glxsb.c revision 1.5 1 /* $NetBSD: glxsb.c,v 1.5 2008/04/04 22:48:58 cegger Exp $ */
2 /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
3
4 /*
5 * Copyright (c) 2006 Tom Cosgrove <tom (at) openbsd.org>
6 * Copyright (c) 2003, 2004 Theo de Raadt
7 * Copyright (c) 2003 Jason Wright
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*
23 * Driver for the security block on the AMD Geode LX processors
24 * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
25 */
26
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.5 2008/04/04 22:48:58 cegger Exp $");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/device.h>
33 #include <sys/malloc.h>
34 #include <sys/mbuf.h>
35 #include <sys/types.h>
36 #include <sys/callout.h>
37 #include <sys/rnd.h>
38 #include <sys/bus.h>
39
40 #include <machine/cpufunc.h>
41
42 #include <dev/pci/pcivar.h>
43 #include <dev/pci/pcidevs.h>
44
45 #include <opencrypto/cryptodev.h>
46 #include <crypto/rijndael/rijndael.h>
47
48 #define SB_GLD_MSR_CAP 0x58002000 /* RO - Capabilities */
49 #define SB_GLD_MSR_CONFIG 0x58002001 /* RW - Master Config */
50 #define SB_GLD_MSR_SMI 0x58002002 /* RW - SMI */
51 #define SB_GLD_MSR_ERROR 0x58002003 /* RW - Error */
52 #define SB_GLD_MSR_PM 0x58002004 /* RW - Power Mgmt */
53 #define SB_GLD_MSR_DIAG 0x58002005 /* RW - Diagnostic */
54 #define SB_GLD_MSR_CTRL 0x58002006 /* RW - Security Block Cntrl */
55
56 /* For GLD_MSR_CTRL: */
57 #define SB_GMC_DIV0 0x0000 /* AES update divisor values */
58 #define SB_GMC_DIV1 0x0001
59 #define SB_GMC_DIV2 0x0002
60 #define SB_GMC_DIV3 0x0003
61 #define SB_GMC_DIV_MASK 0x0003
62 #define SB_GMC_SBI 0x0004 /* AES swap bits */
63 #define SB_GMC_SBY 0x0008 /* AES swap bytes */
64 #define SB_GMC_TW 0x0010 /* Time write (EEPROM) */
65 #define SB_GMC_T_SEL0 0x0000 /* RNG post-proc: none */
66 #define SB_GMC_T_SEL1 0x0100 /* RNG post-proc: LFSR */
67 #define SB_GMC_T_SEL2 0x0200 /* RNG post-proc: whitener */
68 #define SB_GMC_T_SEL3 0x0300 /* RNG LFSR+whitener */
69 #define SB_GMC_T_SEL_MASK 0x0300
70 #define SB_GMC_T_NE 0x0400 /* Noise (generator) Enable */
71 #define SB_GMC_T_TM 0x0800 /* RNG test mode */
72 /* (deterministic) */
73
74 /* Security Block configuration/control registers (offsets from base) */
75
76 #define SB_CTL_A 0x0000 /* RW - SB Control A */
77 #define SB_CTL_B 0x0004 /* RW - SB Control B */
78 #define SB_AES_INT 0x0008 /* RW - SB AES Interrupt */
79 #define SB_SOURCE_A 0x0010 /* RW - Source A */
80 #define SB_DEST_A 0x0014 /* RW - Destination A */
81 #define SB_LENGTH_A 0x0018 /* RW - Length A */
82 #define SB_SOURCE_B 0x0020 /* RW - Source B */
83 #define SB_DEST_B 0x0024 /* RW - Destination B */
84 #define SB_LENGTH_B 0x0028 /* RW - Length B */
85 #define SB_WKEY 0x0030 /* WO - Writable Key 0-3 */
86 #define SB_WKEY_0 0x0030 /* WO - Writable Key 0 */
87 #define SB_WKEY_1 0x0034 /* WO - Writable Key 1 */
88 #define SB_WKEY_2 0x0038 /* WO - Writable Key 2 */
89 #define SB_WKEY_3 0x003C /* WO - Writable Key 3 */
90 #define SB_CBC_IV 0x0040 /* RW - CBC IV 0-3 */
91 #define SB_CBC_IV_0 0x0040 /* RW - CBC IV 0 */
92 #define SB_CBC_IV_1 0x0044 /* RW - CBC IV 1 */
93 #define SB_CBC_IV_2 0x0048 /* RW - CBC IV 2 */
94 #define SB_CBC_IV_3 0x004C /* RW - CBC IV 3 */
95 #define SB_RANDOM_NUM 0x0050 /* RW - Random Number */
96 #define SB_RANDOM_NUM_STATUS 0x0054 /* RW - Random Number Status */
97 #define SB_EEPROM_COMM 0x0800 /* RW - EEPROM Command */
98 #define SB_EEPROM_ADDR 0x0804 /* RW - EEPROM Address */
99 #define SB_EEPROM_DATA 0x0808 /* RW - EEPROM Data */
100 #define SB_EEPROM_SEC_STATE 0x080C /* RW - EEPROM Security State */
101
102 /* For SB_CTL_A and _B */
103 #define SB_CTL_ST 0x0001 /* Start operation (enc/dec) */
104 #define SB_CTL_ENC 0x0002 /* Encrypt (0 is decrypt) */
105 #define SB_CTL_DEC 0x0000 /* Decrypt */
106 #define SB_CTL_WK 0x0004 /* Use writable key (we set) */
107 #define SB_CTL_DC 0x0008 /* Destination coherent */
108 #define SB_CTL_SC 0x0010 /* Source coherent */
109 #define SB_CTL_CBC 0x0020 /* CBC (0 is ECB) */
110
111 /* For SB_AES_INT */
112 #define SB_AI_DISABLE_AES_A 0x0001 /* Disable AES A compl int */
113 #define SB_AI_ENABLE_AES_A 0x0000 /* Enable AES A compl int */
114 #define SB_AI_DISABLE_AES_B 0x0002 /* Disable AES B compl int */
115 #define SB_AI_ENABLE_AES_B 0x0000 /* Enable AES B compl int */
116 #define SB_AI_DISABLE_EEPROM 0x0004 /* Disable EEPROM op comp int */
117 #define SB_AI_ENABLE_EEPROM 0x0000 /* Enable EEPROM op compl int */
118 #define SB_AI_AES_A_COMPLETE 0x0100 /* AES A operation complete */
119 #define SB_AI_AES_B_COMPLETE 0x0200 /* AES B operation complete */
120 #define SB_AI_EEPROM_COMPLETE 0x0400 /* EEPROM operation complete */
121
122 #define SB_RNS_TRNG_VALID 0x0001 /* in SB_RANDOM_NUM_STATUS */
123
124 #define SB_MEM_SIZE 0x0810 /* Size of memory block */
125
126 #define SB_AES_ALIGN 0x0010 /* Source and dest buffers */
127 /* must be 16-byte aligned */
128 #define SB_AES_BLOCK_SIZE 0x0010
129
130 /*
131 * The Geode LX security block AES acceleration doesn't perform scatter-
132 * gather: it just takes source and destination addresses. Therefore the
133 * plain- and ciphertexts need to be contiguous. To this end, we allocate
134 * a buffer for both, and accept the overhead of copying in and out. If
135 * the number of bytes in one operation is bigger than allowed for by the
136 * buffer (buffer is twice the size of the max length, as it has both input
137 * and output) then we have to perform multiple encryptions/decryptions.
138 */
139 #define GLXSB_MAX_AES_LEN 16384
140
141 struct glxsb_dma_map {
142 bus_dmamap_t dma_map;
143 bus_dma_segment_t dma_seg;
144 int dma_nsegs;
145 int dma_size;
146 void * dma_vaddr;
147 uint32_t dma_paddr;
148 };
149 struct glxsb_session {
150 uint32_t ses_key[4];
151 uint8_t ses_iv[SB_AES_BLOCK_SIZE];
152 int ses_klen;
153 int ses_used;
154 };
155
156 struct glxsb_softc {
157 struct device sc_dev;
158 bus_space_tag_t sc_iot;
159 bus_space_handle_t sc_ioh;
160 struct callout sc_co;
161
162 bus_dma_tag_t sc_dmat;
163 struct glxsb_dma_map sc_dma;
164 int32_t sc_cid;
165 int sc_nsessions;
166 struct glxsb_session *sc_sessions;
167
168 rndsource_element_t sc_rnd_source;
169 };
170
171 int glxsb_match(struct device *, struct cfdata *, void *);
172 void glxsb_attach(struct device *, struct device *, void *);
173 void glxsb_rnd(void *);
174
175 CFATTACH_DECL(glxsb, sizeof(struct glxsb_softc), glxsb_match, glxsb_attach,
176 NULL, NULL);
177
178 #define GLXSB_SESSION(sid) ((sid) & 0x0fffffff)
179 #define GLXSB_SID(crd,ses) (((crd) << 28) | ((ses) & 0x0fffffff))
180
181 int glxsb_crypto_setup(struct glxsb_softc *);
182 int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *);
183 int glxsb_crypto_process(void *, struct cryptop *, int);
184 int glxsb_crypto_freesession(void *, uint64_t);
185 static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
186 uint32_t, void *, int, void *);
187
188 int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
189 void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
190 void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
191 void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
192
193 int
194 glxsb_match(struct device *parent, struct cfdata *match, void *aux)
195 {
196 struct pci_attach_args *pa = aux;
197
198 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
199 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES)
200 return (1);
201
202 return (0);
203 }
204
205 void
206 glxsb_attach(struct device *parent, struct device *self, void *aux)
207 {
208 struct glxsb_softc *sc = (void *) self;
209 struct pci_attach_args *pa = aux;
210 bus_addr_t membase;
211 bus_size_t memsize;
212 uint64_t msr;
213 uint32_t intr;
214
215 msr = rdmsr(SB_GLD_MSR_CAP);
216 if ((msr & 0xFFFF00) != 0x130400) {
217 printf(": unknown ID 0x%x\n", (int) ((msr & 0xFFFF00) >> 16));
218 return;
219 }
220
221 /* printf(": revision %d", (int) (msr & 0xFF)); */
222
223 /* Map in the security block configuration/control registers */
224 if (pci_mapreg_map(pa, PCI_MAPREG_START,
225 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
226 &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) {
227 printf(": can't find mem space\n");
228 return;
229 }
230
231 /*
232 * Configure the Security Block.
233 *
234 * We want to enable the noise generator (T_NE), and enable the
235 * linear feedback shift register and whitener post-processing
236 * (T_SEL = 3). Also ensure that test mode (deterministic values)
237 * is disabled.
238 */
239 msr = rdmsr(SB_GLD_MSR_CTRL);
240 msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
241 msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
242 #if 0
243 msr |= SB_GMC_SBI | SB_GMC_SBY; /* for AES, if necessary */
244 #endif
245 wrmsr(SB_GLD_MSR_CTRL, msr);
246
247 rnd_attach_source(&sc->sc_rnd_source, device_xname(&sc->sc_dev),
248 RND_TYPE_RNG, RND_FLAG_NO_ESTIMATE);
249
250 /* Install a periodic collector for the "true" (AMD's word) RNG */
251 callout_init(&sc->sc_co, 0);
252 callout_setfunc(&sc->sc_co, glxsb_rnd, sc);
253 glxsb_rnd(sc);
254 printf(": RNG");
255
256 /* We don't have an interrupt handler, so disable completion INTs */
257 intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
258 SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
259 SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
260 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
261
262 sc->sc_dmat = pa->pa_dmat;
263
264 if (glxsb_crypto_setup(sc))
265 printf(" AES");
266
267 printf("\n");
268 }
269
270 void
271 glxsb_rnd(void *v)
272 {
273 struct glxsb_softc *sc = v;
274 uint32_t status, value;
275 extern int hz;
276
277 status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
278 if (status & SB_RNS_TRNG_VALID) {
279 value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
280 rnd_add_uint32(&sc->sc_rnd_source, value);
281 }
282
283 callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1);
284 }
285
286 int
287 glxsb_crypto_setup(struct glxsb_softc *sc)
288 {
289
290 /* Allocate a contiguous DMA-able buffer to work in */
291 if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
292 return 0;
293
294 sc->sc_cid = crypto_get_driverid(0);
295 if (sc->sc_cid < 0)
296 return 0;
297
298 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
299 glxsb_crypto_newsession, glxsb_crypto_freesession,
300 glxsb_crypto_process, sc);
301
302 sc->sc_nsessions = 0;
303
304 return 1;
305 }
306
307 int
308 glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri)
309 {
310 struct glxsb_softc *sc = aux;
311 struct glxsb_session *ses = NULL;
312 int sesn;
313
314 if (sc == NULL || sidp == NULL || cri == NULL ||
315 cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC ||
316 cri->cri_klen != 128)
317 return (EINVAL);
318
319 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
320 if (sc->sc_sessions[sesn].ses_used == 0) {
321 ses = &sc->sc_sessions[sesn];
322 break;
323 }
324 }
325
326 if (ses == NULL) {
327 sesn = sc->sc_nsessions;
328 ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT);
329 if (ses == NULL)
330 return (ENOMEM);
331 if (sesn != 0) {
332 bcopy(sc->sc_sessions, ses, sesn * sizeof(*ses));
333 bzero(sc->sc_sessions, sesn * sizeof(*ses));
334 free(sc->sc_sessions, M_DEVBUF);
335 }
336 sc->sc_sessions = ses;
337 ses = &sc->sc_sessions[sesn];
338 sc->sc_nsessions++;
339 }
340
341 bzero(ses, sizeof(*ses));
342 ses->ses_used = 1;
343
344 arc4randbytes(ses->ses_iv, sizeof(ses->ses_iv));
345 ses->ses_klen = cri->cri_klen;
346
347 /* Copy the key (Geode LX wants the primary key only) */
348 bcopy(cri->cri_key, ses->ses_key, sizeof(ses->ses_key));
349
350 *sidp = GLXSB_SID(0, sesn);
351 return (0);
352 }
353
354 int
355 glxsb_crypto_freesession(void *aux, uint64_t tid)
356 {
357 struct glxsb_softc *sc = aux;
358 int sesn;
359 uint32_t sid = ((uint32_t)tid) & 0xffffffff;
360
361 if (sc == NULL)
362 return (EINVAL);
363 sesn = GLXSB_SESSION(sid);
364 if (sesn >= sc->sc_nsessions)
365 return (EINVAL);
366 bzero(&sc->sc_sessions[sesn], sizeof(sc->sc_sessions[sesn]));
367 return (0);
368 }
369
370 /*
371 * Must be called at splnet() or higher
372 */
373 static __inline void
374 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
375 uint32_t pdst, void *key, int len, void *iv)
376 {
377 uint32_t status;
378 int i;
379
380 if (len & 0xF) {
381 printf("%s: len must be a multiple of 16 (not %d)\n",
382 device_xname(&sc->sc_dev), len);
383 return;
384 }
385
386 /* Set the source */
387 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
388
389 /* Set the destination address */
390 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
391
392 /* Set the data length */
393 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
394
395 /* Set the IV */
396 if (iv != NULL) {
397 bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
398 SB_CBC_IV, iv, 4);
399 control |= SB_CTL_CBC;
400 }
401
402 /* Set the key */
403 bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
404
405 /* Ask the security block to do it */
406 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
407 control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
408
409 /*
410 * Now wait until it is done.
411 *
412 * We do a busy wait. Obviously the number of iterations of
413 * the loop required to perform the AES operation depends upon
414 * the number of bytes to process.
415 *
416 * On a 500 MHz Geode LX we see
417 *
418 * length (bytes) typical max iterations
419 * 16 12
420 * 64 22
421 * 256 59
422 * 1024 212
423 * 8192 1,537
424 *
425 * Since we have a maximum size of operation defined in
426 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
427 * to wait. Allow an order of magnitude longer than it should
428 * really take, just in case.
429 */
430 for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
431 status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
432
433 if ((status & SB_CTL_ST) == 0) /* Done */
434 return;
435 }
436
437 aprint_error_dev(&sc->sc_dev, "operation failed to complete\n");
438 }
439
440 int
441 glxsb_crypto_process(void *aux, struct cryptop *crp, int hint)
442 {
443 struct glxsb_softc *sc = aux;
444 struct glxsb_session *ses;
445 struct cryptodesc *crd;
446 char *op_src, *op_dst;
447 uint32_t op_psrc, op_pdst;
448 uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
449 int sesn, err = 0;
450 int len, tlen, xlen;
451 int offset;
452 uint32_t control;
453 int s;
454
455 s = splnet();
456
457 if (crp == NULL || crp->crp_callback == NULL) {
458 err = EINVAL;
459 goto out;
460 }
461 crd = crp->crp_desc;
462 if (crd == NULL || crd->crd_next != NULL ||
463 crd->crd_alg != CRYPTO_AES_CBC ||
464 (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
465 err = EINVAL;
466 goto out;
467 }
468
469 sesn = GLXSB_SESSION(crp->crp_sid);
470 if (sesn >= sc->sc_nsessions) {
471 err = EINVAL;
472 goto out;
473 }
474 ses = &sc->sc_sessions[sesn];
475
476 /* How much of our buffer will we need to use? */
477 xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
478 GLXSB_MAX_AES_LEN : crd->crd_len;
479
480 /*
481 * XXX Check if we can have input == output on Geode LX.
482 * XXX In the meantime, use two separate (adjacent) buffers.
483 */
484 op_src = sc->sc_dma.dma_vaddr;
485 op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
486
487 op_psrc = sc->sc_dma.dma_paddr;
488 op_pdst = sc->sc_dma.dma_paddr + xlen;
489
490 if (crd->crd_flags & CRD_F_ENCRYPT) {
491 control = SB_CTL_ENC;
492 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
493 bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
494 else
495 bcopy(ses->ses_iv, op_iv, sizeof(op_iv));
496
497 if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
498 if (crp->crp_flags & CRYPTO_F_IMBUF)
499 m_copyback((struct mbuf *)crp->crp_buf,
500 crd->crd_inject, sizeof(op_iv), op_iv);
501 else if (crp->crp_flags & CRYPTO_F_IOV)
502 cuio_copyback((struct uio *)crp->crp_buf,
503 crd->crd_inject, sizeof(op_iv), op_iv);
504 else
505 bcopy(op_iv,
506 (char *)crp->crp_buf + crd->crd_inject,
507 sizeof(op_iv));
508 }
509 } else {
510 control = SB_CTL_DEC;
511 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
512 bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
513 else {
514 if (crp->crp_flags & CRYPTO_F_IMBUF)
515 m_copydata((struct mbuf *)crp->crp_buf,
516 crd->crd_inject, sizeof(op_iv), op_iv);
517 else if (crp->crp_flags & CRYPTO_F_IOV)
518 cuio_copydata((struct uio *)crp->crp_buf,
519 crd->crd_inject, sizeof(op_iv), op_iv);
520 else
521 bcopy((char *)crp->crp_buf + crd->crd_inject,
522 op_iv, sizeof(op_iv));
523 }
524 }
525
526 offset = 0;
527 tlen = crd->crd_len;
528 piv = op_iv;
529
530 /* Process the data in GLXSB_MAX_AES_LEN chunks */
531 while (tlen > 0) {
532 len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
533
534 if (crp->crp_flags & CRYPTO_F_IMBUF)
535 m_copydata((struct mbuf *)crp->crp_buf,
536 crd->crd_skip + offset, len, op_src);
537 else if (crp->crp_flags & CRYPTO_F_IOV)
538 cuio_copydata((struct uio *)crp->crp_buf,
539 crd->crd_skip + offset, len, op_src);
540 else
541 bcopy((char *)crp->crp_buf + crd->crd_skip + offset,
542 op_src, len);
543
544 glxsb_dma_pre_op(sc, &sc->sc_dma);
545
546 glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
547 len, op_iv);
548
549 glxsb_dma_post_op(sc, &sc->sc_dma);
550
551 if (crp->crp_flags & CRYPTO_F_IMBUF)
552 m_copyback((struct mbuf *)crp->crp_buf,
553 crd->crd_skip + offset, len, op_dst);
554 else if (crp->crp_flags & CRYPTO_F_IOV)
555 cuio_copyback((struct uio *)crp->crp_buf,
556 crd->crd_skip + offset, len, op_dst);
557 else
558 bcopy(op_dst, (char *)crp->crp_buf + crd->crd_skip + offset,
559 len);
560
561 offset += len;
562 tlen -= len;
563
564 if (tlen <= 0) { /* Ideally, just == 0 */
565 /* Finished - put the IV in session IV */
566 piv = ses->ses_iv;
567 }
568
569 /*
570 * Copy out last block for use as next iteration/session IV.
571 *
572 * piv is set to op_iv[] before the loop starts, but is
573 * set to ses->ses_iv if we're going to exit the loop this
574 * time.
575 */
576 if (crd->crd_flags & CRD_F_ENCRYPT) {
577 bcopy(op_dst + len - sizeof(op_iv), piv, sizeof(op_iv));
578 } else {
579 /* Decryption, only need this if another iteration */
580 if (tlen > 0) {
581 bcopy(op_src + len - sizeof(op_iv), piv,
582 sizeof(op_iv));
583 }
584 }
585 }
586
587 /* All AES processing has now been done. */
588
589 bzero(sc->sc_dma.dma_vaddr, xlen * 2);
590 out:
591 crp->crp_etype = err;
592 crypto_done(crp);
593 splx(s);
594 return (err);
595 }
596
597 int
598 glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
599 {
600 int rc;
601
602 dma->dma_nsegs = 1;
603 dma->dma_size = size;
604
605 rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
606 0, BUS_DMA_NOWAIT, &dma->dma_map);
607 if (rc != 0) {
608 aprint_error_dev(&sc->sc_dev, "couldn't create DMA map for %d bytes (%d)\n",
609 size, rc);
610
611 goto fail0;
612 }
613
614 rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
615 &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
616 if (rc != 0) {
617 aprint_error_dev(&sc->sc_dev, "couldn't allocate DMA memory of %d bytes (%d)\n",
618 size, rc);
619
620 goto fail1;
621 }
622
623 rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
624 &dma->dma_vaddr, BUS_DMA_NOWAIT);
625 if (rc != 0) {
626 aprint_error_dev(&sc->sc_dev, "couldn't map DMA memory for %d bytes (%d)\n",
627 size, rc);
628
629 goto fail2;
630 }
631
632 rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
633 size, NULL, BUS_DMA_NOWAIT);
634 if (rc != 0) {
635 aprint_error_dev(&sc->sc_dev, "couldn't load DMA memory for %d bytes (%d)\n",
636 size, rc);
637
638 goto fail3;
639 }
640
641 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
642
643 return 0;
644
645 fail3:
646 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
647 fail2:
648 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
649 fail1:
650 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
651 fail0:
652 return rc;
653 }
654
655 void
656 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
657 {
658 bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
659 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
660 }
661
662 void
663 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
664 {
665 bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
666 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
667 }
668
669 void
670 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
671 {
672 bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
673 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
674 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
675 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
676 }
677