Destination B */
85 #define SB_LENGTH_B 0x0028 /* RW - Length B */
86 #define SB_WKEY 0x0030 /* WO - Writable Key 0-3 */
87 #define SB_WKEY_0 0x0030 /* WO - Writable Key 0 */
88 #define SB_WKEY_1 0x0034 /* WO - Writable Key 1 */
89 #define SB_WKEY_2 0x0038 /* WO - Writable Key 2 */
90 #define SB_WKEY_3 0x003C /* WO - Writable Key 3 */
91 #define SB_CBC_IV 0x0040 /* RW - CBC IV 0-3 */
92 #define SB_CBC_IV_0 0x0040 /* RW - CBC IV 0 */
93 #define SB_CBC_IV_1 0x0044 /* RW - CBC IV 1 */
94 #define SB_CBC_IV_2 0x0048 /* RW - CBC IV 2 */
95 #define SB_CBC_IV_3 0x004C /* RW - CBC IV 3 */
96 #define SB_RANDOM_NUM 0x0050 /* RW - Random Number */
97 #define SB_RANDOM_NUM_STATUS 0x0054 /* RW - Random Number Status */
98 #define SB_EEPROM_COMM 0x0800 /* RW - EEPROM Command */
99 #define SB_EEPROM_ADDR 0x0804 /* RW - EEPROM Address */
100 #define SB_EEPROM_DATA 0x0808 /* RW - EEPROM Data */
101 #define SB_EEPROM_SEC_STATE 0x080C /* RW - EEPROM Security State */
102
103 /* For SB_CTL_A and _B */
104 #define SB_CTL_ST 0x0001 /* Start operation (enc/dec) */
105 #define SB_CTL_ENC 0x0002 /* Encrypt (0 is decrypt) */
106 #define SB_CTL_DEC 0x0000 /* Decrypt */
107 #define SB_CTL_WK 0x0004 /* Use writable key (we set) */
108 #define SB_CTL_DC 0x0008 /* Destination coherent */
109 #define SB_CTL_SC 0x0010 /* Source coherent */
110 #define SB_CTL_CBC 0x0020 /* CBC (0 is ECB) */
111
112 /* For SB_AES_INT */
113 #define SB_AI_DISABLE_AES_A 0x0001 /* Disable AES A compl int */
114 #define SB_AI_ENABLE_AES_A 0x0000 /* Enable AES A compl int */
115 #define SB_AI_DISABLE_AES_B 0x0002 /* Disable AES B compl int */
116 #define SB_AI_ENABLE_AES_B 0x0000 /* Enable AES B compl int */
117 #define SB_AI_DISABLE_EEPROM 0x0004 /* Disable EEPROM op comp int */
118 #define SB_AI_ENABLE_EEPROM 0x0000 /* Enable EEPROM op compl int */
119 #define SB_AI_AES_A_COMPLETE 0x0100 /* AES A operation complete */
120 #define SB_AI_AES_B_COMPLETE 0x0200 /* AES B operation complete */
121 #define SB_AI_EEPROM_COMPLETE 0x0400 /* EEPROM operation complete */
122
123 #define SB_RNS_TRNG_VALID 0x0001 /* in SB_RANDOM_NUM_STATUS */
124
125 #define SB_MEM_SIZE 0x0810 /* Size of memory block */
126
127 #define SB_AES_ALIGN 0x0010 /* Source and dest buffers */
128 /* must be 16-byte aligned */
129 #define SB_AES_BLOCK_SIZE 0x0010
130
131 /*
132 * The Geode LX security block AES acceleration doesn't perform scatter-
133 * gather: it just takes source and destination addresses. Therefore the
134 * plain- and ciphertexts need to be contiguous. To this end, we allocate
135 * a buffer for both, and accept the overhead of copying in and out. If
136 * the number of bytes in one operation is bigger than allowed for by the
137 * buffer (buffer is twice the size of the max length, as it has both input
138 * and output) then we have to perform multiple encryptions/decryptions.
139 */
140 #define GLXSB_MAX_AES_LEN 16384
141
142 struct glxsb_dma_map {
143 bus_dmamap_t dma_map;
144 bus_dma_segment_t dma_seg;
145 int dma_nsegs;
146 int dma_size;
147 void * dma_vaddr;
148 uint32_t dma_paddr;
149 };
150 struct glxsb_session {
151 uint32_t ses_key[4];
152 uint8_t ses_iv[SB_AES_BLOCK_SIZE];
153 int ses_klen;
154 int ses_used;
155 };
156
157 struct glxsb_softc {
158 struct device sc_dev;
159 bus_space_tag_t sc_iot;
160 bus_space_handle_t sc_ioh;
161 struct callout sc_co;
162
163 bus_dma_tag_t sc_dmat;
164 struct glxsb_dma_map sc_dma;
165 int32_t sc_cid;
166 int sc_nsessions;
167 struct glxsb_session *sc_sessions;
168
169 rndsource_element_t sc_rnd_source;
170 };
171
172 int glxsb_match(struct device *, struct cfdata *, void *);
173 void glxsb_attach(struct device *, struct device *, void *);
174 void glxsb_rnd(void *);
175
176 CFATTACH_DECL(glxsb, sizeof(struct glxsb_softc), glxsb_match, glxsb_attach,
177 NULL, NULL);
178
179 #define GLXSB_SESSION(sid) ((sid) & 0x0fffffff)
180 #define GLXSB_SID(crd,ses) (((crd) << 28) | ((ses) & 0x0fffffff))
181
182 int glxsb_crypto_setup(struct glxsb_softc *);
183 int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *);
184 int glxsb_crypto_process(void *, struct cryptop *, int);
185 int glxsb_crypto_freesession(void *, uint64_t);
186 static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
187 uint32_t, void *, int, void *);
188
189 int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
190 void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
191 void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
192 void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
193
194 int
195 glxsb_match(struct device *parent, struct cfdata *match, void *aux)
196 {
197 struct pci_attach_args *pa = aux;
198
199 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
200 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES)
201 return (1);
202
203 return (0);
204 }
205
206 void
207 glxsb_attach(struct device *parent, struct device *self, void *aux)
208 {
209 struct glxsb_softc *sc = (void *) self;
210 struct pci_attach_args *pa = aux;
211 bus_addr_t membase;
212 bus_size_t memsize;
213 uint64_t msr;
214 uint32_t intr;
215
216 msr = rdmsr(SB_GLD_MSR_CAP);
217 if ((msr & 0xFFFF00) != 0x130400) {
218 printf(": unknown ID 0x%x\n", (int) ((msr & 0xFFFF00) >> 16));
219 return;
220 }
221
222 /* printf(": revision %d", (int) (msr & 0xFF)); */
223
224 /* Map in the security block configuration/control registers */
225 if (pci_mapreg_map(pa, PCI_MAPREG_START,
226 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
227 &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) {
228 printf(": can't find mem space\n");
229 return;
230 }
231
232 /*
233 * Configure the Security Block.
234 *
235 * We want to enable the noise generator (T_NE), and enable the
236 * linear feedback shift register and whitener post-processing
237 * (T_SEL = 3). Also ensure that test mode (deterministic values)
238 * is disabled.
239 */
240 msr = rdmsr(SB_GLD_MSR_CTRL);
241 msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
242 msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
243 #if 0
244 msr |= SB_GMC_SBI | SB_GMC_SBY; /* for AES, if necessary */
245 #endif
246 wrmsr(SB_GLD_MSR_CTRL, msr);
247
248 rnd_attach_source(&sc->sc_rnd_source, sc->sc_dev.dv_xname,
249 RND_TYPE_RNG, RND_FLAG_NO_ESTIMATE);
250
251 /* Install a periodic collector for the "true" (AMD's word) RNG */
252 callout_init(&sc->sc_co, 0);
253 callout_setfunc(&sc->sc_co, glxsb_rnd, sc);
254 glxsb_rnd(sc);
255 printf(": RNG");
256
257 /* We don't have an interrupt handler, so disable completion INTs */
258 intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
259 SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
260 SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
261 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
262
263 sc->sc_dmat = pa->pa_dmat;
264
265 if (glxsb_crypto_setup(sc))
266 printf(" AES");
267
268 printf("\n");
269 }
270
271 void
272 glxsb_rnd(void *v)
273 {
274 struct glxsb_softc *sc = v;
275 uint32_t status, value;
276 extern int hz;
277
278 status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
279 if (status & SB_RNS_TRNG_VALID) {
280 value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
281 rnd_add_uint32(&sc->sc_rnd_source, value);
282 }
283
284 callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1);
285 }
286
287 int
288 glxsb_crypto_setup(struct glxsb_softc *sc)
289 {
290
291 /* Allocate a contiguous DMA-able buffer to work in */
292 if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
293 return 0;
294
295 sc->sc_cid = crypto_get_driverid(0);
296 if (sc->sc_cid < 0)
297 return 0;
298
299 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
300 glxsb_crypto_newsession, glxsb_crypto_freesession,
301 glxsb_crypto_process, sc);
302
303 sc->sc_nsessions = 0;
304
305 return 1;
306 }
307
308 int
309 glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri)
310 {
311 struct glxsb_softc *sc = aux;
312 struct glxsb_session *ses = NULL;
313 int sesn;
314
315 if (sc == NULL || sidp == NULL || cri == NULL ||
316 cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC ||
317 cri->cri_klen != 128)
318 return (EINVAL);
319
320 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
321 if (sc->sc_sessions[sesn].ses_used == 0) {
322 ses = &sc->sc_sessions[sesn];
323 break;
324 }
325 }
326
327 if (ses == NULL) {
328 sesn = sc->sc_nsessions;
329 ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT);
330 if (ses == NULL)
331 return (ENOMEM);
332 if (sesn != 0) {
333 bcopy(sc->sc_sessions, ses, sesn * sizeof(*ses));
334 bzero(sc->sc_sessions, sesn * sizeof(*ses));
335 free(sc->sc_sessions, M_DEVBUF);
336 }
337 sc->sc_sessions = ses;
338 ses = &sc->sc_sessions[sesn];
339 sc->sc_nsessions++;
340 }
341
342 bzero(ses, sizeof(*ses));
343 ses->ses_used = 1;
344
345 arc4randbytes(ses->ses_iv, sizeof(ses->ses_iv));
346 ses->ses_klen = cri->cri_klen;
347
348 /* Copy the key (Geode LX wants the primary key only) */
349 bcopy(cri->cri_key, ses->ses_key, sizeof(ses->ses_key));
350
351 *sidp = GLXSB_SID(0, sesn);
352 return (0);
353 }
354
355 int
356 glxsb_crypto_freesession(void *aux, uint64_t tid)
357 {
358 struct glxsb_softc *sc = aux;
359 int sesn;
360 uint32_t sid = ((uint32_t)tid) & 0xffffffff;
361
362 if (sc == NULL)
363 return (EINVAL);
364 sesn = GLXSB_SESSION(sid);
365 if (sesn >= sc->sc_nsessions)
366 return (EINVAL);
367 bzero(&sc->sc_sessions[sesn], sizeof(sc->sc_sessions[sesn]));
368 return (0);
369 }
370
371 /*
372 * Must be called at splnet() or higher
373 */
374 static __inline void
375 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
376 uint32_t pdst, void *key, int len, void *iv)
377 {
378 uint32_t status;
379 int i;
380
381 if (len & 0xF) {
382 printf("%s: len must be a multiple of 16 (not %d)\n",
383 sc->sc_dev.dv_xname, len);
384 return;
385 }
386
387 /* Set the source */
388 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
389
390 /* Set the destination address */
391 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
392
393 /* Set the data length */
394 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
395
396 /* Set the IV */
397 if (iv != NULL) {
398 bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
399 SB_CBC_IV, iv, 4);
400 control |= SB_CTL_CBC;
401 }
402
403 /* Set the key */
404 bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
405
406 /* Ask the security block to do it */
407 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
408 control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
409
410 /*
411 * Now wait until it is done.
412 *
413 * We do a busy wait. Obviously the number of iterations of
414 * the loop required to perform the AES operation depends upon
415 * the number of bytes to process.
416 *
417 * On a 500 MHz Geode LX we see
418 *
419 * length (bytes) typical max iterations
420 * 16 12
421 * 64 22
422 * 256 59
423 * 1024 212
424 * 8192 1,537
425 *
426 * Since we have a maximum size of operation defined in
427 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
428 * to wait. Allow an order of magnitude longer than it should
429 * really take, just in case.
430 */
431 for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
432 status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
433
434 if ((status & SB_CTL_ST) == 0) /* Done */
435 return;
436 }
437
438 printf("%s: operation failed to complete\n", sc->sc_dev.dv_xname);
439 }
440
441 int
442 glxsb_crypto_process(void *aux, struct cryptop *crp, int hint)
443 {
444 struct glxsb_softc *sc = aux;
445 struct glxsb_session *ses;
446 struct cryptodesc *crd;
447 char *op_src, *op_dst;
448 uint32_t op_psrc, op_pdst;
449 uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
450 int sesn, err = 0;
451 int len, tlen, xlen;
452 int offset;
453 uint32_t control;
454 int s;
455
456 s = splnet();
457
458 if (crp == NULL || crp->crp_callback == NULL) {
459 err = EINVAL;
460 goto out;
461 }
462 crd = crp->crp_desc;
463 if (crd == NULL || crd->crd_next != NULL ||
464 crd->crd_alg != CRYPTO_AES_CBC ||
465 (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
466 err = EINVAL;
467 goto out;
468 }
469
470 sesn = GLXSB_SESSION(crp->crp_sid);
471 if (sesn >= sc->sc_nsessions) {
472 err = EINVAL;
473 goto out;
474 }
475 ses = &sc->sc_sessions[sesn];
476
477 /* How much of our buffer will we need to use? */
478 xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
479 GLXSB_MAX_AES_LEN : crd->crd_len;
480
481 /*
482 * XXX Check if we can have input == output on Geode LX.
483 * XXX In the meantime, use two separate (adjacent) buffers.
484 */
485 op_src = sc->sc_dma.dma_vaddr;
486 op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
487
488 op_psrc = sc->sc_dma.dma_paddr;
489 op_pdst = sc->sc_dma.dma_paddr + xlen;
490
491 if (crd->crd_flags & CRD_F_ENCRYPT) {
492 control = SB_CTL_ENC;
493 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
494 bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
495 else
496 bcopy(ses->ses_iv, op_iv, sizeof(op_iv));
497
498 if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
499 if (crp->crp_flags & CRYPTO_F_IMBUF)
500 m_copyback((struct mbuf *)crp->crp_buf,
501 crd->crd_inject, sizeof(op_iv), op_iv);
502 else if (crp->crp_flags & CRYPTO_F_IOV)
503 cuio_copyback((struct uio *)crp->crp_buf,
504 crd->crd_inject, sizeof(op_iv), op_iv);
505 else
506 bcopy(op_iv,
507 (char *)crp->crp_buf + crd->crd_inject,
508 sizeof(op_iv));
509 }
510 } else {
511 control = SB_CTL_DEC;
512 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
513 bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
514 else {
515 if (crp->crp_flags & CRYPTO_F_IMBUF)
516 m_copydata((struct mbuf *)crp->crp_buf,
517 crd->crd_inject, sizeof(op_iv), op_iv);
518 else if (crp->crp_flags & CRYPTO_F_IOV)
519 cuio_copydata((struct uio *)crp->crp_buf,
520 crd->crd_inject, sizeof(op_iv), op_iv);
521 else
522 bcopy((char *)crp->crp_buf + crd->crd_inject,
523 op_iv, sizeof(op_iv));
524 }
525 }
526
527 offset = 0;
528 tlen = crd->crd_len;
529 piv = op_iv;
530
531 /* Process the data in GLXSB_MAX_AES_LEN chunks */
532 while (tlen > 0) {
533 len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
534
535 if (crp->crp_flags & CRYPTO_F_IMBUF)
536 m_copydata((struct mbuf *)crp->crp_buf,
537 crd->crd_skip + offset, len, op_src);
538 else if (crp->crp_flags & CRYPTO_F_IOV)
539 cuio_copydata((struct uio *)crp->crp_buf,
540 crd->crd_skip + offset, len, op_src);
541 else
542 bcopy((char *)crp->crp_buf + crd->crd_skip + offset,
543 op_src, len);
544
545 glxsb_dma_pre_op(sc, &sc->sc_dma);
546
547 glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
548 len, op_iv);
549
550 glxsb_dma_post_op(sc, &sc->sc_dma);
551
552 if (crp->crp_flags & CRYPTO_F_IMBUF)
553 m_copyback((struct mbuf *)crp->crp_buf,
554 crd->crd_skip + offset, len, op_dst);
555 else if (crp->crp_flags & CRYPTO_F_IOV)
556 cuio_copyback((struct uio *)crp->crp_buf,
557 crd->crd_skip + offset, len, op_dst);
558 else
559 bcopy(op_dst, (char *)crp->crp_buf + crd->crd_skip + offset,
560 len);
561
562 offset += len;
563 tlen -= len;
564
565 if (tlen <= 0) { /* Ideally, just == 0 */
566 /* Finished - put the IV in session IV */
567 piv = ses->ses_iv;
568 }
569
570 /*
571 * Copy out last block for use as next iteration/session IV.
572 *
573 * piv is set to op_iv[] before the loop starts, but is
574 * set to ses->ses_iv if we're going to exit the loop this
575 * time.
576 */
577 if (crd->crd_flags & CRD_F_ENCRYPT) {
578 bcopy(op_dst + len - sizeof(op_iv), piv, sizeof(op_iv));
579 } else {
580 /* Decryption, only need this if another iteration */
581 if (tlen > 0) {
582 bcopy(op_src + len - sizeof(op_iv), piv,
583 sizeof(op_iv));
584 }
585 }
586 }
587
588 /* All AES processing has now been done. */
589
590 bzero(sc->sc_dma.dma_vaddr, xlen * 2);
591 out:
592 crp->crp_etype = err;
593 crypto_done(crp);
594 splx(s);
595 return (err);
596 }
597
598 int
599 glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
600 {
601 int rc;
602
603 dma->dma_nsegs = 1;
604 dma->dma_size = size;
605
606 rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
607 0, BUS_DMA_NOWAIT, &dma->dma_map);
608 if (rc != 0) {
609 printf("%s: couldn't create DMA map for %d bytes (%d)\n",
610 sc->sc_dev.dv_xname, size, rc);
611
612 goto fail0;
613 }
614
615 rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
616 &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
617 if (rc != 0) {
618 printf("%s: couldn't allocate DMA memory of %d bytes (%d)\n",
619 sc->sc_dev.dv_xname, size, rc);
620
621 goto fail1;
622 }
623
624 rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
625 &dma->dma_vaddr, BUS_DMA_NOWAIT);
626 if (rc != 0) {
627 printf("%s: couldn't map DMA memory for %d bytes (%d)\n",
628 sc->sc_dev.dv_xname, size, rc);
629
630 goto fail2;
631 }
632
633 rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
634 size, NULL, BUS_DMA_NOWAIT);
635 if (rc != 0) {
636 printf("%s: couldn't load DMA memory for %d bytes (%d)\n",
637 sc->sc_dev.dv_xname, size, rc);
638
639 goto fail3;
640 }
641
642 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
643
644 return 0;
645
646 fail3:
647 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
648 fail2:
649 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
650 fail1:
651 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
652 fail0:
653 return rc;
654 }
655
656 void
657 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
658 {
659 bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
660 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
661 }
662
663 void
664 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
665 {
666 bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
667 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
668 }
669
670 void
671 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
672 {
673 bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
674 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
675 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
676 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
677 }
678