Home | History | Annotate | Line # | Download | only in fpe
      1  1.10   isaki /*	$NetBSD: fpu_div.c,v 1.10 2014/01/01 05:23:40 isaki Exp $ */
      2   1.1  briggs 
      3   1.1  briggs /*
      4   1.1  briggs  * Copyright (c) 1992, 1993
      5   1.1  briggs  *	The Regents of the University of California.  All rights reserved.
      6   1.1  briggs  *
      7   1.1  briggs  * This software was developed by the Computer Systems Engineering group
      8   1.1  briggs  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9   1.1  briggs  * contributed to Berkeley.
     10   1.1  briggs  *
     11   1.1  briggs  * All advertising materials mentioning features or use of this software
     12   1.1  briggs  * must display the following acknowledgement:
     13   1.1  briggs  *	This product includes software developed by the University of
     14   1.1  briggs  *	California, Lawrence Berkeley Laboratory.
     15   1.1  briggs  *
     16   1.1  briggs  * Redistribution and use in source and binary forms, with or without
     17   1.1  briggs  * modification, are permitted provided that the following conditions
     18   1.1  briggs  * are met:
     19   1.1  briggs  * 1. Redistributions of source code must retain the above copyright
     20   1.1  briggs  *    notice, this list of conditions and the following disclaimer.
     21   1.1  briggs  * 2. Redistributions in binary form must reproduce the above copyright
     22   1.1  briggs  *    notice, this list of conditions and the following disclaimer in the
     23   1.1  briggs  *    documentation and/or other materials provided with the distribution.
     24   1.4     agc  * 3. Neither the name of the University nor the names of its contributors
     25   1.1  briggs  *    may be used to endorse or promote products derived from this software
     26   1.1  briggs  *    without specific prior written permission.
     27   1.1  briggs  *
     28   1.1  briggs  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29   1.1  briggs  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30   1.1  briggs  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31   1.1  briggs  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32   1.1  briggs  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33   1.1  briggs  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34   1.1  briggs  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35   1.1  briggs  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36   1.1  briggs  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37   1.1  briggs  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38   1.1  briggs  * SUCH DAMAGE.
     39   1.1  briggs  *
     40   1.1  briggs  *	@(#)fpu_div.c	8.1 (Berkeley) 6/11/93
     41   1.1  briggs  */
     42   1.1  briggs 
     43   1.1  briggs /*
     44   1.1  briggs  * Perform an FPU divide (return x / y).
     45   1.1  briggs  */
     46   1.3   lukem 
     47   1.3   lukem #include <sys/cdefs.h>
     48  1.10   isaki __KERNEL_RCSID(0, "$NetBSD: fpu_div.c,v 1.10 2014/01/01 05:23:40 isaki Exp $");
     49   1.1  briggs 
     50   1.1  briggs #include <sys/types.h>
     51   1.1  briggs 
     52   1.1  briggs #include <machine/reg.h>
     53   1.1  briggs 
     54   1.1  briggs #include "fpu_arith.h"
     55   1.1  briggs #include "fpu_emulate.h"
     56   1.1  briggs 
     57   1.1  briggs /*
     58   1.1  briggs  * Division of normal numbers is done as follows:
     59   1.1  briggs  *
     60   1.1  briggs  * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
     61   1.1  briggs  * If X and Y are the mantissas (1.bbbb's), the quotient is then:
     62   1.1  briggs  *
     63   1.1  briggs  *	q = (X / Y) * 2^((x exponent) - (y exponent))
     64   1.1  briggs  *
     65   1.1  briggs  * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
     66   1.1  briggs  * will be in [0.5,2.0).  Moreover, it will be less than 1.0 if and only
     67   1.1  briggs  * if X < Y.  In that case, it will have to be shifted left one bit to
     68   1.1  briggs  * become a normal number, and the exponent decremented.  Thus, the
     69   1.1  briggs  * desired exponent is:
     70   1.1  briggs  *
     71   1.1  briggs  *	left_shift = x->fp_mant < y->fp_mant;
     72   1.1  briggs  *	result_exp = x->fp_exp - y->fp_exp - left_shift;
     73   1.1  briggs  *
     74   1.1  briggs  * The quotient mantissa X/Y can then be computed one bit at a time
     75   1.1  briggs  * using the following algorithm:
     76   1.1  briggs  *
     77   1.1  briggs  *	Q = 0;			-- Initial quotient.
     78   1.1  briggs  *	R = X;			-- Initial remainder,
     79   1.1  briggs  *	if (left_shift)		--   but fixed up in advance.
     80   1.1  briggs  *		R *= 2;
     81   1.1  briggs  *	for (bit = FP_NMANT; --bit >= 0; R *= 2) {
     82   1.1  briggs  *		if (R >= Y) {
     83   1.1  briggs  *			Q |= 1 << bit;
     84   1.1  briggs  *			R -= Y;
     85   1.1  briggs  *		}
     86   1.1  briggs  *	}
     87   1.1  briggs  *
     88   1.1  briggs  * The subtraction R -= Y always removes the uppermost bit from R (and
     89   1.1  briggs  * can sometimes remove additional lower-order 1 bits); this proof is
     90   1.1  briggs  * left to the reader.
     91   1.1  briggs  *
     92   1.1  briggs  * This loop correctly calculates the guard and round bits since they are
     93   1.1  briggs  * included in the expanded internal representation.  The sticky bit
     94   1.1  briggs  * is to be set if and only if any other bits beyond guard and round
     95   1.1  briggs  * would be set.  From the above it is obvious that this is true if and
     96   1.1  briggs  * only if the remainder R is nonzero when the loop terminates.
     97   1.1  briggs  *
     98   1.1  briggs  * Examining the loop above, we can see that the quotient Q is built
     99   1.1  briggs  * one bit at a time ``from the top down''.  This means that we can
    100   1.1  briggs  * dispense with the multi-word arithmetic and just build it one word
    101   1.1  briggs  * at a time, writing each result word when it is done.
    102   1.1  briggs  *
    103   1.1  briggs  * Furthermore, since X and Y are both in [1.0,2.0), we know that,
    104   1.1  briggs  * initially, R >= Y.  (Recall that, if X < Y, R is set to X * 2 and
    105   1.1  briggs  * is therefore at in [2.0,4.0).)  Thus Q is sure to have bit FP_NMANT-1
    106   1.1  briggs  * set, and R can be set initially to either X - Y (when X >= Y) or
    107   1.1  briggs  * 2X - Y (when X < Y).  In addition, comparing R and Y is difficult,
    108   1.1  briggs  * so we will simply calculate R - Y and see if that underflows.
    109   1.1  briggs  * This leads to the following revised version of the algorithm:
    110   1.1  briggs  *
    111   1.1  briggs  *	R = X;
    112   1.1  briggs  *	bit = FP_1;
    113   1.1  briggs  *	D = R - Y;
    114   1.1  briggs  *	if (D >= 0) {
    115   1.1  briggs  *		result_exp = x->fp_exp - y->fp_exp;
    116   1.1  briggs  *		R = D;
    117   1.1  briggs  *		q = bit;
    118   1.1  briggs  *		bit >>= 1;
    119   1.1  briggs  *	} else {
    120   1.1  briggs  *		result_exp = x->fp_exp - y->fp_exp - 1;
    121   1.1  briggs  *		q = 0;
    122   1.1  briggs  *	}
    123   1.1  briggs  *	R <<= 1;
    124   1.1  briggs  *	do  {
    125   1.1  briggs  *		D = R - Y;
    126   1.1  briggs  *		if (D >= 0) {
    127   1.1  briggs  *			q |= bit;
    128   1.1  briggs  *			R = D;
    129   1.1  briggs  *		}
    130   1.1  briggs  *		R <<= 1;
    131   1.1  briggs  *	} while ((bit >>= 1) != 0);
    132   1.1  briggs  *	Q[0] = q;
    133   1.1  briggs  *	for (i = 1; i < 4; i++) {
    134   1.1  briggs  *		q = 0, bit = 1 << 31;
    135   1.1  briggs  *		do {
    136   1.1  briggs  *			D = R - Y;
    137   1.1  briggs  *			if (D >= 0) {
    138   1.1  briggs  *				q |= bit;
    139   1.1  briggs  *				R = D;
    140   1.1  briggs  *			}
    141   1.1  briggs  *			R <<= 1;
    142   1.1  briggs  *		} while ((bit >>= 1) != 0);
    143   1.1  briggs  *		Q[i] = q;
    144   1.1  briggs  *	}
    145   1.1  briggs  *
    146   1.1  briggs  * This can be refined just a bit further by moving the `R <<= 1'
    147   1.1  briggs  * calculations to the front of the do-loops and eliding the first one.
    148   1.1  briggs  * The process can be terminated immediately whenever R becomes 0, but
    149   1.1  briggs  * this is relatively rare, and we do not bother.
    150   1.1  briggs  */
    151   1.1  briggs 
    152   1.1  briggs struct fpn *
    153   1.7   isaki fpu_div(struct fpemu *fe)
    154   1.1  briggs {
    155   1.7   isaki 	struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
    156   1.8   isaki 	uint32_t q, bit;
    157   1.8   isaki 	uint32_t r0, r1, r2, d0, d1, d2, y0, y1, y2;
    158   1.1  briggs 	FPU_DECL_CARRY
    159   1.1  briggs 
    160   1.1  briggs 	fe->fe_fpsr &= ~FPSR_EXCP; /* clear all exceptions */
    161   1.1  briggs 
    162   1.1  briggs 	/*
    163   1.1  briggs 	 * Since divide is not commutative, we cannot just use ORDER.
    164   1.1  briggs 	 * Check either operand for NaN first; if there is at least one,
    165   1.1  briggs 	 * order the signalling one (if only one) onto the right, then
    166   1.1  briggs 	 * return it.  Otherwise we have the following cases:
    167   1.1  briggs 	 *
    168   1.1  briggs 	 *	Inf / Inf = NaN, plus NV exception
    169   1.9   isaki 	 *	Inf / num = Inf
    170   1.9   isaki 	 *	Inf / 0   = Inf
    171  1.10   isaki 	 *	0   / Inf = 0
    172  1.10   isaki 	 *	0   / num = 0
    173  1.10   isaki 	 *	0   / 0   = NaN, plus NV exception
    174   1.1  briggs 	 *	num / Inf = 0
    175   1.1  briggs 	 *	num / num = num (do the divide)
    176   1.1  briggs 	 *	num / 0   = Inf, plus DZ exception
    177   1.1  briggs 	 */
    178   1.1  briggs 	if (ISNAN(x) || ISNAN(y)) {
    179   1.1  briggs 		ORDER(x, y);
    180   1.1  briggs 		return (y);
    181   1.1  briggs 	}
    182   1.1  briggs 	if (ISINF(x) || ISZERO(x)) {
    183   1.1  briggs 		if (x->fp_class == y->fp_class)
    184   1.1  briggs 			return (fpu_newnan(fe));
    185   1.9   isaki 		/* all results at this point use XOR of operand signs */
    186   1.9   isaki 		x->fp_sign ^= y->fp_sign;
    187   1.1  briggs 		return (x);
    188   1.1  briggs 	}
    189   1.1  briggs 
    190   1.1  briggs 	/* all results at this point use XOR of operand signs */
    191   1.1  briggs 	x->fp_sign ^= y->fp_sign;
    192   1.1  briggs 	if (ISINF(y)) {
    193   1.1  briggs 		x->fp_class = FPC_ZERO;
    194   1.1  briggs 		return (x);
    195   1.1  briggs 	}
    196   1.1  briggs 	if (ISZERO(y)) {
    197   1.1  briggs 		fe->fe_fpsr |= FPSR_DZ;
    198   1.1  briggs 		x->fp_class = FPC_INF;
    199   1.1  briggs 		return (x);
    200   1.1  briggs 	}
    201   1.1  briggs 
    202   1.1  briggs 	/*
    203   1.1  briggs 	 * Macros for the divide.  See comments at top for algorithm.
    204   1.1  briggs 	 * Note that we expand R, D, and Y here.
    205   1.1  briggs 	 */
    206   1.1  briggs 
    207   1.1  briggs #define	SUBTRACT		/* D = R - Y */ \
    208   1.2  briggs 	FPU_SUBS(d2, r2, y2); \
    209   1.1  briggs 	FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
    210   1.1  briggs 
    211   1.1  briggs #define	NONNEGATIVE		/* D >= 0 */ \
    212   1.1  briggs 	((int)d0 >= 0)
    213   1.1  briggs 
    214   1.1  briggs #ifdef FPU_SHL1_BY_ADD
    215   1.1  briggs #define	SHL1			/* R <<= 1 */ \
    216   1.2  briggs 	FPU_ADDS(r2, r2, r2); \
    217   1.1  briggs 	FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
    218   1.1  briggs #else
    219   1.1  briggs #define	SHL1 \
    220   1.1  briggs 	r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
    221   1.2  briggs 	r2 <<= 1
    222   1.1  briggs #endif
    223   1.1  briggs 
    224   1.1  briggs #define	LOOP			/* do ... while (bit >>= 1) */ \
    225   1.1  briggs 	do { \
    226   1.1  briggs 		SHL1; \
    227   1.1  briggs 		SUBTRACT; \
    228   1.1  briggs 		if (NONNEGATIVE) { \
    229   1.1  briggs 			q |= bit; \
    230   1.2  briggs 			r0 = d0, r1 = d1, r2 = d2; \
    231   1.1  briggs 		} \
    232   1.1  briggs 	} while ((bit >>= 1) != 0)
    233   1.1  briggs 
    234   1.1  briggs #define	WORD(r, i)			/* calculate r->fp_mant[i] */ \
    235   1.1  briggs 	q = 0; \
    236   1.1  briggs 	bit = 1 << 31; \
    237   1.1  briggs 	LOOP; \
    238   1.1  briggs 	(x)->fp_mant[i] = q
    239   1.1  briggs 
    240   1.1  briggs 	/* Setup.  Note that we put our result in x. */
    241   1.1  briggs 	r0 = x->fp_mant[0];
    242   1.1  briggs 	r1 = x->fp_mant[1];
    243   1.1  briggs 	r2 = x->fp_mant[2];
    244   1.1  briggs 	y0 = y->fp_mant[0];
    245   1.1  briggs 	y1 = y->fp_mant[1];
    246   1.1  briggs 	y2 = y->fp_mant[2];
    247   1.1  briggs 
    248   1.1  briggs 	bit = FP_1;
    249   1.1  briggs 	SUBTRACT;
    250   1.1  briggs 	if (NONNEGATIVE) {
    251   1.1  briggs 		x->fp_exp -= y->fp_exp;
    252   1.2  briggs 		r0 = d0, r1 = d1, r2 = d2;
    253   1.1  briggs 		q = bit;
    254   1.1  briggs 		bit >>= 1;
    255   1.1  briggs 	} else {
    256   1.1  briggs 		x->fp_exp -= y->fp_exp + 1;
    257   1.1  briggs 		q = 0;
    258   1.1  briggs 	}
    259   1.1  briggs 	LOOP;
    260   1.1  briggs 	x->fp_mant[0] = q;
    261   1.1  briggs 	WORD(x, 1);
    262   1.1  briggs 	WORD(x, 2);
    263   1.2  briggs 	x->fp_sticky = r0 | r1 | r2;
    264   1.1  briggs 
    265   1.1  briggs 	return (x);
    266   1.1  briggs }
    267