Home | History | Annotate | Line # | Download | only in pci
glxsb.c revision 1.3
      1 /*	$NetBSD: glxsb.c,v 1.3 2007/12/11 12:00:55 lukem Exp $	*/
      2 /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2006 Tom Cosgrove <tom (at) openbsd.org>
      6  * Copyright (c) 2003, 2004 Theo de Raadt
      7  * Copyright (c) 2003 Jason Wright
      8  *
      9  * Permission to use, copy, modify, and distribute this software for any
     10  * purpose with or without fee is hereby granted, provided that the above
     11  * copyright notice and this permission notice appear in all copies.
     12  *
     13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     20  */
     21 
     22 /*
     23  * Driver for the security block on the AMD Geode LX processors
     24  * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
     25  */
     26 
     27 #include <sys/cdefs.h>
     28 __KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.3 2007/12/11 12:00:55 lukem Exp $");
     29 
     30 #include <sys/param.h>
     31 #include <sys/systm.h>
     32 #include <sys/device.h>
     33 #include <sys/malloc.h>
     34 #include <sys/mbuf.h>
     35 #include <sys/types.h>
     36 #include <sys/callout.h>
     37 #include <sys/rnd.h>
     38 
     39 #include <machine/bus.h>
     40 
     41 #include <dev/pci/pcivar.h>
     42 #include <dev/pci/pcidevs.h>
     43 
     44 #include <opencrypto/cryptodev.h>
     45 #include <crypto/rijndael/rijndael.h>
     46 
     47 #define SB_GLD_MSR_CAP		0x58002000	/* RO - Capabilities */
     48 #define SB_GLD_MSR_CONFIG	0x58002001	/* RW - Master Config */
     49 #define SB_GLD_MSR_SMI		0x58002002	/* RW - SMI */
     50 #define SB_GLD_MSR_ERROR	0x58002003	/* RW - Error */
     51 #define SB_GLD_MSR_PM		0x58002004	/* RW - Power Mgmt */
     52 #define SB_GLD_MSR_DIAG		0x58002005	/* RW - Diagnostic */
     53 #define SB_GLD_MSR_CTRL		0x58002006	/* RW - Security Block Cntrl */
     54 
     55 						/* For GLD_MSR_CTRL: */
     56 #define SB_GMC_DIV0		0x0000		/* AES update divisor values */
     57 #define SB_GMC_DIV1		0x0001
     58 #define SB_GMC_DIV2		0x0002
     59 #define SB_GMC_DIV3		0x0003
     60 #define SB_GMC_DIV_MASK		0x0003
     61 #define SB_GMC_SBI		0x0004		/* AES swap bits */
     62 #define SB_GMC_SBY		0x0008		/* AES swap bytes */
     63 #define SB_GMC_TW		0x0010		/* Time write (EEPROM) */
     64 #define SB_GMC_T_SEL0		0x0000		/* RNG post-proc: none */
     65 #define SB_GMC_T_SEL1		0x0100		/* RNG post-proc: LFSR */
     66 #define SB_GMC_T_SEL2		0x0200		/* RNG post-proc: whitener */
     67 #define SB_GMC_T_SEL3		0x0300		/* RNG LFSR+whitener */
     68 #define SB_GMC_T_SEL_MASK	0x0300
     69 #define SB_GMC_T_NE		0x0400		/* Noise (generator) Enable */
     70 #define SB_GMC_T_TM		0x0800		/* RNG test mode */
     71 						/*     (deterministic) */
     72 
     73 /* Security Block configuration/control registers (offsets from base) */
     74 
     75 #define SB_CTL_A		0x0000		/* RW - SB Control A */
     76 #define SB_CTL_B		0x0004		/* RW - SB Control B */
     77 #define SB_AES_INT		0x0008		/* RW - SB AES Interrupt */
     78 #define SB_SOURCE_A		0x0010		/* RW - Source A */
     79 #define SB_DEST_A		0x0014		/* RW - Destination A */
     80 #define SB_LENGTH_A		0x0018		/* RW - Length A */
     81 #define SB_SOURCE_B		0x0020		/* RW - Source B */
     82 #define SB_DEST_B		0x0024		/* RW - Destination B */
     83 #define SB_LENGTH_B		0x0028		/* RW - Length B */
     84 #define SB_WKEY			0x0030		/* WO - Writable Key 0-3 */
     85 #define SB_WKEY_0		0x0030		/* WO - Writable Key 0 */
     86 #define SB_WKEY_1		0x0034		/* WO - Writable Key 1 */
     87 #define SB_WKEY_2		0x0038		/* WO - Writable Key 2 */
     88 #define SB_WKEY_3		0x003C		/* WO - Writable Key 3 */
     89 #define SB_CBC_IV		0x0040		/* RW - CBC IV 0-3 */
     90 #define SB_CBC_IV_0		0x0040		/* RW - CBC IV 0 */
     91 #define SB_CBC_IV_1		0x0044		/* RW - CBC IV 1 */
     92 #define SB_CBC_IV_2		0x0048		/* RW - CBC IV 2 */
     93 #define SB_CBC_IV_3		0x004C		/* RW - CBC IV 3 */
     94 #define SB_RANDOM_NUM		0x0050		/* RW - Random Number */
     95 #define SB_RANDOM_NUM_STATUS	0x0054		/* RW - Random Number Status */
     96 #define SB_EEPROM_COMM		0x0800		/* RW - EEPROM Command */
     97 #define SB_EEPROM_ADDR		0x0804		/* RW - EEPROM Address */
     98 #define SB_EEPROM_DATA		0x0808		/* RW - EEPROM Data */
     99 #define SB_EEPROM_SEC_STATE	0x080C		/* RW - EEPROM Security State */
    100 
    101 						/* For SB_CTL_A and _B */
    102 #define SB_CTL_ST		0x0001		/* Start operation (enc/dec) */
    103 #define SB_CTL_ENC		0x0002		/* Encrypt (0 is decrypt) */
    104 #define SB_CTL_DEC		0x0000		/* Decrypt */
    105 #define SB_CTL_WK		0x0004		/* Use writable key (we set) */
    106 #define SB_CTL_DC		0x0008		/* Destination coherent */
    107 #define SB_CTL_SC		0x0010		/* Source coherent */
    108 #define SB_CTL_CBC		0x0020		/* CBC (0 is ECB) */
    109 
    110 						/* For SB_AES_INT */
    111 #define SB_AI_DISABLE_AES_A	0x0001		/* Disable AES A compl int */
    112 #define SB_AI_ENABLE_AES_A	0x0000		/* Enable AES A compl int */
    113 #define SB_AI_DISABLE_AES_B	0x0002		/* Disable AES B compl int */
    114 #define SB_AI_ENABLE_AES_B	0x0000		/* Enable AES B compl int */
    115 #define SB_AI_DISABLE_EEPROM	0x0004		/* Disable EEPROM op comp int */
    116 #define SB_AI_ENABLE_EEPROM	0x0000		/* Enable EEPROM op compl int */
    117 #define SB_AI_AES_A_COMPLETE	0x0100		/* AES A operation complete */
    118 #define SB_AI_AES_B_COMPLETE	0x0200		/* AES B operation complete */
    119 #define SB_AI_EEPROM_COMPLETE	0x0400		/* EEPROM operation complete */
    120 
    121 #define SB_RNS_TRNG_VALID	0x0001		/* in SB_RANDOM_NUM_STATUS */
    122 
    123 #define SB_MEM_SIZE		0x0810		/* Size of memory block */
    124 
    125 #define SB_AES_ALIGN		0x0010		/* Source and dest buffers */
    126 						/* must be 16-byte aligned */
    127 #define SB_AES_BLOCK_SIZE	0x0010
    128 
    129 /*
    130  * The Geode LX security block AES acceleration doesn't perform scatter-
    131  * gather: it just takes source and destination addresses.  Therefore the
    132  * plain- and ciphertexts need to be contiguous.  To this end, we allocate
    133  * a buffer for both, and accept the overhead of copying in and out.  If
    134  * the number of bytes in one operation is bigger than allowed for by the
    135  * buffer (buffer is twice the size of the max length, as it has both input
    136  * and output) then we have to perform multiple encryptions/decryptions.
    137  */
    138 #define GLXSB_MAX_AES_LEN	16384
    139 
    140 struct glxsb_dma_map {
    141 	bus_dmamap_t		dma_map;
    142 	bus_dma_segment_t	dma_seg;
    143 	int			dma_nsegs;
    144 	int			dma_size;
    145 	void *			dma_vaddr;
    146 	uint32_t		dma_paddr;
    147 };
    148 struct glxsb_session {
    149 	uint32_t	ses_key[4];
    150 	uint8_t		ses_iv[SB_AES_BLOCK_SIZE];
    151 	int		ses_klen;
    152 	int		ses_used;
    153 };
    154 
    155 struct glxsb_softc {
    156 	struct device		sc_dev;
    157 	bus_space_tag_t		sc_iot;
    158 	bus_space_handle_t	sc_ioh;
    159 	struct callout		sc_co;
    160 
    161 	bus_dma_tag_t		sc_dmat;
    162 	struct glxsb_dma_map	sc_dma;
    163 	int32_t			sc_cid;
    164 	int			sc_nsessions;
    165 	struct glxsb_session	*sc_sessions;
    166 
    167 	rndsource_element_t	sc_rnd_source;
    168 };
    169 
    170 int	glxsb_match(struct device *, struct cfdata *, void *);
    171 void	glxsb_attach(struct device *, struct device *, void *);
    172 void	glxsb_rnd(void *);
    173 
    174 CFATTACH_DECL(glxsb, sizeof(struct glxsb_softc), glxsb_match, glxsb_attach,
    175     NULL, NULL);
    176 
    177 #define GLXSB_SESSION(sid)		((sid) & 0x0fffffff)
    178 #define	GLXSB_SID(crd,ses)		(((crd) << 28) | ((ses) & 0x0fffffff))
    179 
    180 int glxsb_crypto_setup(struct glxsb_softc *);
    181 int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *);
    182 int glxsb_crypto_process(void *, struct cryptop *, int);
    183 int glxsb_crypto_freesession(void *, uint64_t);
    184 static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
    185     uint32_t, void *, int, void *);
    186 
    187 int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
    188 void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
    189 void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
    190 void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
    191 
    192 int
    193 glxsb_match(struct device *parent, struct cfdata *match, void *aux)
    194 {
    195 	struct pci_attach_args *pa = aux;
    196 
    197 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
    198 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES)
    199 		return (1);
    200 
    201 	return (0);
    202 }
    203 
    204 void
    205 glxsb_attach(struct device *parent, struct device *self, void *aux)
    206 {
    207 	struct glxsb_softc *sc = (void *) self;
    208 	struct pci_attach_args *pa = aux;
    209 	bus_addr_t membase;
    210 	bus_size_t memsize;
    211 	uint64_t msr;
    212 	uint32_t intr;
    213 
    214 	msr = rdmsr(SB_GLD_MSR_CAP);
    215 	if ((msr & 0xFFFF00) != 0x130400) {
    216 		printf(": unknown ID 0x%x\n", (int) ((msr & 0xFFFF00) >> 16));
    217 		return;
    218 	}
    219 
    220 	/* printf(": revision %d", (int) (msr & 0xFF)); */
    221 
    222 	/* Map in the security block configuration/control registers */
    223 	if (pci_mapreg_map(pa, PCI_MAPREG_START,
    224 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
    225 	    &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) {
    226 		printf(": can't find mem space\n");
    227 		return;
    228 	}
    229 
    230 	/*
    231 	 * Configure the Security Block.
    232 	 *
    233 	 * We want to enable the noise generator (T_NE), and enable the
    234 	 * linear feedback shift register and whitener post-processing
    235 	 * (T_SEL = 3).  Also ensure that test mode (deterministic values)
    236 	 * is disabled.
    237 	 */
    238 	msr = rdmsr(SB_GLD_MSR_CTRL);
    239 	msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
    240 	msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
    241 #if 0
    242 	msr |= SB_GMC_SBI | SB_GMC_SBY;		/* for AES, if necessary */
    243 #endif
    244 	wrmsr(SB_GLD_MSR_CTRL, msr);
    245 
    246 	rnd_attach_source(&sc->sc_rnd_source, sc->sc_dev.dv_xname,
    247 			  RND_TYPE_RNG, RND_FLAG_NO_ESTIMATE);
    248 
    249 	/* Install a periodic collector for the "true" (AMD's word) RNG */
    250 	callout_init(&sc->sc_co, 0);
    251 	callout_setfunc(&sc->sc_co, glxsb_rnd, sc);
    252 	glxsb_rnd(sc);
    253 	printf(": RNG");
    254 
    255 	/* We don't have an interrupt handler, so disable completion INTs */
    256 	intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
    257 	    SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
    258 	    SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
    259 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
    260 
    261 	sc->sc_dmat = pa->pa_dmat;
    262 
    263 	if (glxsb_crypto_setup(sc))
    264 		printf(" AES");
    265 
    266 	printf("\n");
    267 }
    268 
    269 void
    270 glxsb_rnd(void *v)
    271 {
    272 	struct glxsb_softc *sc = v;
    273 	uint32_t status, value;
    274 	extern int hz;
    275 
    276 	status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
    277 	if (status & SB_RNS_TRNG_VALID) {
    278 		value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
    279 		rnd_add_uint32(&sc->sc_rnd_source, value);
    280 	}
    281 
    282 	callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1);
    283 }
    284 
    285 int
    286 glxsb_crypto_setup(struct glxsb_softc *sc)
    287 {
    288 
    289 	/* Allocate a contiguous DMA-able buffer to work in */
    290 	if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
    291 		return 0;
    292 
    293 	sc->sc_cid = crypto_get_driverid(0);
    294 	if (sc->sc_cid < 0)
    295 		return 0;
    296 
    297 	crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
    298 	    glxsb_crypto_newsession, glxsb_crypto_freesession,
    299 	    glxsb_crypto_process, sc);
    300 
    301 	sc->sc_nsessions = 0;
    302 
    303 	return 1;
    304 }
    305 
    306 int
    307 glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri)
    308 {
    309 	struct glxsb_softc *sc = aux;
    310 	struct glxsb_session *ses = NULL;
    311 	int sesn;
    312 
    313 	if (sc == NULL || sidp == NULL || cri == NULL ||
    314 	    cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC ||
    315 	    cri->cri_klen != 128)
    316 		return (EINVAL);
    317 
    318 	for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
    319 		if (sc->sc_sessions[sesn].ses_used == 0) {
    320 			ses = &sc->sc_sessions[sesn];
    321 			break;
    322 		}
    323 	}
    324 
    325 	if (ses == NULL) {
    326 		sesn = sc->sc_nsessions;
    327 		ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT);
    328 		if (ses == NULL)
    329 			return (ENOMEM);
    330 		if (sesn != 0) {
    331 			bcopy(sc->sc_sessions, ses, sesn * sizeof(*ses));
    332 			bzero(sc->sc_sessions, sesn * sizeof(*ses));
    333 			free(sc->sc_sessions, M_DEVBUF);
    334 		}
    335 		sc->sc_sessions = ses;
    336 		ses = &sc->sc_sessions[sesn];
    337 		sc->sc_nsessions++;
    338 	}
    339 
    340 	bzero(ses, sizeof(*ses));
    341 	ses->ses_used = 1;
    342 
    343 	arc4randbytes(ses->ses_iv, sizeof(ses->ses_iv));
    344 	ses->ses_klen = cri->cri_klen;
    345 
    346 	/* Copy the key (Geode LX wants the primary key only) */
    347 	bcopy(cri->cri_key, ses->ses_key, sizeof(ses->ses_key));
    348 
    349 	*sidp = GLXSB_SID(0, sesn);
    350 	return (0);
    351 }
    352 
    353 int
    354 glxsb_crypto_freesession(void *aux, uint64_t tid)
    355 {
    356 	struct glxsb_softc *sc = aux;
    357 	int sesn;
    358 	uint32_t sid = ((uint32_t)tid) & 0xffffffff;
    359 
    360 	if (sc == NULL)
    361 		return (EINVAL);
    362 	sesn = GLXSB_SESSION(sid);
    363 	if (sesn >= sc->sc_nsessions)
    364 		return (EINVAL);
    365 	bzero(&sc->sc_sessions[sesn], sizeof(sc->sc_sessions[sesn]));
    366 	return (0);
    367 }
    368 
    369 /*
    370  * Must be called at splnet() or higher
    371  */
    372 static __inline void
    373 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
    374     uint32_t pdst, void *key, int len, void *iv)
    375 {
    376 	uint32_t status;
    377 	int i;
    378 
    379 	if (len & 0xF) {
    380 		printf("%s: len must be a multiple of 16 (not %d)\n",
    381 		    sc->sc_dev.dv_xname, len);
    382 		return;
    383 	}
    384 
    385 	/* Set the source */
    386 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
    387 
    388 	/* Set the destination address */
    389 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
    390 
    391 	/* Set the data length */
    392 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
    393 
    394 	/* Set the IV */
    395 	if (iv != NULL) {
    396 		bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
    397 		    SB_CBC_IV, iv, 4);
    398 		control |= SB_CTL_CBC;
    399 	}
    400 
    401 	/* Set the key */
    402 	bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
    403 
    404 	/* Ask the security block to do it */
    405 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
    406 	    control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
    407 
    408 	/*
    409 	 * Now wait until it is done.
    410 	 *
    411 	 * We do a busy wait.  Obviously the number of iterations of
    412 	 * the loop required to perform the AES operation depends upon
    413 	 * the number of bytes to process.
    414 	 *
    415 	 * On a 500 MHz Geode LX we see
    416 	 *
    417 	 *	length (bytes)	typical max iterations
    418 	 *	    16		   12
    419 	 *	    64		   22
    420 	 *	   256		   59
    421 	 *	  1024		  212
    422 	 *	  8192		1,537
    423 	 *
    424 	 * Since we have a maximum size of operation defined in
    425 	 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
    426 	 * to wait.  Allow an order of magnitude longer than it should
    427 	 * really take, just in case.
    428 	 */
    429 	for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
    430 		status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
    431 
    432 		if ((status & SB_CTL_ST) == 0)		/* Done */
    433 			return;
    434 	}
    435 
    436 	printf("%s: operation failed to complete\n", sc->sc_dev.dv_xname);
    437 }
    438 
    439 int
    440 glxsb_crypto_process(void *aux, struct cryptop *crp, int hint)
    441 {
    442 	struct glxsb_softc *sc = aux;
    443 	struct glxsb_session *ses;
    444 	struct cryptodesc *crd;
    445 	char *op_src, *op_dst;
    446 	uint32_t op_psrc, op_pdst;
    447 	uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
    448 	int sesn, err = 0;
    449 	int len, tlen, xlen;
    450 	int offset;
    451 	uint32_t control;
    452 	int s;
    453 
    454 	s = splnet();
    455 
    456 	if (crp == NULL || crp->crp_callback == NULL) {
    457 		err = EINVAL;
    458 		goto out;
    459 	}
    460 	crd = crp->crp_desc;
    461 	if (crd == NULL || crd->crd_next != NULL ||
    462 	    crd->crd_alg != CRYPTO_AES_CBC ||
    463 	    (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
    464 		err = EINVAL;
    465 		goto out;
    466 	}
    467 
    468 	sesn = GLXSB_SESSION(crp->crp_sid);
    469 	if (sesn >= sc->sc_nsessions) {
    470 		err = EINVAL;
    471 		goto out;
    472 	}
    473 	ses = &sc->sc_sessions[sesn];
    474 
    475 	/* How much of our buffer will we need to use? */
    476 	xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
    477 	    GLXSB_MAX_AES_LEN : crd->crd_len;
    478 
    479 	/*
    480 	 * XXX Check if we can have input == output on Geode LX.
    481 	 * XXX In the meantime, use two separate (adjacent) buffers.
    482 	 */
    483 	op_src = sc->sc_dma.dma_vaddr;
    484 	op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
    485 
    486 	op_psrc = sc->sc_dma.dma_paddr;
    487 	op_pdst = sc->sc_dma.dma_paddr + xlen;
    488 
    489 	if (crd->crd_flags & CRD_F_ENCRYPT) {
    490 		control = SB_CTL_ENC;
    491 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    492 			bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
    493 		else
    494 			bcopy(ses->ses_iv, op_iv, sizeof(op_iv));
    495 
    496 		if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
    497 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    498 				m_copyback((struct mbuf *)crp->crp_buf,
    499 				    crd->crd_inject, sizeof(op_iv), op_iv);
    500 			else if (crp->crp_flags & CRYPTO_F_IOV)
    501 				cuio_copyback((struct uio *)crp->crp_buf,
    502 				    crd->crd_inject, sizeof(op_iv), op_iv);
    503 			else
    504 				bcopy(op_iv,
    505 				    (char *)crp->crp_buf + crd->crd_inject,
    506 				    sizeof(op_iv));
    507 		}
    508 	} else {
    509 		control = SB_CTL_DEC;
    510 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    511 			bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
    512 		else {
    513 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    514 				m_copydata((struct mbuf *)crp->crp_buf,
    515 				    crd->crd_inject, sizeof(op_iv), op_iv);
    516 			else if (crp->crp_flags & CRYPTO_F_IOV)
    517 				cuio_copydata((struct uio *)crp->crp_buf,
    518 				    crd->crd_inject, sizeof(op_iv), op_iv);
    519 			else
    520 				bcopy((char *)crp->crp_buf + crd->crd_inject,
    521 				    op_iv, sizeof(op_iv));
    522 		}
    523 	}
    524 
    525 	offset = 0;
    526 	tlen = crd->crd_len;
    527 	piv = op_iv;
    528 
    529 	/* Process the data in GLXSB_MAX_AES_LEN chunks */
    530 	while (tlen > 0) {
    531 		len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
    532 
    533 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    534 			m_copydata((struct mbuf *)crp->crp_buf,
    535 			    crd->crd_skip + offset, len, op_src);
    536 		else if (crp->crp_flags & CRYPTO_F_IOV)
    537 			cuio_copydata((struct uio *)crp->crp_buf,
    538 			    crd->crd_skip + offset, len, op_src);
    539 		else
    540 			bcopy((char *)crp->crp_buf + crd->crd_skip + offset,
    541 			    op_src, len);
    542 
    543 		glxsb_dma_pre_op(sc, &sc->sc_dma);
    544 
    545 		glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
    546 		    len, op_iv);
    547 
    548 		glxsb_dma_post_op(sc, &sc->sc_dma);
    549 
    550 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    551 			m_copyback((struct mbuf *)crp->crp_buf,
    552 			    crd->crd_skip + offset, len, op_dst);
    553 		else if (crp->crp_flags & CRYPTO_F_IOV)
    554 			cuio_copyback((struct uio *)crp->crp_buf,
    555 			    crd->crd_skip + offset, len, op_dst);
    556 		else
    557 			bcopy(op_dst, (char *)crp->crp_buf + crd->crd_skip + offset,
    558 			    len);
    559 
    560 		offset += len;
    561 		tlen -= len;
    562 
    563 		if (tlen <= 0) {	/* Ideally, just == 0 */
    564 			/* Finished - put the IV in session IV */
    565 			piv = ses->ses_iv;
    566 		}
    567 
    568 		/*
    569 		 * Copy out last block for use as next iteration/session IV.
    570 		 *
    571 		 * piv is set to op_iv[] before the loop starts, but is
    572 		 * set to ses->ses_iv if we're going to exit the loop this
    573 		 * time.
    574 		 */
    575 		if (crd->crd_flags & CRD_F_ENCRYPT) {
    576 			bcopy(op_dst + len - sizeof(op_iv), piv, sizeof(op_iv));
    577 		} else {
    578 			/* Decryption, only need this if another iteration */
    579 			if (tlen > 0) {
    580 				bcopy(op_src + len - sizeof(op_iv), piv,
    581 				    sizeof(op_iv));
    582 			}
    583 		}
    584 	}
    585 
    586 	/* All AES processing has now been done. */
    587 
    588 	bzero(sc->sc_dma.dma_vaddr, xlen * 2);
    589 out:
    590 	crp->crp_etype = err;
    591 	crypto_done(crp);
    592 	splx(s);
    593 	return (err);
    594 }
    595 
    596 int
    597 glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
    598 {
    599 	int rc;
    600 
    601 	dma->dma_nsegs = 1;
    602 	dma->dma_size = size;
    603 
    604 	rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
    605 	    0, BUS_DMA_NOWAIT, &dma->dma_map);
    606 	if (rc != 0) {
    607 		printf("%s: couldn't create DMA map for %d bytes (%d)\n",
    608 		    sc->sc_dev.dv_xname, size, rc);
    609 
    610 		goto fail0;
    611 	}
    612 
    613 	rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
    614 	    &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
    615 	if (rc != 0) {
    616 		printf("%s: couldn't allocate DMA memory of %d bytes (%d)\n",
    617 		    sc->sc_dev.dv_xname, size, rc);
    618 
    619 		goto fail1;
    620 	}
    621 
    622 	rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
    623 	    &dma->dma_vaddr, BUS_DMA_NOWAIT);
    624 	if (rc != 0) {
    625 		printf("%s: couldn't map DMA memory for %d bytes (%d)\n",
    626 		    sc->sc_dev.dv_xname, size, rc);
    627 
    628 		goto fail2;
    629 	}
    630 
    631 	rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
    632 	    size, NULL, BUS_DMA_NOWAIT);
    633 	if (rc != 0) {
    634 		printf("%s: couldn't load DMA memory for %d bytes (%d)\n",
    635 		    sc->sc_dev.dv_xname, size, rc);
    636 
    637 		goto fail3;
    638 	}
    639 
    640 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
    641 
    642 	return 0;
    643 
    644 fail3:
    645 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
    646 fail2:
    647 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    648 fail1:
    649 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    650 fail0:
    651 	return rc;
    652 }
    653 
    654 void
    655 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    656 {
    657 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    658 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    659 }
    660 
    661 void
    662 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    663 {
    664 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    665 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    666 }
    667 
    668 void
    669 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    670 {
    671 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
    672 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
    673 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    674 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    675 }
    676