fpu_emulate.c revision 1.21 1 1.20 jonathan /* $NetBSD: fpu_emulate.c,v 1.21 1999/05/30 20:17:48 briggs Exp $ */
2 1.1 gwr
3 1.1 gwr /*
4 1.1 gwr * Copyright (c) 1995 Gordon W. Ross
5 1.3 briggs * some portion Copyright (c) 1995 Ken Nakata
6 1.1 gwr * All rights reserved.
7 1.1 gwr *
8 1.1 gwr * Redistribution and use in source and binary forms, with or without
9 1.1 gwr * modification, are permitted provided that the following conditions
10 1.1 gwr * are met:
11 1.1 gwr * 1. Redistributions of source code must retain the above copyright
12 1.1 gwr * notice, this list of conditions and the following disclaimer.
13 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 gwr * notice, this list of conditions and the following disclaimer in the
15 1.1 gwr * documentation and/or other materials provided with the distribution.
16 1.1 gwr * 3. The name of the author may not be used to endorse or promote products
17 1.1 gwr * derived from this software without specific prior written permission.
18 1.1 gwr * 4. All advertising materials mentioning features or use of this software
19 1.1 gwr * must display the following acknowledgement:
20 1.1 gwr * This product includes software developed by Gordon Ross
21 1.1 gwr *
22 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 1.1 gwr * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 1.1 gwr * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 1.1 gwr * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 1.1 gwr * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 1.1 gwr * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 1.1 gwr * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 1.1 gwr * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 1.1 gwr * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 1.1 gwr * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 1.1 gwr */
33 1.1 gwr
34 1.1 gwr /*
35 1.1 gwr * mc68881 emulator
36 1.1 gwr * XXX - Just a start at it for now...
37 1.1 gwr */
38 1.20 jonathan
39 1.1 gwr #include <sys/types.h>
40 1.1 gwr #include <sys/signal.h>
41 1.5 briggs #include <sys/systm.h>
42 1.1 gwr #include <machine/frame.h>
43 1.1 gwr
44 1.21 briggs #if defined(DDB) && defined(DEBUG_FPE)
45 1.15 veego # include <m68k/db_machdep.h>
46 1.15 veego #endif
47 1.15 veego
48 1.3 briggs #include "fpu_emulate.h"
49 1.1 gwr
50 1.3 briggs static int fpu_emul_fmovmcr __P((struct fpemu *fe, struct instruction *insn));
51 1.3 briggs static int fpu_emul_fmovm __P((struct fpemu *fe, struct instruction *insn));
52 1.3 briggs static int fpu_emul_arith __P((struct fpemu *fe, struct instruction *insn));
53 1.3 briggs static int fpu_emul_type1 __P((struct fpemu *fe, struct instruction *insn));
54 1.3 briggs static int fpu_emul_brcc __P((struct fpemu *fe, struct instruction *insn));
55 1.4 briggs static int test_cc __P((struct fpemu *fe, int pred));
56 1.4 briggs static struct fpn *fpu_cmp __P((struct fpemu *fe));
57 1.5 briggs
58 1.21 briggs #if DEBUG_FPE
59 1.21 briggs # define DUMP_INSN(insn) \
60 1.21 briggs printf("fpu_emulate: insn={adv=%d,siz=%d,op=%04x,w1=%04x}\n", \
61 1.3 briggs (insn)->is_advance, (insn)->is_datasize, \
62 1.21 briggs (insn)->is_opcode, (insn)->is_word1)
63 1.21 briggs #else
64 1.21 briggs # define DUMP_INSN(insn)
65 1.3 briggs #endif
66 1.1 gwr
67 1.1 gwr /*
68 1.1 gwr * Emulate a floating-point instruction.
69 1.1 gwr * Return zero for success, else signal number.
70 1.1 gwr * (Typically: zero, SIGFPE, SIGILL, SIGSEGV)
71 1.1 gwr */
72 1.3 briggs int
73 1.3 briggs fpu_emulate(frame, fpf)
74 1.3 briggs struct frame *frame;
75 1.3 briggs struct fpframe *fpf;
76 1.1 gwr {
77 1.4 briggs static struct instruction insn;
78 1.4 briggs static struct fpemu fe;
79 1.21 briggs #if 0
80 1.14 scottr u_int savedpc = 0; /* XXX work around gcc -O lossage */
81 1.21 briggs #endif
82 1.3 briggs int word, optype, sig;
83 1.3 briggs
84 1.21 briggs
85 1.4 briggs /* initialize insn.is_datasize to tell it is *not* initialized */
86 1.3 briggs insn.is_datasize = -1;
87 1.21 briggs
88 1.3 briggs fe.fe_frame = frame;
89 1.3 briggs fe.fe_fpframe = fpf;
90 1.3 briggs fe.fe_fpsr = fpf->fpf_fpsr;
91 1.3 briggs fe.fe_fpcr = fpf->fpf_fpcr;
92 1.1 gwr
93 1.21 briggs #if DEBUG_FPE
94 1.21 briggs printf("ENTERING fpu_emulate: FPSR=%08x, FPCR=%08x\n",
95 1.21 briggs fe.fe_fpsr, fe.fe_fpcr);
96 1.1 gwr #endif
97 1.1 gwr
98 1.13 gwr /* always set this (to avoid a warning) */
99 1.21 briggs insn.is_pc = frame->f_pc;
100 1.21 briggs insn.is_nextpc = 0;
101 1.8 scottr if (frame->f_format == 4) {
102 1.8 scottr /*
103 1.8 scottr * A format 4 is generated by the 68{EC,LC}040. The PC is
104 1.8 scottr * already set to the instruction following the faulting
105 1.8 scottr * instruction. We need to calculate that, anyway. The
106 1.8 scottr * fslw is the PC of the faulted instruction, which is what
107 1.8 scottr * we expect to be in f_pc.
108 1.8 scottr *
109 1.8 scottr * XXX - This is a hack; it assumes we at least know the
110 1.8 scottr * sizes of all instructions we run across. This may not
111 1.8 scottr * be true, so we save the PC in order to restore it later.
112 1.8 scottr */
113 1.21 briggs insn.is_pc = frame->f_fmt4.f_fslw;
114 1.21 briggs insn.is_nextpc = frame->f_pc;
115 1.8 scottr }
116 1.8 scottr
117 1.21 briggs word = fusword((void *) (insn.is_pc));
118 1.3 briggs if (word < 0) {
119 1.3 briggs #ifdef DEBUG
120 1.21 briggs printf("fpu_emulate: fault reading opcode\n");
121 1.3 briggs #endif
122 1.3 briggs return SIGSEGV;
123 1.3 briggs }
124 1.3 briggs
125 1.3 briggs if ((word & 0xf000) != 0xf000) {
126 1.3 briggs #ifdef DEBUG
127 1.21 briggs printf("fpu_emulate: not coproc. insn.: opcode=0x%x\n", word);
128 1.1 gwr #endif
129 1.3 briggs return SIGILL;
130 1.3 briggs }
131 1.1 gwr
132 1.21 briggs if ((word & 0x0E00) != 0x0200) {
133 1.3 briggs #ifdef DEBUG
134 1.21 briggs printf("fpu_emulate: bad coproc. id: opcode=0x%x\n", word);
135 1.3 briggs #endif
136 1.3 briggs return SIGILL;
137 1.3 briggs }
138 1.1 gwr
139 1.3 briggs insn.is_opcode = word;
140 1.3 briggs optype = (word & 0x01C0);
141 1.1 gwr
142 1.21 briggs word = fusword((void *) (insn.is_pc + 2));
143 1.3 briggs if (word < 0) {
144 1.3 briggs #ifdef DEBUG
145 1.21 briggs printf("fpu_emulate: fault reading word1\n");
146 1.1 gwr #endif
147 1.3 briggs return SIGSEGV;
148 1.3 briggs }
149 1.3 briggs insn.is_word1 = word;
150 1.3 briggs /* all FPU instructions are at least 4-byte long */
151 1.3 briggs insn.is_advance = 4;
152 1.3 briggs
153 1.3 briggs DUMP_INSN(&insn);
154 1.3 briggs
155 1.3 briggs /*
156 1.3 briggs * Which family (or type) of opcode is it?
157 1.3 briggs * Tests ordered by likelihood (hopefully).
158 1.3 briggs * Certainly, type 0 is the most common.
159 1.3 briggs */
160 1.3 briggs if (optype == 0x0000) {
161 1.3 briggs /* type=0: generic */
162 1.3 briggs if ((word & 0xc000) == 0xc000) {
163 1.21 briggs #if DEBUG_FPE
164 1.21 briggs printf("fpu_emulate: fmovm FPr\n");
165 1.21 briggs #endif
166 1.3 briggs sig = fpu_emul_fmovm(&fe, &insn);
167 1.3 briggs } else if ((word & 0xc000) == 0x8000) {
168 1.21 briggs #if DEBUG_FPE
169 1.21 briggs printf("fpu_emulate: fmovm FPcr\n");
170 1.21 briggs #endif
171 1.3 briggs sig = fpu_emul_fmovmcr(&fe, &insn);
172 1.3 briggs } else if ((word & 0xe000) == 0x6000) {
173 1.3 briggs /* fstore = fmove FPn,mem */
174 1.21 briggs #if DEBUG_FPE
175 1.21 briggs printf("fpu_emulate: fmove to mem\n");
176 1.21 briggs #endif
177 1.3 briggs sig = fpu_emul_fstore(&fe, &insn);
178 1.3 briggs } else if ((word & 0xfc00) == 0x5c00) {
179 1.3 briggs /* fmovecr */
180 1.21 briggs #if DEBUG_FPE
181 1.21 briggs printf("fpu_emulate: fmovecr\n");
182 1.21 briggs #endif
183 1.3 briggs sig = fpu_emul_fmovecr(&fe, &insn);
184 1.3 briggs } else if ((word & 0xa07f) == 0x26) {
185 1.3 briggs /* fscale */
186 1.21 briggs #if DEBUG_FPE
187 1.21 briggs printf("fpu_emulate: fscale\n");
188 1.21 briggs #endif
189 1.3 briggs sig = fpu_emul_fscale(&fe, &insn);
190 1.3 briggs } else {
191 1.21 briggs #if DEBUG_FPE
192 1.21 briggs printf("fpu_emulate: other type0\n");
193 1.21 briggs #endif
194 1.3 briggs /* all other type0 insns are arithmetic */
195 1.3 briggs sig = fpu_emul_arith(&fe, &insn);
196 1.1 gwr }
197 1.3 briggs if (sig == 0) {
198 1.21 briggs #if DEBUG_FPE
199 1.21 briggs printf("fpu_emulate: type 0 returned 0\n");
200 1.21 briggs #endif
201 1.3 briggs sig = fpu_upd_excp(&fe);
202 1.1 gwr }
203 1.3 briggs } else if (optype == 0x0080 || optype == 0x00C0) {
204 1.3 briggs /* type=2 or 3: fbcc, short or long disp. */
205 1.21 briggs #if DEBUG_FPE
206 1.21 briggs printf("fpu_emulate: fbcc %s\n",
207 1.21 briggs (optype & 0x40) ? "long" : "short");
208 1.21 briggs #endif
209 1.3 briggs sig = fpu_emul_brcc(&fe, &insn);
210 1.3 briggs } else if (optype == 0x0040) {
211 1.3 briggs /* type=1: fdbcc, fscc, ftrapcc */
212 1.21 briggs #if DEBUG_FPE
213 1.21 briggs printf("fpu_emulate: type1\n");
214 1.21 briggs #endif
215 1.3 briggs sig = fpu_emul_type1(&fe, &insn);
216 1.3 briggs } else {
217 1.3 briggs /* type=4: fsave (privileged) */
218 1.3 briggs /* type=5: frestore (privileged) */
219 1.3 briggs /* type=6: reserved */
220 1.3 briggs /* type=7: reserved */
221 1.3 briggs #ifdef DEBUG
222 1.21 briggs printf("fpu_emulate: bad opcode type: opcode=0x%x\n", insn.is_opcode);
223 1.1 gwr #endif
224 1.3 briggs sig = SIGILL;
225 1.3 briggs }
226 1.3 briggs
227 1.3 briggs DUMP_INSN(&insn);
228 1.1 gwr
229 1.17 is /*
230 1.17 is * XXX it is not clear to me, if we should progress the PC always,
231 1.17 is * for SIGFPE || 0, or only for 0; however, without SIGFPE, we
232 1.17 is * don't pass the signalling regression tests. -is
233 1.17 is */
234 1.17 is if ((sig == 0) || (sig == SIGFPE))
235 1.3 briggs frame->f_pc += insn.is_advance;
236 1.1 gwr #if defined(DDB) && defined(DEBUG)
237 1.3 briggs else {
238 1.21 briggs printf("fpu_emulate: sig=%d, opcode=%x, word1=%x\n",
239 1.3 briggs sig, insn.is_opcode, insn.is_word1);
240 1.15 veego kdb_trap(-1, (db_regs_t *)&frame);
241 1.3 briggs }
242 1.1 gwr #endif
243 1.8 scottr if (frame->f_format == 4)
244 1.21 briggs /* XXX Restore PC -- 68{EC,LC}040 only */
245 1.21 briggs frame->f_pc = insn.is_nextpc;
246 1.1 gwr
247 1.21 briggs #if DEBUG_FPE
248 1.21 briggs printf("EXITING fpu_emulate: w/FPSR=%08x, FPCR=%08x\n",
249 1.21 briggs fe.fe_fpsr, fe.fe_fpcr);
250 1.21 briggs #endif
251 1.3 briggs
252 1.3 briggs return (sig);
253 1.1 gwr }
254 1.1 gwr
255 1.3 briggs /* update accrued exception bits and see if there's an FP exception */
256 1.3 briggs int
257 1.3 briggs fpu_upd_excp(fe)
258 1.3 briggs struct fpemu *fe;
259 1.1 gwr {
260 1.3 briggs u_int fpsr;
261 1.3 briggs u_int fpcr;
262 1.3 briggs
263 1.3 briggs fpsr = fe->fe_fpsr;
264 1.3 briggs fpcr = fe->fe_fpcr;
265 1.3 briggs /* update fpsr accrued exception bits; each insn doesn't have to
266 1.3 briggs update this */
267 1.3 briggs if (fpsr & (FPSR_BSUN | FPSR_SNAN | FPSR_OPERR)) {
268 1.3 briggs fpsr |= FPSR_AIOP;
269 1.3 briggs }
270 1.3 briggs if (fpsr & FPSR_OVFL) {
271 1.3 briggs fpsr |= FPSR_AOVFL;
272 1.3 briggs }
273 1.3 briggs if ((fpsr & FPSR_UNFL) && (fpsr & FPSR_INEX2)) {
274 1.3 briggs fpsr |= FPSR_AUNFL;
275 1.3 briggs }
276 1.3 briggs if (fpsr & FPSR_DZ) {
277 1.3 briggs fpsr |= FPSR_ADZ;
278 1.3 briggs }
279 1.3 briggs if (fpsr & (FPSR_INEX1 | FPSR_INEX2 | FPSR_OVFL)) {
280 1.3 briggs fpsr |= FPSR_AINEX;
281 1.3 briggs }
282 1.1 gwr
283 1.3 briggs fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
284 1.1 gwr
285 1.3 briggs return (fpsr & fpcr & FPSR_EXCP) ? SIGFPE : 0;
286 1.3 briggs }
287 1.1 gwr
288 1.3 briggs /* update fpsr according to fp (= result of an fp op) */
289 1.3 briggs u_int
290 1.3 briggs fpu_upd_fpsr(fe, fp)
291 1.3 briggs struct fpemu *fe;
292 1.3 briggs struct fpn *fp;
293 1.3 briggs {
294 1.3 briggs u_int fpsr;
295 1.1 gwr
296 1.21 briggs #if DEBUG_FPE
297 1.21 briggs printf("fpu_upd_fpsr: previous fpsr=%08x\n", fe->fe_fpsr);
298 1.21 briggs #endif
299 1.3 briggs /* clear all condition code */
300 1.3 briggs fpsr = fe->fe_fpsr & ~FPSR_CCB;
301 1.1 gwr
302 1.21 briggs #if DEBUG_FPE
303 1.21 briggs printf("fpu_upd_fpsr: result is a ");
304 1.21 briggs #endif
305 1.3 briggs if (fp->fp_sign) {
306 1.21 briggs #if DEBUG_FPE
307 1.21 briggs printf("negative ");
308 1.21 briggs #endif
309 1.3 briggs fpsr |= FPSR_NEG;
310 1.21 briggs #if DEBUG_FPE
311 1.3 briggs } else {
312 1.21 briggs printf("positive ");
313 1.21 briggs #endif
314 1.3 briggs }
315 1.3 briggs
316 1.3 briggs switch (fp->fp_class) {
317 1.3 briggs case FPC_SNAN:
318 1.21 briggs #if DEBUG_FPE
319 1.21 briggs printf("signaling NAN\n");
320 1.21 briggs #endif
321 1.3 briggs fpsr |= (FPSR_NAN | FPSR_SNAN);
322 1.3 briggs break;
323 1.3 briggs case FPC_QNAN:
324 1.21 briggs #if DEBUG_FPE
325 1.21 briggs printf("quiet NAN\n");
326 1.21 briggs #endif
327 1.3 briggs fpsr |= FPSR_NAN;
328 1.3 briggs break;
329 1.3 briggs case FPC_ZERO:
330 1.21 briggs #if DEBUG_FPE
331 1.21 briggs printf("Zero\n");
332 1.21 briggs #endif
333 1.3 briggs fpsr |= FPSR_ZERO;
334 1.3 briggs break;
335 1.3 briggs case FPC_INF:
336 1.21 briggs #if DEBUG_FPE
337 1.21 briggs printf("Inf\n");
338 1.21 briggs #endif
339 1.3 briggs fpsr |= FPSR_INF;
340 1.3 briggs break;
341 1.3 briggs default:
342 1.21 briggs #if DEBUG_FPE
343 1.21 briggs printf("Number\n");
344 1.21 briggs #endif
345 1.3 briggs /* anything else is treated as if it is a number */
346 1.3 briggs break;
347 1.3 briggs }
348 1.1 gwr
349 1.3 briggs fe->fe_fpsr = fe->fe_fpframe->fpf_fpsr = fpsr;
350 1.1 gwr
351 1.21 briggs #if DEBUG_FPE
352 1.21 briggs printf("fpu_upd_fpsr: new fpsr=%08x\n", fe->fe_fpframe->fpf_fpsr);
353 1.21 briggs #endif
354 1.1 gwr
355 1.3 briggs return fpsr;
356 1.3 briggs }
357 1.1 gwr
358 1.3 briggs static int
359 1.3 briggs fpu_emul_fmovmcr(fe, insn)
360 1.3 briggs struct fpemu *fe;
361 1.3 briggs struct instruction *insn;
362 1.3 briggs {
363 1.3 briggs struct frame *frame = fe->fe_frame;
364 1.3 briggs struct fpframe *fpf = fe->fe_fpframe;
365 1.5 briggs int sig;
366 1.5 briggs int reglist;
367 1.3 briggs int fpu_to_mem;
368 1.3 briggs
369 1.3 briggs /* move to/from control registers */
370 1.3 briggs reglist = (insn->is_word1 & 0x1c00) >> 10;
371 1.3 briggs /* Bit 13 selects direction (FPU to/from Mem) */
372 1.3 briggs fpu_to_mem = insn->is_word1 & 0x2000;
373 1.3 briggs
374 1.3 briggs insn->is_datasize = 4;
375 1.3 briggs insn->is_advance = 4;
376 1.21 briggs sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
377 1.3 briggs if (sig) { return sig; }
378 1.3 briggs
379 1.3 briggs if (reglist != 1 && reglist != 2 && reglist != 4 &&
380 1.21 briggs (insn->is_ea.ea_flags & EA_DIRECT)) {
381 1.3 briggs /* attempted to copy more than one FPcr to CPU regs */
382 1.3 briggs #ifdef DEBUG
383 1.21 briggs printf("fpu_emul_fmovmcr: tried to copy too many FPcr\n");
384 1.3 briggs #endif
385 1.3 briggs return SIGILL;
386 1.3 briggs }
387 1.1 gwr
388 1.3 briggs if (reglist & 4) {
389 1.3 briggs /* fpcr */
390 1.21 briggs if ((insn->is_ea.ea_flags & EA_DIRECT) &&
391 1.21 briggs insn->is_ea.ea_regnum >= 8 /* address reg */) {
392 1.3 briggs /* attempted to copy FPCR to An */
393 1.3 briggs #ifdef DEBUG
394 1.21 briggs printf("fpu_emul_fmovmcr: tried to copy FPCR from/to A%d\n",
395 1.21 briggs insn->is_ea.ea_regnum & 7);
396 1.1 gwr #endif
397 1.3 briggs return SIGILL;
398 1.3 briggs }
399 1.3 briggs if (fpu_to_mem) {
400 1.21 briggs sig = fpu_store_ea(frame, insn, &insn->is_ea,
401 1.3 briggs (char *)&fpf->fpf_fpcr);
402 1.3 briggs } else {
403 1.21 briggs sig = fpu_load_ea(frame, insn, &insn->is_ea,
404 1.3 briggs (char *)&fpf->fpf_fpcr);
405 1.3 briggs }
406 1.3 briggs }
407 1.3 briggs if (sig) { return sig; }
408 1.1 gwr
409 1.3 briggs if (reglist & 2) {
410 1.3 briggs /* fpsr */
411 1.21 briggs if ((insn->is_ea.ea_flags & EA_DIRECT) &&
412 1.21 briggs insn->is_ea.ea_regnum >= 8 /* address reg */) {
413 1.3 briggs /* attempted to copy FPSR to An */
414 1.3 briggs #ifdef DEBUG
415 1.21 briggs printf("fpu_emul_fmovmcr: tried to copy FPSR from/to A%d\n",
416 1.21 briggs insn->is_ea.ea_regnum & 7);
417 1.3 briggs #endif
418 1.3 briggs return SIGILL;
419 1.3 briggs }
420 1.3 briggs if (fpu_to_mem) {
421 1.21 briggs sig = fpu_store_ea(frame, insn, &insn->is_ea,
422 1.3 briggs (char *)&fpf->fpf_fpsr);
423 1.3 briggs } else {
424 1.21 briggs sig = fpu_load_ea(frame, insn, &insn->is_ea,
425 1.3 briggs (char *)&fpf->fpf_fpsr);
426 1.3 briggs }
427 1.3 briggs }
428 1.3 briggs if (sig) { return sig; }
429 1.3 briggs
430 1.3 briggs if (reglist & 1) {
431 1.3 briggs /* fpiar - can be moved to/from An */
432 1.3 briggs if (fpu_to_mem) {
433 1.21 briggs sig = fpu_store_ea(frame, insn, &insn->is_ea,
434 1.3 briggs (char *)&fpf->fpf_fpiar);
435 1.3 briggs } else {
436 1.21 briggs sig = fpu_load_ea(frame, insn, &insn->is_ea,
437 1.3 briggs (char *)&fpf->fpf_fpiar);
438 1.3 briggs }
439 1.3 briggs }
440 1.3 briggs return sig;
441 1.1 gwr }
442 1.1 gwr
443 1.1 gwr /*
444 1.3 briggs * type 0: fmovem
445 1.3 briggs * Separated out of fpu_emul_type0 for efficiency.
446 1.1 gwr * In this function, we know:
447 1.3 briggs * (opcode & 0x01C0) == 0
448 1.3 briggs * (word1 & 0x8000) == 0x8000
449 1.3 briggs *
450 1.3 briggs * No conversion or rounding is done by this instruction,
451 1.3 briggs * and the FPSR is not affected.
452 1.1 gwr */
453 1.3 briggs static int
454 1.3 briggs fpu_emul_fmovm(fe, insn)
455 1.3 briggs struct fpemu *fe;
456 1.3 briggs struct instruction *insn;
457 1.1 gwr {
458 1.3 briggs struct frame *frame = fe->fe_frame;
459 1.3 briggs struct fpframe *fpf = fe->fe_fpframe;
460 1.3 briggs int word1, sig;
461 1.3 briggs int reglist, regmask, regnum;
462 1.3 briggs int fpu_to_mem, order;
463 1.7 scottr int w1_post_incr;
464 1.3 briggs int *fpregs;
465 1.3 briggs
466 1.3 briggs insn->is_advance = 4;
467 1.3 briggs insn->is_datasize = 12;
468 1.3 briggs word1 = insn->is_word1;
469 1.3 briggs
470 1.3 briggs /* Bit 13 selects direction (FPU to/from Mem) */
471 1.3 briggs fpu_to_mem = word1 & 0x2000;
472 1.3 briggs
473 1.3 briggs /*
474 1.3 briggs * Bits 12,11 select register list mode:
475 1.3 briggs * 0,0: Static reg list, pre-decr.
476 1.3 briggs * 0,1: Dynamic reg list, pre-decr.
477 1.3 briggs * 1,0: Static reg list, post-incr.
478 1.3 briggs * 1,1: Dynamic reg list, post-incr
479 1.3 briggs */
480 1.3 briggs w1_post_incr = word1 & 0x1000;
481 1.3 briggs if (word1 & 0x0800) {
482 1.3 briggs /* dynamic reg list */
483 1.3 briggs reglist = frame->f_regs[(word1 & 0x70) >> 4];
484 1.3 briggs } else {
485 1.3 briggs reglist = word1;
486 1.3 briggs }
487 1.3 briggs reglist &= 0xFF;
488 1.3 briggs
489 1.3 briggs /* Get effective address. (modreg=opcode&077) */
490 1.21 briggs sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
491 1.3 briggs if (sig) { return sig; }
492 1.3 briggs
493 1.3 briggs /* Get address of soft coprocessor regs. */
494 1.3 briggs fpregs = &fpf->fpf_regs[0];
495 1.3 briggs
496 1.21 briggs if (insn->is_ea.ea_flags & EA_PREDECR) {
497 1.3 briggs regnum = 7;
498 1.3 briggs order = -1;
499 1.3 briggs } else {
500 1.3 briggs regnum = 0;
501 1.3 briggs order = 1;
502 1.3 briggs }
503 1.3 briggs
504 1.21 briggs regmask = 0x80;
505 1.3 briggs while ((0 <= regnum) && (regnum < 8)) {
506 1.3 briggs if (regmask & reglist) {
507 1.3 briggs if (fpu_to_mem) {
508 1.21 briggs sig = fpu_store_ea(frame, insn, &insn->is_ea,
509 1.3 briggs (char*)&fpregs[regnum * 3]);
510 1.21 briggs #if DEBUG_FPE
511 1.21 briggs printf("fpu_emul_fmovm: FP%d (%08x,%08x,%08x) saved\n",
512 1.21 briggs regnum, fpregs[regnum * 3], fpregs[regnum * 3 + 1],
513 1.21 briggs fpregs[regnum * 3 + 2]);
514 1.21 briggs #endif
515 1.3 briggs } else { /* mem to fpu */
516 1.21 briggs sig = fpu_load_ea(frame, insn, &insn->is_ea,
517 1.3 briggs (char*)&fpregs[regnum * 3]);
518 1.21 briggs #if DEBUG_FPE
519 1.21 briggs printf("fpu_emul_fmovm: FP%d (%08x,%08x,%08x) loaded\n",
520 1.21 briggs regnum, fpregs[regnum * 3], fpregs[regnum * 3 + 1],
521 1.21 briggs fpregs[regnum * 3 + 2]);
522 1.21 briggs #endif
523 1.3 briggs }
524 1.3 briggs if (sig) { break; }
525 1.3 briggs }
526 1.3 briggs regnum += order;
527 1.21 briggs regmask >>= 1;
528 1.3 briggs }
529 1.1 gwr
530 1.3 briggs return sig;
531 1.1 gwr }
532 1.1 gwr
533 1.3 briggs static struct fpn *
534 1.3 briggs fpu_cmp(fe)
535 1.3 briggs struct fpemu *fe;
536 1.1 gwr {
537 1.3 briggs struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
538 1.1 gwr
539 1.3 briggs /* take care of special cases */
540 1.3 briggs if (x->fp_class < 0 || y->fp_class < 0) {
541 1.3 briggs /* if either of two is a SNAN, result is SNAN */
542 1.3 briggs x->fp_class = (y->fp_class < x->fp_class) ? y->fp_class : x->fp_class;
543 1.3 briggs } else if (x->fp_class == FPC_INF) {
544 1.3 briggs if (y->fp_class == FPC_INF) {
545 1.3 briggs /* both infinities */
546 1.3 briggs if (x->fp_sign == y->fp_sign) {
547 1.3 briggs x->fp_class = FPC_ZERO; /* return a signed zero */
548 1.3 briggs } else {
549 1.3 briggs x->fp_class = FPC_NUM; /* return a faked number w/x's sign */
550 1.3 briggs x->fp_exp = 16383;
551 1.3 briggs x->fp_mant[0] = FP_1;
552 1.3 briggs }
553 1.3 briggs } else {
554 1.3 briggs /* y is a number */
555 1.3 briggs x->fp_class = FPC_NUM; /* return a forged number w/x's sign */
556 1.3 briggs x->fp_exp = 16383;
557 1.3 briggs x->fp_mant[0] = FP_1;
558 1.3 briggs }
559 1.3 briggs } else if (y->fp_class == FPC_INF) {
560 1.3 briggs /* x is a Num but y is an Inf */
561 1.3 briggs /* return a forged number w/y's sign inverted */
562 1.3 briggs x->fp_class = FPC_NUM;
563 1.3 briggs x->fp_sign = !y->fp_sign;
564 1.3 briggs x->fp_exp = 16383;
565 1.3 briggs x->fp_mant[0] = FP_1;
566 1.3 briggs } else {
567 1.3 briggs /* x and y are both numbers or zeros, or pair of a number and a zero */
568 1.3 briggs y->fp_sign = !y->fp_sign;
569 1.3 briggs x = fpu_add(fe); /* (x - y) */
570 1.1 gwr /*
571 1.3 briggs * FCMP does not set Inf bit in CC, so return a forged number
572 1.3 briggs * (value doesn't matter) if Inf is the result of fsub.
573 1.1 gwr */
574 1.3 briggs if (x->fp_class == FPC_INF) {
575 1.3 briggs x->fp_class = FPC_NUM;
576 1.3 briggs x->fp_exp = 16383;
577 1.3 briggs x->fp_mant[0] = FP_1;
578 1.1 gwr }
579 1.3 briggs }
580 1.3 briggs return x;
581 1.1 gwr }
582 1.1 gwr
583 1.1 gwr /*
584 1.3 briggs * arithmetic oprations
585 1.1 gwr */
586 1.3 briggs static int
587 1.3 briggs fpu_emul_arith(fe, insn)
588 1.3 briggs struct fpemu *fe;
589 1.3 briggs struct instruction *insn;
590 1.1 gwr {
591 1.3 briggs struct frame *frame = fe->fe_frame;
592 1.3 briggs u_int *fpregs = &(fe->fe_fpframe->fpf_regs[0]);
593 1.3 briggs struct fpn *res;
594 1.3 briggs int word1, sig = 0;
595 1.3 briggs int regnum, format;
596 1.3 briggs int discard_result = 0;
597 1.3 briggs u_int buf[3];
598 1.21 briggs #if DEBUG_FPE
599 1.3 briggs int flags;
600 1.3 briggs char regname;
601 1.21 briggs #endif
602 1.16 is
603 1.16 is fe->fe_fpsr &= ~FPSR_EXCP;
604 1.3 briggs
605 1.3 briggs DUMP_INSN(insn);
606 1.3 briggs
607 1.21 briggs #if DEBUG_FPE
608 1.21 briggs printf("fpu_emul_arith: FPSR = %08x, FPCR = %08x\n",
609 1.21 briggs fe->fe_fpsr, fe->fe_fpcr);
610 1.21 briggs #endif
611 1.3 briggs
612 1.3 briggs word1 = insn->is_word1;
613 1.3 briggs format = (word1 >> 10) & 7;
614 1.3 briggs regnum = (word1 >> 7) & 7;
615 1.3 briggs
616 1.3 briggs /* fetch a source operand : may not be used */
617 1.21 briggs #if DEBUG_FPE
618 1.21 briggs printf("fpu_emul_arith: dst/src FP%d=%08x,%08x,%08x\n",
619 1.21 briggs regnum, fpregs[regnum*3], fpregs[regnum*3+1],
620 1.21 briggs fpregs[regnum*3+2]);
621 1.21 briggs #endif
622 1.21 briggs
623 1.3 briggs fpu_explode(fe, &fe->fe_f1, FTYPE_EXT, &fpregs[regnum * 3]);
624 1.3 briggs
625 1.3 briggs DUMP_INSN(insn);
626 1.3 briggs
627 1.3 briggs /* get the other operand which is always the source */
628 1.3 briggs if ((word1 & 0x4000) == 0) {
629 1.21 briggs #if DEBUG_FPE
630 1.21 briggs printf("fpu_emul_arith: FP%d op FP%d => FP%d\n",
631 1.21 briggs format, regnum, regnum);
632 1.21 briggs printf("fpu_emul_arith: src opr FP%d=%08x,%08x,%08x\n",
633 1.21 briggs format, fpregs[format*3], fpregs[format*3+1],
634 1.21 briggs fpregs[format*3+2]);
635 1.21 briggs #endif
636 1.3 briggs fpu_explode(fe, &fe->fe_f2, FTYPE_EXT, &fpregs[format * 3]);
637 1.3 briggs } else {
638 1.3 briggs /* the operand is in memory */
639 1.3 briggs if (format == FTYPE_DBL) {
640 1.3 briggs insn->is_datasize = 8;
641 1.3 briggs } else if (format == FTYPE_SNG || format == FTYPE_LNG) {
642 1.3 briggs insn->is_datasize = 4;
643 1.3 briggs } else if (format == FTYPE_WRD) {
644 1.3 briggs insn->is_datasize = 2;
645 1.3 briggs } else if (format == FTYPE_BYT) {
646 1.3 briggs insn->is_datasize = 1;
647 1.3 briggs } else if (format == FTYPE_EXT) {
648 1.3 briggs insn->is_datasize = 12;
649 1.3 briggs } else {
650 1.3 briggs /* invalid or unsupported operand format */
651 1.3 briggs sig = SIGFPE;
652 1.3 briggs return sig;
653 1.3 briggs }
654 1.1 gwr
655 1.3 briggs /* Get effective address. (modreg=opcode&077) */
656 1.21 briggs sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
657 1.3 briggs if (sig) {
658 1.21 briggs #if DEBUG_FPE
659 1.21 briggs printf("fpu_emul_arith: error in fpu_decode_ea\n");
660 1.21 briggs #endif
661 1.3 briggs return sig;
662 1.3 briggs }
663 1.1 gwr
664 1.3 briggs DUMP_INSN(insn);
665 1.1 gwr
666 1.21 briggs #if DEBUG_FPE
667 1.21 briggs printf("fpu_emul_arith: addr mode = ");
668 1.21 briggs flags = insn->is_ea.ea_flags;
669 1.21 briggs regname = (insn->is_ea.ea_regnum & 8) ? 'a' : 'd';
670 1.21 briggs
671 1.21 briggs if (flags & EA_DIRECT) {
672 1.21 briggs printf("%c%d\n",
673 1.21 briggs regname, insn->is_ea.ea_regnum & 7);
674 1.21 briggs } else if (flags & EA_PC_REL) {
675 1.21 briggs if (flags & EA_OFFSET) {
676 1.21 briggs printf("pc@(%d)\n", insn->is_ea.ea_offset);
677 1.3 briggs } else if (flags & EA_INDEXED) {
678 1.21 briggs printf("pc@(...)\n");
679 1.21 briggs }
680 1.21 briggs } else if (flags & EA_PREDECR) {
681 1.21 briggs printf("%c%d@-\n",
682 1.21 briggs regname, insn->is_ea.ea_regnum & 7);
683 1.21 briggs } else if (flags & EA_POSTINCR) {
684 1.21 briggs printf("%c%d@+\n", regname, insn->is_ea.ea_regnum & 7);
685 1.21 briggs } else if (flags & EA_OFFSET) {
686 1.21 briggs printf("%c%d@(%d)\n", regname, insn->is_ea.ea_regnum & 7,
687 1.21 briggs insn->is_ea.ea_offset);
688 1.21 briggs } else if (flags & EA_INDEXED) {
689 1.21 briggs printf("%c%d@(...)\n", regname, insn->is_ea.ea_regnum & 7);
690 1.21 briggs } else if (flags & EA_ABS) {
691 1.21 briggs printf("0x%08x\n", insn->is_ea.ea_absaddr);
692 1.21 briggs } else if (flags & EA_IMMED) {
693 1.3 briggs
694 1.21 briggs printf("#0x%08x,%08x,%08x\n", insn->is_ea.ea_immed[0],
695 1.21 briggs insn->is_ea.ea_immed[1], insn->is_ea.ea_immed[2]);
696 1.21 briggs } else {
697 1.21 briggs printf("%c%d@\n", regname, insn->is_ea.ea_regnum & 7);
698 1.21 briggs }
699 1.21 briggs #endif /* DEBUG_FPE */
700 1.3 briggs
701 1.21 briggs fpu_load_ea(frame, insn, &insn->is_ea, (char*)buf);
702 1.3 briggs if (format == FTYPE_WRD) {
703 1.3 briggs /* sign-extend */
704 1.3 briggs buf[0] &= 0xffff;
705 1.3 briggs if (buf[0] & 0x8000) {
706 1.3 briggs buf[0] |= 0xffff0000;
707 1.3 briggs }
708 1.3 briggs format = FTYPE_LNG;
709 1.3 briggs } else if (format == FTYPE_BYT) {
710 1.3 briggs /* sign-extend */
711 1.3 briggs buf[0] &= 0xff;
712 1.3 briggs if (buf[0] & 0x80) {
713 1.3 briggs buf[0] |= 0xffffff00;
714 1.3 briggs }
715 1.3 briggs format = FTYPE_LNG;
716 1.3 briggs }
717 1.21 briggs #if DEBUG_FPE
718 1.21 briggs printf("fpu_emul_arith: src = %08x %08x %08x, siz = %d\n",
719 1.21 briggs buf[0], buf[1], buf[2], insn->is_datasize);
720 1.21 briggs #endif
721 1.3 briggs fpu_explode(fe, &fe->fe_f2, format, buf);
722 1.3 briggs }
723 1.1 gwr
724 1.3 briggs DUMP_INSN(insn);
725 1.1 gwr
726 1.3 briggs /* An arithmetic instruction emulate function has a prototype of
727 1.3 briggs * struct fpn *fpu_op(struct fpemu *);
728 1.3 briggs
729 1.3 briggs * 1) If the instruction is monadic, then fpu_op() must use
730 1.3 briggs * fe->fe_f2 as its operand, and return a pointer to the
731 1.3 briggs * result.
732 1.3 briggs
733 1.3 briggs * 2) If the instruction is diadic, then fpu_op() must use
734 1.3 briggs * fe->fe_f1 and fe->fe_f2 as its two operands, and return a
735 1.3 briggs * pointer to the result.
736 1.3 briggs
737 1.3 briggs */
738 1.6 leo res = 0;
739 1.3 briggs switch (word1 & 0x3f) {
740 1.3 briggs case 0x00: /* fmove */
741 1.3 briggs res = &fe->fe_f2;
742 1.3 briggs break;
743 1.3 briggs
744 1.3 briggs case 0x01: /* fint */
745 1.3 briggs res = fpu_int(fe);
746 1.3 briggs break;
747 1.3 briggs
748 1.3 briggs case 0x02: /* fsinh */
749 1.3 briggs res = fpu_sinh(fe);
750 1.3 briggs break;
751 1.3 briggs
752 1.3 briggs case 0x03: /* fintrz */
753 1.3 briggs res = fpu_intrz(fe);
754 1.3 briggs break;
755 1.3 briggs
756 1.3 briggs case 0x04: /* fsqrt */
757 1.3 briggs res = fpu_sqrt(fe);
758 1.3 briggs break;
759 1.3 briggs
760 1.3 briggs case 0x06: /* flognp1 */
761 1.3 briggs res = fpu_lognp1(fe);
762 1.3 briggs break;
763 1.3 briggs
764 1.3 briggs case 0x08: /* fetoxm1 */
765 1.3 briggs res = fpu_etoxm1(fe);
766 1.3 briggs break;
767 1.3 briggs
768 1.3 briggs case 0x09: /* ftanh */
769 1.3 briggs res = fpu_tanh(fe);
770 1.3 briggs break;
771 1.3 briggs
772 1.3 briggs case 0x0A: /* fatan */
773 1.3 briggs res = fpu_atan(fe);
774 1.3 briggs break;
775 1.3 briggs
776 1.3 briggs case 0x0C: /* fasin */
777 1.3 briggs res = fpu_asin(fe);
778 1.3 briggs break;
779 1.3 briggs
780 1.3 briggs case 0x0D: /* fatanh */
781 1.3 briggs res = fpu_atanh(fe);
782 1.3 briggs break;
783 1.3 briggs
784 1.3 briggs case 0x0E: /* fsin */
785 1.3 briggs res = fpu_sin(fe);
786 1.3 briggs break;
787 1.3 briggs
788 1.3 briggs case 0x0F: /* ftan */
789 1.3 briggs res = fpu_tan(fe);
790 1.3 briggs break;
791 1.3 briggs
792 1.3 briggs case 0x10: /* fetox */
793 1.3 briggs res = fpu_etox(fe);
794 1.3 briggs break;
795 1.3 briggs
796 1.3 briggs case 0x11: /* ftwotox */
797 1.3 briggs res = fpu_twotox(fe);
798 1.3 briggs break;
799 1.3 briggs
800 1.3 briggs case 0x12: /* ftentox */
801 1.3 briggs res = fpu_tentox(fe);
802 1.3 briggs break;
803 1.3 briggs
804 1.3 briggs case 0x14: /* flogn */
805 1.3 briggs res = fpu_logn(fe);
806 1.3 briggs break;
807 1.3 briggs
808 1.3 briggs case 0x15: /* flog10 */
809 1.3 briggs res = fpu_log10(fe);
810 1.3 briggs break;
811 1.3 briggs
812 1.3 briggs case 0x16: /* flog2 */
813 1.3 briggs res = fpu_log2(fe);
814 1.3 briggs break;
815 1.3 briggs
816 1.3 briggs case 0x18: /* fabs */
817 1.3 briggs fe->fe_f2.fp_sign = 0;
818 1.3 briggs res = &fe->fe_f2;
819 1.3 briggs break;
820 1.3 briggs
821 1.3 briggs case 0x19: /* fcosh */
822 1.3 briggs res = fpu_cosh(fe);
823 1.3 briggs break;
824 1.3 briggs
825 1.3 briggs case 0x1A: /* fneg */
826 1.3 briggs fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign;
827 1.3 briggs res = &fe->fe_f2;
828 1.3 briggs break;
829 1.3 briggs
830 1.3 briggs case 0x1C: /* facos */
831 1.3 briggs res = fpu_acos(fe);
832 1.3 briggs break;
833 1.3 briggs
834 1.3 briggs case 0x1D: /* fcos */
835 1.3 briggs res = fpu_cos(fe);
836 1.3 briggs break;
837 1.3 briggs
838 1.3 briggs case 0x1E: /* fgetexp */
839 1.3 briggs res = fpu_getexp(fe);
840 1.3 briggs break;
841 1.3 briggs
842 1.3 briggs case 0x1F: /* fgetman */
843 1.3 briggs res = fpu_getman(fe);
844 1.3 briggs break;
845 1.3 briggs
846 1.3 briggs case 0x20: /* fdiv */
847 1.3 briggs case 0x24: /* fsgldiv: cheating - better than nothing */
848 1.3 briggs res = fpu_div(fe);
849 1.3 briggs break;
850 1.3 briggs
851 1.3 briggs case 0x21: /* fmod */
852 1.3 briggs res = fpu_mod(fe);
853 1.3 briggs break;
854 1.3 briggs
855 1.3 briggs case 0x28: /* fsub */
856 1.3 briggs fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign; /* f2 = -f2 */
857 1.3 briggs case 0x22: /* fadd */
858 1.3 briggs res = fpu_add(fe);
859 1.3 briggs break;
860 1.3 briggs
861 1.3 briggs case 0x23: /* fmul */
862 1.3 briggs case 0x27: /* fsglmul: cheating - better than nothing */
863 1.3 briggs res = fpu_mul(fe);
864 1.3 briggs break;
865 1.3 briggs
866 1.3 briggs case 0x25: /* frem */
867 1.3 briggs res = fpu_rem(fe);
868 1.3 briggs break;
869 1.3 briggs
870 1.3 briggs case 0x26:
871 1.3 briggs /* fscale is handled by a separate function */
872 1.3 briggs break;
873 1.3 briggs
874 1.3 briggs case 0x30:
875 1.12 is case 0x31:
876 1.3 briggs case 0x32:
877 1.3 briggs case 0x33:
878 1.3 briggs case 0x34:
879 1.3 briggs case 0x35:
880 1.3 briggs case 0x36:
881 1.3 briggs case 0x37: /* fsincos */
882 1.3 briggs res = fpu_sincos(fe, word1 & 7);
883 1.3 briggs break;
884 1.3 briggs
885 1.3 briggs case 0x38: /* fcmp */
886 1.3 briggs res = fpu_cmp(fe);
887 1.3 briggs discard_result = 1;
888 1.3 briggs break;
889 1.3 briggs
890 1.3 briggs case 0x3A: /* ftst */
891 1.3 briggs res = &fe->fe_f2;
892 1.3 briggs discard_result = 1;
893 1.3 briggs break;
894 1.3 briggs
895 1.3 briggs default:
896 1.3 briggs #ifdef DEBUG
897 1.21 briggs printf("fpu_emul_arith: bad opcode=0x%x, word1=0x%x\n",
898 1.3 briggs insn->is_opcode, insn->is_word1);
899 1.3 briggs #endif
900 1.3 briggs sig = SIGILL;
901 1.3 briggs } /* switch (word1 & 0x3f) */
902 1.1 gwr
903 1.3 briggs if (!discard_result && sig == 0) {
904 1.3 briggs fpu_implode(fe, res, FTYPE_EXT, &fpregs[regnum * 3]);
905 1.21 briggs #if DEBUG_FPE
906 1.21 briggs printf("fpu_emul_arith: %08x,%08x,%08x stored in FP%d\n",
907 1.21 briggs fpregs[regnum*3], fpregs[regnum*3+1],
908 1.21 briggs fpregs[regnum*3+2], regnum);
909 1.21 briggs } else if (sig == 0) {
910 1.3 briggs static char *class_name[] = { "SNAN", "QNAN", "ZERO", "NUM", "INF" };
911 1.21 briggs printf("fpu_emul_arith: result(%s,%c,%d,%08x,%08x,%08x) discarded\n",
912 1.3 briggs class_name[res->fp_class + 2],
913 1.3 briggs res->fp_sign ? '-' : '+', res->fp_exp,
914 1.3 briggs res->fp_mant[0], res->fp_mant[1],
915 1.21 briggs res->fp_mant[2]);
916 1.21 briggs } else {
917 1.21 briggs printf("fpu_emul_arith: received signal %d\n", sig);
918 1.21 briggs #endif
919 1.3 briggs }
920 1.3 briggs
921 1.3 briggs /* update fpsr according to the result of operation */
922 1.3 briggs fpu_upd_fpsr(fe, res);
923 1.3 briggs
924 1.21 briggs #if DEBUG_FPE
925 1.21 briggs printf("fpu_emul_arith: FPSR = %08x, FPCR = %08x\n",
926 1.21 briggs fe->fe_fpsr, fe->fe_fpcr);
927 1.21 briggs #endif
928 1.1 gwr
929 1.3 briggs DUMP_INSN(insn);
930 1.1 gwr
931 1.3 briggs return sig;
932 1.1 gwr }
933 1.1 gwr
934 1.3 briggs /* test condition code according to the predicate in the opcode.
935 1.3 briggs * returns -1 when the predicate evaluates to true, 0 when false.
936 1.3 briggs * signal numbers are returned when an error is detected.
937 1.1 gwr */
938 1.3 briggs static int
939 1.3 briggs test_cc(fe, pred)
940 1.3 briggs struct fpemu *fe;
941 1.3 briggs int pred;
942 1.1 gwr {
943 1.3 briggs int result, sig_bsun, invert;
944 1.3 briggs int fpsr;
945 1.1 gwr
946 1.3 briggs fpsr = fe->fe_fpsr;
947 1.3 briggs invert = 0;
948 1.3 briggs fpsr &= ~FPSR_EXCP; /* clear all exceptions */
949 1.21 briggs #if DEBUG_FPE
950 1.21 briggs printf("test_cc: fpsr=0x%08x\n", fpsr);
951 1.21 briggs #endif
952 1.3 briggs pred &= 0x3f; /* lowest 6 bits */
953 1.3 briggs
954 1.21 briggs #if DEBUG_FPE
955 1.21 briggs printf("test_cc: ");
956 1.21 briggs #endif
957 1.1 gwr
958 1.21 briggs if (pred >= 0x20) {
959 1.3 briggs return SIGILL;
960 1.3 briggs } else if (pred & 0x10) {
961 1.3 briggs /* IEEE nonaware tests */
962 1.3 briggs sig_bsun = 1;
963 1.21 briggs pred &= 0x0f; /* lower 4 bits */
964 1.3 briggs } else {
965 1.3 briggs /* IEEE aware tests */
966 1.21 briggs #if DEBUG_FPE
967 1.21 briggs printf("IEEE ");
968 1.21 briggs #endif
969 1.3 briggs sig_bsun = 0;
970 1.3 briggs }
971 1.1 gwr
972 1.21 briggs if (pred & 0x08) {
973 1.21 briggs #if DEBUG_FPE
974 1.21 briggs printf("Not ");
975 1.21 briggs #endif
976 1.3 briggs /* predicate is "NOT ..." */
977 1.3 briggs pred ^= 0xf; /* invert */
978 1.3 briggs invert = -1;
979 1.3 briggs }
980 1.3 briggs switch (pred) {
981 1.3 briggs case 0: /* (Signaling) False */
982 1.21 briggs #if DEBUG_FPE
983 1.21 briggs printf("False");
984 1.21 briggs #endif
985 1.3 briggs result = 0;
986 1.3 briggs break;
987 1.3 briggs case 1: /* (Signaling) Equal */
988 1.21 briggs #if DEBUG_FPE
989 1.21 briggs printf("Equal");
990 1.21 briggs #endif
991 1.3 briggs result = -((fpsr & FPSR_ZERO) == FPSR_ZERO);
992 1.3 briggs break;
993 1.3 briggs case 2: /* Greater Than */
994 1.21 briggs #if DEBUG_FPE
995 1.21 briggs printf("GT");
996 1.21 briggs #endif
997 1.3 briggs result = -((fpsr & (FPSR_NAN|FPSR_ZERO|FPSR_NEG)) == 0);
998 1.3 briggs break;
999 1.3 briggs case 3: /* Greater or Equal */
1000 1.21 briggs #if DEBUG_FPE
1001 1.21 briggs printf("GE");
1002 1.21 briggs #endif
1003 1.3 briggs result = -((fpsr & FPSR_ZERO) ||
1004 1.3 briggs (fpsr & (FPSR_NAN|FPSR_NEG)) == 0);
1005 1.3 briggs break;
1006 1.3 briggs case 4: /* Less Than */
1007 1.21 briggs #if DEBUG_FPE
1008 1.21 briggs printf("LT");
1009 1.21 briggs #endif
1010 1.3 briggs result = -((fpsr & (FPSR_NAN|FPSR_ZERO|FPSR_NEG)) == FPSR_NEG);
1011 1.3 briggs break;
1012 1.3 briggs case 5: /* Less or Equal */
1013 1.21 briggs #if DEBUG_FPE
1014 1.21 briggs printf("LE");
1015 1.21 briggs #endif
1016 1.3 briggs result = -((fpsr & FPSR_ZERO) ||
1017 1.3 briggs ((fpsr & (FPSR_NAN|FPSR_NEG)) == FPSR_NEG));
1018 1.3 briggs break;
1019 1.3 briggs case 6: /* Greater or Less than */
1020 1.21 briggs #if DEBUG_FPE
1021 1.21 briggs printf("GLT");
1022 1.21 briggs #endif
1023 1.3 briggs result = -((fpsr & (FPSR_NAN|FPSR_ZERO)) == 0);
1024 1.3 briggs break;
1025 1.3 briggs case 7: /* Greater, Less or Equal */
1026 1.21 briggs #if DEBUG_FPE
1027 1.21 briggs printf("GLE");
1028 1.21 briggs #endif
1029 1.3 briggs result = -((fpsr & FPSR_NAN) == 0);
1030 1.3 briggs break;
1031 1.3 briggs default:
1032 1.3 briggs /* invalid predicate */
1033 1.3 briggs return SIGILL;
1034 1.3 briggs }
1035 1.3 briggs result ^= invert; /* if the predicate is "NOT ...", then
1036 1.3 briggs invert the result */
1037 1.21 briggs #if DEBUG_FPE
1038 1.21 briggs printf("=> %s (%d)\n", result ? "true" : "false", result);
1039 1.21 briggs #endif
1040 1.3 briggs /* if it's an IEEE unaware test and NAN is set, BSUN is set */
1041 1.3 briggs if (sig_bsun && (fpsr & FPSR_NAN)) {
1042 1.3 briggs fpsr |= FPSR_BSUN;
1043 1.3 briggs }
1044 1.1 gwr
1045 1.3 briggs /* put fpsr back */
1046 1.3 briggs fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
1047 1.1 gwr
1048 1.3 briggs return result;
1049 1.1 gwr }
1050 1.1 gwr
1051 1.1 gwr /*
1052 1.3 briggs * type 1: fdbcc, fscc, ftrapcc
1053 1.3 briggs * In this function, we know:
1054 1.3 briggs * (opcode & 0x01C0) == 0x0040
1055 1.1 gwr */
1056 1.3 briggs static int
1057 1.3 briggs fpu_emul_type1(fe, insn)
1058 1.3 briggs struct fpemu *fe;
1059 1.3 briggs struct instruction *insn;
1060 1.1 gwr {
1061 1.3 briggs struct frame *frame = fe->fe_frame;
1062 1.3 briggs int advance, sig, branch, displ;
1063 1.3 briggs
1064 1.3 briggs branch = test_cc(fe, insn->is_word1);
1065 1.3 briggs fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
1066 1.3 briggs
1067 1.3 briggs insn->is_advance = 4;
1068 1.3 briggs sig = 0;
1069 1.3 briggs
1070 1.3 briggs switch (insn->is_opcode & 070) {
1071 1.3 briggs case 010: /* fdbcc */
1072 1.3 briggs if (branch == -1) {
1073 1.3 briggs /* advance */
1074 1.3 briggs insn->is_advance = 6;
1075 1.3 briggs } else if (!branch) {
1076 1.3 briggs /* decrement Dn and if (Dn != -1) branch */
1077 1.3 briggs u_int16_t count = frame->f_regs[insn->is_opcode & 7];
1078 1.3 briggs
1079 1.3 briggs if (count-- != 0) {
1080 1.21 briggs displ = fusword((void *) (insn->is_pc + insn->is_advance));
1081 1.3 briggs if (displ < 0) {
1082 1.3 briggs #ifdef DEBUG
1083 1.21 briggs printf("fpu_emul_type1: fault reading displacement\n");
1084 1.3 briggs #endif
1085 1.3 briggs return SIGSEGV;
1086 1.3 briggs }
1087 1.3 briggs /* sign-extend the displacement */
1088 1.3 briggs displ &= 0xffff;
1089 1.3 briggs if (displ & 0x8000) {
1090 1.3 briggs displ |= 0xffff0000;
1091 1.3 briggs }
1092 1.3 briggs insn->is_advance += displ;
1093 1.3 briggs } else {
1094 1.3 briggs insn->is_advance = 6;
1095 1.3 briggs }
1096 1.3 briggs /* write it back */
1097 1.3 briggs frame->f_regs[insn->is_opcode & 7] &= 0xffff0000;
1098 1.3 briggs frame->f_regs[insn->is_opcode & 7] |= (u_int32_t)count;
1099 1.3 briggs } else { /* got a signal */
1100 1.3 briggs sig = SIGFPE;
1101 1.3 briggs }
1102 1.3 briggs break;
1103 1.1 gwr
1104 1.3 briggs case 070: /* ftrapcc or fscc */
1105 1.3 briggs advance = 4;
1106 1.3 briggs if ((insn->is_opcode & 07) >= 2) {
1107 1.3 briggs switch (insn->is_opcode & 07) {
1108 1.3 briggs case 3: /* long opr */
1109 1.3 briggs advance += 2;
1110 1.3 briggs case 2: /* word opr */
1111 1.3 briggs advance += 2;
1112 1.3 briggs case 4: /* no opr */
1113 1.3 briggs break;
1114 1.3 briggs default:
1115 1.1 gwr return SIGILL;
1116 1.3 briggs break;
1117 1.3 briggs }
1118 1.1 gwr
1119 1.3 briggs if (branch == 0) {
1120 1.3 briggs /* no trap */
1121 1.3 briggs insn->is_advance = advance;
1122 1.3 briggs sig = 0;
1123 1.3 briggs } else {
1124 1.3 briggs /* trap */
1125 1.3 briggs sig = SIGFPE;
1126 1.3 briggs }
1127 1.3 briggs break;
1128 1.3 briggs } /* if ((insn->is_opcode & 7) < 2), fall through to FScc */
1129 1.3 briggs
1130 1.3 briggs default: /* fscc */
1131 1.3 briggs insn->is_advance = 4;
1132 1.3 briggs insn->is_datasize = 1; /* always byte */
1133 1.21 briggs sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
1134 1.3 briggs if (sig) {
1135 1.3 briggs break;
1136 1.3 briggs }
1137 1.3 briggs if (branch == -1 || branch == 0) {
1138 1.3 briggs /* set result */
1139 1.21 briggs sig = fpu_store_ea(frame, insn, &insn->is_ea, (char *)&branch);
1140 1.1 gwr } else {
1141 1.3 briggs /* got an exception */
1142 1.3 briggs sig = branch;
1143 1.3 briggs }
1144 1.3 briggs break;
1145 1.3 briggs }
1146 1.3 briggs return sig;
1147 1.3 briggs }
1148 1.1 gwr
1149 1.3 briggs /*
1150 1.3 briggs * Type 2 or 3: fbcc (also fnop)
1151 1.3 briggs * In this function, we know:
1152 1.3 briggs * (opcode & 0x0180) == 0x0080
1153 1.3 briggs */
1154 1.3 briggs static int
1155 1.3 briggs fpu_emul_brcc(fe, insn)
1156 1.3 briggs struct fpemu *fe;
1157 1.3 briggs struct instruction *insn;
1158 1.3 briggs {
1159 1.3 briggs int displ, word2;
1160 1.5 briggs int sig;
1161 1.3 briggs
1162 1.3 briggs /*
1163 1.3 briggs * Get branch displacement.
1164 1.3 briggs */
1165 1.3 briggs insn->is_advance = 4;
1166 1.3 briggs displ = insn->is_word1;
1167 1.3 briggs
1168 1.3 briggs if (insn->is_opcode & 0x40) {
1169 1.21 briggs word2 = fusword((void *) (insn->is_pc + insn->is_advance));
1170 1.3 briggs if (word2 < 0) {
1171 1.3 briggs #ifdef DEBUG
1172 1.21 briggs printf("fpu_emul_brcc: fault reading word2\n");
1173 1.3 briggs #endif
1174 1.3 briggs return SIGSEGV;
1175 1.1 gwr }
1176 1.3 briggs displ <<= 16;
1177 1.3 briggs displ |= word2;
1178 1.3 briggs insn->is_advance += 2;
1179 1.3 briggs } else /* displacement is word sized */
1180 1.3 briggs if (displ & 0x8000)
1181 1.3 briggs displ |= 0xFFFF0000;
1182 1.3 briggs
1183 1.21 briggs /* XXX: If CC, insn->is_pc += displ */
1184 1.3 briggs sig = test_cc(fe, insn->is_opcode);
1185 1.3 briggs fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
1186 1.3 briggs
1187 1.3 briggs if (fe->fe_fpsr & fe->fe_fpcr & FPSR_EXCP) {
1188 1.3 briggs return SIGFPE; /* caught an exception */
1189 1.3 briggs }
1190 1.3 briggs if (sig == -1) {
1191 1.3 briggs /* branch does take place; 2 is the offset to the 1st disp word */
1192 1.3 briggs insn->is_advance = displ + 2;
1193 1.21 briggs insn->is_nextpc = insn->is_pc + insn->is_advance;
1194 1.3 briggs } else if (sig) {
1195 1.3 briggs return SIGILL; /* got a signal */
1196 1.3 briggs }
1197 1.21 briggs #if DEBUG_FPE
1198 1.21 briggs printf("fpu_emul_brcc: %s insn @ %x (%x+%x) (disp=%x)\n",
1199 1.21 briggs (sig == -1) ? "BRANCH to" : "NEXT",
1200 1.21 briggs insn->is_pc + insn->is_advance, insn->is_pc, insn->is_advance,
1201 1.21 briggs displ);
1202 1.21 briggs #endif
1203 1.3 briggs return 0;
1204 1.1 gwr }
1205