fpu_emulate.c revision 1.24 1 1.24 lukem /* $NetBSD: fpu_emulate.c,v 1.24 2003/07/15 02:43:09 lukem Exp $ */
2 1.1 gwr
3 1.1 gwr /*
4 1.1 gwr * Copyright (c) 1995 Gordon W. Ross
5 1.3 briggs * some portion Copyright (c) 1995 Ken Nakata
6 1.1 gwr * All rights reserved.
7 1.1 gwr *
8 1.1 gwr * Redistribution and use in source and binary forms, with or without
9 1.1 gwr * modification, are permitted provided that the following conditions
10 1.1 gwr * are met:
11 1.1 gwr * 1. Redistributions of source code must retain the above copyright
12 1.1 gwr * notice, this list of conditions and the following disclaimer.
13 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 gwr * notice, this list of conditions and the following disclaimer in the
15 1.1 gwr * documentation and/or other materials provided with the distribution.
16 1.1 gwr * 3. The name of the author may not be used to endorse or promote products
17 1.1 gwr * derived from this software without specific prior written permission.
18 1.1 gwr * 4. All advertising materials mentioning features or use of this software
19 1.1 gwr * must display the following acknowledgement:
20 1.1 gwr * This product includes software developed by Gordon Ross
21 1.1 gwr *
22 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 1.1 gwr * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 1.1 gwr * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 1.1 gwr * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 1.1 gwr * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 1.1 gwr * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 1.1 gwr * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 1.1 gwr * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 1.1 gwr * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 1.1 gwr * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 1.1 gwr */
33 1.1 gwr
34 1.1 gwr /*
35 1.1 gwr * mc68881 emulator
36 1.1 gwr * XXX - Just a start at it for now...
37 1.1 gwr */
38 1.24 lukem
39 1.24 lukem #include <sys/cdefs.h>
40 1.24 lukem __KERNEL_RCSID(0, "$NetBSD: fpu_emulate.c,v 1.24 2003/07/15 02:43:09 lukem Exp $");
41 1.20 jonathan
42 1.1 gwr #include <sys/types.h>
43 1.1 gwr #include <sys/signal.h>
44 1.5 briggs #include <sys/systm.h>
45 1.1 gwr #include <machine/frame.h>
46 1.1 gwr
47 1.21 briggs #if defined(DDB) && defined(DEBUG_FPE)
48 1.15 veego # include <m68k/db_machdep.h>
49 1.15 veego #endif
50 1.15 veego
51 1.3 briggs #include "fpu_emulate.h"
52 1.1 gwr
53 1.3 briggs static int fpu_emul_fmovmcr __P((struct fpemu *fe, struct instruction *insn));
54 1.3 briggs static int fpu_emul_fmovm __P((struct fpemu *fe, struct instruction *insn));
55 1.3 briggs static int fpu_emul_arith __P((struct fpemu *fe, struct instruction *insn));
56 1.3 briggs static int fpu_emul_type1 __P((struct fpemu *fe, struct instruction *insn));
57 1.3 briggs static int fpu_emul_brcc __P((struct fpemu *fe, struct instruction *insn));
58 1.4 briggs static int test_cc __P((struct fpemu *fe, int pred));
59 1.4 briggs static struct fpn *fpu_cmp __P((struct fpemu *fe));
60 1.5 briggs
61 1.21 briggs #if DEBUG_FPE
62 1.21 briggs # define DUMP_INSN(insn) \
63 1.21 briggs printf("fpu_emulate: insn={adv=%d,siz=%d,op=%04x,w1=%04x}\n", \
64 1.3 briggs (insn)->is_advance, (insn)->is_datasize, \
65 1.21 briggs (insn)->is_opcode, (insn)->is_word1)
66 1.21 briggs #else
67 1.21 briggs # define DUMP_INSN(insn)
68 1.3 briggs #endif
69 1.1 gwr
70 1.1 gwr /*
71 1.1 gwr * Emulate a floating-point instruction.
72 1.1 gwr * Return zero for success, else signal number.
73 1.1 gwr * (Typically: zero, SIGFPE, SIGILL, SIGSEGV)
74 1.1 gwr */
75 1.3 briggs int
76 1.3 briggs fpu_emulate(frame, fpf)
77 1.3 briggs struct frame *frame;
78 1.3 briggs struct fpframe *fpf;
79 1.1 gwr {
80 1.4 briggs static struct instruction insn;
81 1.4 briggs static struct fpemu fe;
82 1.3 briggs int word, optype, sig;
83 1.3 briggs
84 1.21 briggs
85 1.4 briggs /* initialize insn.is_datasize to tell it is *not* initialized */
86 1.3 briggs insn.is_datasize = -1;
87 1.21 briggs
88 1.3 briggs fe.fe_frame = frame;
89 1.3 briggs fe.fe_fpframe = fpf;
90 1.3 briggs fe.fe_fpsr = fpf->fpf_fpsr;
91 1.3 briggs fe.fe_fpcr = fpf->fpf_fpcr;
92 1.1 gwr
93 1.21 briggs #if DEBUG_FPE
94 1.21 briggs printf("ENTERING fpu_emulate: FPSR=%08x, FPCR=%08x\n",
95 1.21 briggs fe.fe_fpsr, fe.fe_fpcr);
96 1.1 gwr #endif
97 1.1 gwr
98 1.13 gwr /* always set this (to avoid a warning) */
99 1.21 briggs insn.is_pc = frame->f_pc;
100 1.21 briggs insn.is_nextpc = 0;
101 1.8 scottr if (frame->f_format == 4) {
102 1.8 scottr /*
103 1.8 scottr * A format 4 is generated by the 68{EC,LC}040. The PC is
104 1.8 scottr * already set to the instruction following the faulting
105 1.8 scottr * instruction. We need to calculate that, anyway. The
106 1.8 scottr * fslw is the PC of the faulted instruction, which is what
107 1.8 scottr * we expect to be in f_pc.
108 1.8 scottr *
109 1.8 scottr * XXX - This is a hack; it assumes we at least know the
110 1.22 is * sizes of all instructions we run across.
111 1.22 is * XXX TODO: This may not be true, so we might want to save the PC
112 1.22 is * in order to restore it later.
113 1.8 scottr */
114 1.22 is /* insn.is_nextpc = frame->f_pc; */
115 1.21 briggs insn.is_pc = frame->f_fmt4.f_fslw;
116 1.22 is frame->f_pc = insn.is_pc;
117 1.8 scottr }
118 1.8 scottr
119 1.21 briggs word = fusword((void *) (insn.is_pc));
120 1.3 briggs if (word < 0) {
121 1.3 briggs #ifdef DEBUG
122 1.21 briggs printf("fpu_emulate: fault reading opcode\n");
123 1.3 briggs #endif
124 1.3 briggs return SIGSEGV;
125 1.3 briggs }
126 1.3 briggs
127 1.3 briggs if ((word & 0xf000) != 0xf000) {
128 1.3 briggs #ifdef DEBUG
129 1.21 briggs printf("fpu_emulate: not coproc. insn.: opcode=0x%x\n", word);
130 1.1 gwr #endif
131 1.3 briggs return SIGILL;
132 1.3 briggs }
133 1.1 gwr
134 1.21 briggs if ((word & 0x0E00) != 0x0200) {
135 1.3 briggs #ifdef DEBUG
136 1.21 briggs printf("fpu_emulate: bad coproc. id: opcode=0x%x\n", word);
137 1.3 briggs #endif
138 1.3 briggs return SIGILL;
139 1.3 briggs }
140 1.1 gwr
141 1.3 briggs insn.is_opcode = word;
142 1.3 briggs optype = (word & 0x01C0);
143 1.1 gwr
144 1.21 briggs word = fusword((void *) (insn.is_pc + 2));
145 1.3 briggs if (word < 0) {
146 1.3 briggs #ifdef DEBUG
147 1.21 briggs printf("fpu_emulate: fault reading word1\n");
148 1.1 gwr #endif
149 1.3 briggs return SIGSEGV;
150 1.3 briggs }
151 1.3 briggs insn.is_word1 = word;
152 1.3 briggs /* all FPU instructions are at least 4-byte long */
153 1.3 briggs insn.is_advance = 4;
154 1.3 briggs
155 1.3 briggs DUMP_INSN(&insn);
156 1.3 briggs
157 1.3 briggs /*
158 1.3 briggs * Which family (or type) of opcode is it?
159 1.3 briggs * Tests ordered by likelihood (hopefully).
160 1.3 briggs * Certainly, type 0 is the most common.
161 1.3 briggs */
162 1.3 briggs if (optype == 0x0000) {
163 1.3 briggs /* type=0: generic */
164 1.3 briggs if ((word & 0xc000) == 0xc000) {
165 1.21 briggs #if DEBUG_FPE
166 1.21 briggs printf("fpu_emulate: fmovm FPr\n");
167 1.21 briggs #endif
168 1.3 briggs sig = fpu_emul_fmovm(&fe, &insn);
169 1.3 briggs } else if ((word & 0xc000) == 0x8000) {
170 1.21 briggs #if DEBUG_FPE
171 1.21 briggs printf("fpu_emulate: fmovm FPcr\n");
172 1.21 briggs #endif
173 1.3 briggs sig = fpu_emul_fmovmcr(&fe, &insn);
174 1.3 briggs } else if ((word & 0xe000) == 0x6000) {
175 1.3 briggs /* fstore = fmove FPn,mem */
176 1.21 briggs #if DEBUG_FPE
177 1.21 briggs printf("fpu_emulate: fmove to mem\n");
178 1.21 briggs #endif
179 1.3 briggs sig = fpu_emul_fstore(&fe, &insn);
180 1.3 briggs } else if ((word & 0xfc00) == 0x5c00) {
181 1.3 briggs /* fmovecr */
182 1.21 briggs #if DEBUG_FPE
183 1.21 briggs printf("fpu_emulate: fmovecr\n");
184 1.21 briggs #endif
185 1.3 briggs sig = fpu_emul_fmovecr(&fe, &insn);
186 1.3 briggs } else if ((word & 0xa07f) == 0x26) {
187 1.3 briggs /* fscale */
188 1.21 briggs #if DEBUG_FPE
189 1.21 briggs printf("fpu_emulate: fscale\n");
190 1.21 briggs #endif
191 1.3 briggs sig = fpu_emul_fscale(&fe, &insn);
192 1.3 briggs } else {
193 1.21 briggs #if DEBUG_FPE
194 1.21 briggs printf("fpu_emulate: other type0\n");
195 1.21 briggs #endif
196 1.3 briggs /* all other type0 insns are arithmetic */
197 1.3 briggs sig = fpu_emul_arith(&fe, &insn);
198 1.1 gwr }
199 1.3 briggs if (sig == 0) {
200 1.21 briggs #if DEBUG_FPE
201 1.21 briggs printf("fpu_emulate: type 0 returned 0\n");
202 1.21 briggs #endif
203 1.3 briggs sig = fpu_upd_excp(&fe);
204 1.1 gwr }
205 1.3 briggs } else if (optype == 0x0080 || optype == 0x00C0) {
206 1.3 briggs /* type=2 or 3: fbcc, short or long disp. */
207 1.21 briggs #if DEBUG_FPE
208 1.21 briggs printf("fpu_emulate: fbcc %s\n",
209 1.21 briggs (optype & 0x40) ? "long" : "short");
210 1.21 briggs #endif
211 1.3 briggs sig = fpu_emul_brcc(&fe, &insn);
212 1.3 briggs } else if (optype == 0x0040) {
213 1.3 briggs /* type=1: fdbcc, fscc, ftrapcc */
214 1.21 briggs #if DEBUG_FPE
215 1.21 briggs printf("fpu_emulate: type1\n");
216 1.21 briggs #endif
217 1.3 briggs sig = fpu_emul_type1(&fe, &insn);
218 1.3 briggs } else {
219 1.3 briggs /* type=4: fsave (privileged) */
220 1.3 briggs /* type=5: frestore (privileged) */
221 1.3 briggs /* type=6: reserved */
222 1.3 briggs /* type=7: reserved */
223 1.3 briggs #ifdef DEBUG
224 1.21 briggs printf("fpu_emulate: bad opcode type: opcode=0x%x\n", insn.is_opcode);
225 1.1 gwr #endif
226 1.3 briggs sig = SIGILL;
227 1.3 briggs }
228 1.3 briggs
229 1.3 briggs DUMP_INSN(&insn);
230 1.1 gwr
231 1.17 is /*
232 1.17 is * XXX it is not clear to me, if we should progress the PC always,
233 1.17 is * for SIGFPE || 0, or only for 0; however, without SIGFPE, we
234 1.17 is * don't pass the signalling regression tests. -is
235 1.17 is */
236 1.17 is if ((sig == 0) || (sig == SIGFPE))
237 1.3 briggs frame->f_pc += insn.is_advance;
238 1.23 chs #if defined(DDB) && defined(DEBUG_FPE)
239 1.3 briggs else {
240 1.21 briggs printf("fpu_emulate: sig=%d, opcode=%x, word1=%x\n",
241 1.3 briggs sig, insn.is_opcode, insn.is_word1);
242 1.15 veego kdb_trap(-1, (db_regs_t *)&frame);
243 1.3 briggs }
244 1.1 gwr #endif
245 1.22 is #if 0 /* XXX something is wrong */
246 1.22 is if (frame->f_format == 4) {
247 1.21 briggs /* XXX Restore PC -- 68{EC,LC}040 only */
248 1.22 is if (insn.is_nextpc)
249 1.22 is frame->f_pc = insn.is_nextpc;
250 1.22 is }
251 1.22 is #endif
252 1.1 gwr
253 1.21 briggs #if DEBUG_FPE
254 1.21 briggs printf("EXITING fpu_emulate: w/FPSR=%08x, FPCR=%08x\n",
255 1.21 briggs fe.fe_fpsr, fe.fe_fpcr);
256 1.21 briggs #endif
257 1.3 briggs
258 1.3 briggs return (sig);
259 1.1 gwr }
260 1.1 gwr
261 1.3 briggs /* update accrued exception bits and see if there's an FP exception */
262 1.3 briggs int
263 1.3 briggs fpu_upd_excp(fe)
264 1.3 briggs struct fpemu *fe;
265 1.1 gwr {
266 1.3 briggs u_int fpsr;
267 1.3 briggs u_int fpcr;
268 1.3 briggs
269 1.3 briggs fpsr = fe->fe_fpsr;
270 1.3 briggs fpcr = fe->fe_fpcr;
271 1.3 briggs /* update fpsr accrued exception bits; each insn doesn't have to
272 1.3 briggs update this */
273 1.3 briggs if (fpsr & (FPSR_BSUN | FPSR_SNAN | FPSR_OPERR)) {
274 1.3 briggs fpsr |= FPSR_AIOP;
275 1.3 briggs }
276 1.3 briggs if (fpsr & FPSR_OVFL) {
277 1.3 briggs fpsr |= FPSR_AOVFL;
278 1.3 briggs }
279 1.3 briggs if ((fpsr & FPSR_UNFL) && (fpsr & FPSR_INEX2)) {
280 1.3 briggs fpsr |= FPSR_AUNFL;
281 1.3 briggs }
282 1.3 briggs if (fpsr & FPSR_DZ) {
283 1.3 briggs fpsr |= FPSR_ADZ;
284 1.3 briggs }
285 1.3 briggs if (fpsr & (FPSR_INEX1 | FPSR_INEX2 | FPSR_OVFL)) {
286 1.3 briggs fpsr |= FPSR_AINEX;
287 1.3 briggs }
288 1.1 gwr
289 1.3 briggs fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
290 1.1 gwr
291 1.3 briggs return (fpsr & fpcr & FPSR_EXCP) ? SIGFPE : 0;
292 1.3 briggs }
293 1.1 gwr
294 1.3 briggs /* update fpsr according to fp (= result of an fp op) */
295 1.3 briggs u_int
296 1.3 briggs fpu_upd_fpsr(fe, fp)
297 1.3 briggs struct fpemu *fe;
298 1.3 briggs struct fpn *fp;
299 1.3 briggs {
300 1.3 briggs u_int fpsr;
301 1.1 gwr
302 1.21 briggs #if DEBUG_FPE
303 1.21 briggs printf("fpu_upd_fpsr: previous fpsr=%08x\n", fe->fe_fpsr);
304 1.21 briggs #endif
305 1.3 briggs /* clear all condition code */
306 1.3 briggs fpsr = fe->fe_fpsr & ~FPSR_CCB;
307 1.1 gwr
308 1.21 briggs #if DEBUG_FPE
309 1.21 briggs printf("fpu_upd_fpsr: result is a ");
310 1.21 briggs #endif
311 1.3 briggs if (fp->fp_sign) {
312 1.21 briggs #if DEBUG_FPE
313 1.21 briggs printf("negative ");
314 1.21 briggs #endif
315 1.3 briggs fpsr |= FPSR_NEG;
316 1.21 briggs #if DEBUG_FPE
317 1.3 briggs } else {
318 1.21 briggs printf("positive ");
319 1.21 briggs #endif
320 1.3 briggs }
321 1.3 briggs
322 1.3 briggs switch (fp->fp_class) {
323 1.3 briggs case FPC_SNAN:
324 1.21 briggs #if DEBUG_FPE
325 1.21 briggs printf("signaling NAN\n");
326 1.21 briggs #endif
327 1.3 briggs fpsr |= (FPSR_NAN | FPSR_SNAN);
328 1.3 briggs break;
329 1.3 briggs case FPC_QNAN:
330 1.21 briggs #if DEBUG_FPE
331 1.21 briggs printf("quiet NAN\n");
332 1.21 briggs #endif
333 1.3 briggs fpsr |= FPSR_NAN;
334 1.3 briggs break;
335 1.3 briggs case FPC_ZERO:
336 1.21 briggs #if DEBUG_FPE
337 1.21 briggs printf("Zero\n");
338 1.21 briggs #endif
339 1.3 briggs fpsr |= FPSR_ZERO;
340 1.3 briggs break;
341 1.3 briggs case FPC_INF:
342 1.21 briggs #if DEBUG_FPE
343 1.21 briggs printf("Inf\n");
344 1.21 briggs #endif
345 1.3 briggs fpsr |= FPSR_INF;
346 1.3 briggs break;
347 1.3 briggs default:
348 1.21 briggs #if DEBUG_FPE
349 1.21 briggs printf("Number\n");
350 1.21 briggs #endif
351 1.3 briggs /* anything else is treated as if it is a number */
352 1.3 briggs break;
353 1.3 briggs }
354 1.1 gwr
355 1.3 briggs fe->fe_fpsr = fe->fe_fpframe->fpf_fpsr = fpsr;
356 1.1 gwr
357 1.21 briggs #if DEBUG_FPE
358 1.21 briggs printf("fpu_upd_fpsr: new fpsr=%08x\n", fe->fe_fpframe->fpf_fpsr);
359 1.21 briggs #endif
360 1.1 gwr
361 1.3 briggs return fpsr;
362 1.3 briggs }
363 1.1 gwr
364 1.3 briggs static int
365 1.3 briggs fpu_emul_fmovmcr(fe, insn)
366 1.3 briggs struct fpemu *fe;
367 1.3 briggs struct instruction *insn;
368 1.3 briggs {
369 1.3 briggs struct frame *frame = fe->fe_frame;
370 1.3 briggs struct fpframe *fpf = fe->fe_fpframe;
371 1.5 briggs int sig;
372 1.5 briggs int reglist;
373 1.3 briggs int fpu_to_mem;
374 1.3 briggs
375 1.3 briggs /* move to/from control registers */
376 1.3 briggs reglist = (insn->is_word1 & 0x1c00) >> 10;
377 1.3 briggs /* Bit 13 selects direction (FPU to/from Mem) */
378 1.3 briggs fpu_to_mem = insn->is_word1 & 0x2000;
379 1.3 briggs
380 1.3 briggs insn->is_datasize = 4;
381 1.3 briggs insn->is_advance = 4;
382 1.21 briggs sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
383 1.3 briggs if (sig) { return sig; }
384 1.3 briggs
385 1.3 briggs if (reglist != 1 && reglist != 2 && reglist != 4 &&
386 1.21 briggs (insn->is_ea.ea_flags & EA_DIRECT)) {
387 1.3 briggs /* attempted to copy more than one FPcr to CPU regs */
388 1.3 briggs #ifdef DEBUG
389 1.21 briggs printf("fpu_emul_fmovmcr: tried to copy too many FPcr\n");
390 1.3 briggs #endif
391 1.3 briggs return SIGILL;
392 1.3 briggs }
393 1.1 gwr
394 1.3 briggs if (reglist & 4) {
395 1.3 briggs /* fpcr */
396 1.21 briggs if ((insn->is_ea.ea_flags & EA_DIRECT) &&
397 1.21 briggs insn->is_ea.ea_regnum >= 8 /* address reg */) {
398 1.3 briggs /* attempted to copy FPCR to An */
399 1.3 briggs #ifdef DEBUG
400 1.21 briggs printf("fpu_emul_fmovmcr: tried to copy FPCR from/to A%d\n",
401 1.21 briggs insn->is_ea.ea_regnum & 7);
402 1.1 gwr #endif
403 1.3 briggs return SIGILL;
404 1.3 briggs }
405 1.3 briggs if (fpu_to_mem) {
406 1.21 briggs sig = fpu_store_ea(frame, insn, &insn->is_ea,
407 1.3 briggs (char *)&fpf->fpf_fpcr);
408 1.3 briggs } else {
409 1.21 briggs sig = fpu_load_ea(frame, insn, &insn->is_ea,
410 1.3 briggs (char *)&fpf->fpf_fpcr);
411 1.3 briggs }
412 1.3 briggs }
413 1.3 briggs if (sig) { return sig; }
414 1.1 gwr
415 1.3 briggs if (reglist & 2) {
416 1.3 briggs /* fpsr */
417 1.21 briggs if ((insn->is_ea.ea_flags & EA_DIRECT) &&
418 1.21 briggs insn->is_ea.ea_regnum >= 8 /* address reg */) {
419 1.3 briggs /* attempted to copy FPSR to An */
420 1.3 briggs #ifdef DEBUG
421 1.21 briggs printf("fpu_emul_fmovmcr: tried to copy FPSR from/to A%d\n",
422 1.21 briggs insn->is_ea.ea_regnum & 7);
423 1.3 briggs #endif
424 1.3 briggs return SIGILL;
425 1.3 briggs }
426 1.3 briggs if (fpu_to_mem) {
427 1.21 briggs sig = fpu_store_ea(frame, insn, &insn->is_ea,
428 1.3 briggs (char *)&fpf->fpf_fpsr);
429 1.3 briggs } else {
430 1.21 briggs sig = fpu_load_ea(frame, insn, &insn->is_ea,
431 1.3 briggs (char *)&fpf->fpf_fpsr);
432 1.3 briggs }
433 1.3 briggs }
434 1.3 briggs if (sig) { return sig; }
435 1.3 briggs
436 1.3 briggs if (reglist & 1) {
437 1.3 briggs /* fpiar - can be moved to/from An */
438 1.3 briggs if (fpu_to_mem) {
439 1.21 briggs sig = fpu_store_ea(frame, insn, &insn->is_ea,
440 1.3 briggs (char *)&fpf->fpf_fpiar);
441 1.3 briggs } else {
442 1.21 briggs sig = fpu_load_ea(frame, insn, &insn->is_ea,
443 1.3 briggs (char *)&fpf->fpf_fpiar);
444 1.3 briggs }
445 1.3 briggs }
446 1.3 briggs return sig;
447 1.1 gwr }
448 1.1 gwr
449 1.1 gwr /*
450 1.3 briggs * type 0: fmovem
451 1.3 briggs * Separated out of fpu_emul_type0 for efficiency.
452 1.1 gwr * In this function, we know:
453 1.3 briggs * (opcode & 0x01C0) == 0
454 1.3 briggs * (word1 & 0x8000) == 0x8000
455 1.3 briggs *
456 1.3 briggs * No conversion or rounding is done by this instruction,
457 1.3 briggs * and the FPSR is not affected.
458 1.1 gwr */
459 1.3 briggs static int
460 1.3 briggs fpu_emul_fmovm(fe, insn)
461 1.3 briggs struct fpemu *fe;
462 1.3 briggs struct instruction *insn;
463 1.1 gwr {
464 1.3 briggs struct frame *frame = fe->fe_frame;
465 1.3 briggs struct fpframe *fpf = fe->fe_fpframe;
466 1.3 briggs int word1, sig;
467 1.3 briggs int reglist, regmask, regnum;
468 1.3 briggs int fpu_to_mem, order;
469 1.7 scottr int w1_post_incr;
470 1.3 briggs int *fpregs;
471 1.3 briggs
472 1.3 briggs insn->is_advance = 4;
473 1.3 briggs insn->is_datasize = 12;
474 1.3 briggs word1 = insn->is_word1;
475 1.3 briggs
476 1.3 briggs /* Bit 13 selects direction (FPU to/from Mem) */
477 1.3 briggs fpu_to_mem = word1 & 0x2000;
478 1.3 briggs
479 1.3 briggs /*
480 1.3 briggs * Bits 12,11 select register list mode:
481 1.3 briggs * 0,0: Static reg list, pre-decr.
482 1.3 briggs * 0,1: Dynamic reg list, pre-decr.
483 1.3 briggs * 1,0: Static reg list, post-incr.
484 1.3 briggs * 1,1: Dynamic reg list, post-incr
485 1.3 briggs */
486 1.3 briggs w1_post_incr = word1 & 0x1000;
487 1.3 briggs if (word1 & 0x0800) {
488 1.3 briggs /* dynamic reg list */
489 1.3 briggs reglist = frame->f_regs[(word1 & 0x70) >> 4];
490 1.3 briggs } else {
491 1.3 briggs reglist = word1;
492 1.3 briggs }
493 1.3 briggs reglist &= 0xFF;
494 1.3 briggs
495 1.3 briggs /* Get effective address. (modreg=opcode&077) */
496 1.21 briggs sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
497 1.3 briggs if (sig) { return sig; }
498 1.3 briggs
499 1.3 briggs /* Get address of soft coprocessor regs. */
500 1.3 briggs fpregs = &fpf->fpf_regs[0];
501 1.3 briggs
502 1.21 briggs if (insn->is_ea.ea_flags & EA_PREDECR) {
503 1.3 briggs regnum = 7;
504 1.3 briggs order = -1;
505 1.3 briggs } else {
506 1.3 briggs regnum = 0;
507 1.3 briggs order = 1;
508 1.3 briggs }
509 1.3 briggs
510 1.21 briggs regmask = 0x80;
511 1.3 briggs while ((0 <= regnum) && (regnum < 8)) {
512 1.3 briggs if (regmask & reglist) {
513 1.3 briggs if (fpu_to_mem) {
514 1.21 briggs sig = fpu_store_ea(frame, insn, &insn->is_ea,
515 1.3 briggs (char*)&fpregs[regnum * 3]);
516 1.21 briggs #if DEBUG_FPE
517 1.21 briggs printf("fpu_emul_fmovm: FP%d (%08x,%08x,%08x) saved\n",
518 1.21 briggs regnum, fpregs[regnum * 3], fpregs[regnum * 3 + 1],
519 1.21 briggs fpregs[regnum * 3 + 2]);
520 1.21 briggs #endif
521 1.3 briggs } else { /* mem to fpu */
522 1.21 briggs sig = fpu_load_ea(frame, insn, &insn->is_ea,
523 1.3 briggs (char*)&fpregs[regnum * 3]);
524 1.21 briggs #if DEBUG_FPE
525 1.21 briggs printf("fpu_emul_fmovm: FP%d (%08x,%08x,%08x) loaded\n",
526 1.21 briggs regnum, fpregs[regnum * 3], fpregs[regnum * 3 + 1],
527 1.21 briggs fpregs[regnum * 3 + 2]);
528 1.21 briggs #endif
529 1.3 briggs }
530 1.3 briggs if (sig) { break; }
531 1.3 briggs }
532 1.3 briggs regnum += order;
533 1.21 briggs regmask >>= 1;
534 1.3 briggs }
535 1.1 gwr
536 1.3 briggs return sig;
537 1.1 gwr }
538 1.1 gwr
539 1.3 briggs static struct fpn *
540 1.3 briggs fpu_cmp(fe)
541 1.3 briggs struct fpemu *fe;
542 1.1 gwr {
543 1.3 briggs struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
544 1.1 gwr
545 1.3 briggs /* take care of special cases */
546 1.3 briggs if (x->fp_class < 0 || y->fp_class < 0) {
547 1.3 briggs /* if either of two is a SNAN, result is SNAN */
548 1.3 briggs x->fp_class = (y->fp_class < x->fp_class) ? y->fp_class : x->fp_class;
549 1.3 briggs } else if (x->fp_class == FPC_INF) {
550 1.3 briggs if (y->fp_class == FPC_INF) {
551 1.3 briggs /* both infinities */
552 1.3 briggs if (x->fp_sign == y->fp_sign) {
553 1.3 briggs x->fp_class = FPC_ZERO; /* return a signed zero */
554 1.3 briggs } else {
555 1.3 briggs x->fp_class = FPC_NUM; /* return a faked number w/x's sign */
556 1.3 briggs x->fp_exp = 16383;
557 1.3 briggs x->fp_mant[0] = FP_1;
558 1.3 briggs }
559 1.3 briggs } else {
560 1.3 briggs /* y is a number */
561 1.3 briggs x->fp_class = FPC_NUM; /* return a forged number w/x's sign */
562 1.3 briggs x->fp_exp = 16383;
563 1.3 briggs x->fp_mant[0] = FP_1;
564 1.3 briggs }
565 1.3 briggs } else if (y->fp_class == FPC_INF) {
566 1.3 briggs /* x is a Num but y is an Inf */
567 1.3 briggs /* return a forged number w/y's sign inverted */
568 1.3 briggs x->fp_class = FPC_NUM;
569 1.3 briggs x->fp_sign = !y->fp_sign;
570 1.3 briggs x->fp_exp = 16383;
571 1.3 briggs x->fp_mant[0] = FP_1;
572 1.3 briggs } else {
573 1.3 briggs /* x and y are both numbers or zeros, or pair of a number and a zero */
574 1.3 briggs y->fp_sign = !y->fp_sign;
575 1.3 briggs x = fpu_add(fe); /* (x - y) */
576 1.1 gwr /*
577 1.3 briggs * FCMP does not set Inf bit in CC, so return a forged number
578 1.3 briggs * (value doesn't matter) if Inf is the result of fsub.
579 1.1 gwr */
580 1.3 briggs if (x->fp_class == FPC_INF) {
581 1.3 briggs x->fp_class = FPC_NUM;
582 1.3 briggs x->fp_exp = 16383;
583 1.3 briggs x->fp_mant[0] = FP_1;
584 1.1 gwr }
585 1.3 briggs }
586 1.3 briggs return x;
587 1.1 gwr }
588 1.1 gwr
589 1.1 gwr /*
590 1.3 briggs * arithmetic oprations
591 1.1 gwr */
592 1.3 briggs static int
593 1.3 briggs fpu_emul_arith(fe, insn)
594 1.3 briggs struct fpemu *fe;
595 1.3 briggs struct instruction *insn;
596 1.1 gwr {
597 1.3 briggs struct frame *frame = fe->fe_frame;
598 1.3 briggs u_int *fpregs = &(fe->fe_fpframe->fpf_regs[0]);
599 1.3 briggs struct fpn *res;
600 1.3 briggs int word1, sig = 0;
601 1.3 briggs int regnum, format;
602 1.3 briggs int discard_result = 0;
603 1.3 briggs u_int buf[3];
604 1.21 briggs #if DEBUG_FPE
605 1.3 briggs int flags;
606 1.3 briggs char regname;
607 1.21 briggs #endif
608 1.16 is
609 1.16 is fe->fe_fpsr &= ~FPSR_EXCP;
610 1.3 briggs
611 1.3 briggs DUMP_INSN(insn);
612 1.3 briggs
613 1.21 briggs #if DEBUG_FPE
614 1.21 briggs printf("fpu_emul_arith: FPSR = %08x, FPCR = %08x\n",
615 1.21 briggs fe->fe_fpsr, fe->fe_fpcr);
616 1.21 briggs #endif
617 1.3 briggs
618 1.3 briggs word1 = insn->is_word1;
619 1.3 briggs format = (word1 >> 10) & 7;
620 1.3 briggs regnum = (word1 >> 7) & 7;
621 1.3 briggs
622 1.3 briggs /* fetch a source operand : may not be used */
623 1.21 briggs #if DEBUG_FPE
624 1.21 briggs printf("fpu_emul_arith: dst/src FP%d=%08x,%08x,%08x\n",
625 1.21 briggs regnum, fpregs[regnum*3], fpregs[regnum*3+1],
626 1.21 briggs fpregs[regnum*3+2]);
627 1.21 briggs #endif
628 1.21 briggs
629 1.3 briggs fpu_explode(fe, &fe->fe_f1, FTYPE_EXT, &fpregs[regnum * 3]);
630 1.3 briggs
631 1.3 briggs DUMP_INSN(insn);
632 1.3 briggs
633 1.3 briggs /* get the other operand which is always the source */
634 1.3 briggs if ((word1 & 0x4000) == 0) {
635 1.21 briggs #if DEBUG_FPE
636 1.21 briggs printf("fpu_emul_arith: FP%d op FP%d => FP%d\n",
637 1.21 briggs format, regnum, regnum);
638 1.21 briggs printf("fpu_emul_arith: src opr FP%d=%08x,%08x,%08x\n",
639 1.21 briggs format, fpregs[format*3], fpregs[format*3+1],
640 1.21 briggs fpregs[format*3+2]);
641 1.21 briggs #endif
642 1.3 briggs fpu_explode(fe, &fe->fe_f2, FTYPE_EXT, &fpregs[format * 3]);
643 1.3 briggs } else {
644 1.3 briggs /* the operand is in memory */
645 1.3 briggs if (format == FTYPE_DBL) {
646 1.3 briggs insn->is_datasize = 8;
647 1.3 briggs } else if (format == FTYPE_SNG || format == FTYPE_LNG) {
648 1.3 briggs insn->is_datasize = 4;
649 1.3 briggs } else if (format == FTYPE_WRD) {
650 1.3 briggs insn->is_datasize = 2;
651 1.3 briggs } else if (format == FTYPE_BYT) {
652 1.3 briggs insn->is_datasize = 1;
653 1.3 briggs } else if (format == FTYPE_EXT) {
654 1.3 briggs insn->is_datasize = 12;
655 1.3 briggs } else {
656 1.3 briggs /* invalid or unsupported operand format */
657 1.3 briggs sig = SIGFPE;
658 1.3 briggs return sig;
659 1.3 briggs }
660 1.1 gwr
661 1.3 briggs /* Get effective address. (modreg=opcode&077) */
662 1.21 briggs sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
663 1.3 briggs if (sig) {
664 1.21 briggs #if DEBUG_FPE
665 1.21 briggs printf("fpu_emul_arith: error in fpu_decode_ea\n");
666 1.21 briggs #endif
667 1.3 briggs return sig;
668 1.3 briggs }
669 1.1 gwr
670 1.3 briggs DUMP_INSN(insn);
671 1.1 gwr
672 1.21 briggs #if DEBUG_FPE
673 1.21 briggs printf("fpu_emul_arith: addr mode = ");
674 1.21 briggs flags = insn->is_ea.ea_flags;
675 1.21 briggs regname = (insn->is_ea.ea_regnum & 8) ? 'a' : 'd';
676 1.21 briggs
677 1.21 briggs if (flags & EA_DIRECT) {
678 1.21 briggs printf("%c%d\n",
679 1.21 briggs regname, insn->is_ea.ea_regnum & 7);
680 1.21 briggs } else if (flags & EA_PC_REL) {
681 1.21 briggs if (flags & EA_OFFSET) {
682 1.21 briggs printf("pc@(%d)\n", insn->is_ea.ea_offset);
683 1.3 briggs } else if (flags & EA_INDEXED) {
684 1.21 briggs printf("pc@(...)\n");
685 1.21 briggs }
686 1.21 briggs } else if (flags & EA_PREDECR) {
687 1.21 briggs printf("%c%d@-\n",
688 1.21 briggs regname, insn->is_ea.ea_regnum & 7);
689 1.21 briggs } else if (flags & EA_POSTINCR) {
690 1.21 briggs printf("%c%d@+\n", regname, insn->is_ea.ea_regnum & 7);
691 1.21 briggs } else if (flags & EA_OFFSET) {
692 1.21 briggs printf("%c%d@(%d)\n", regname, insn->is_ea.ea_regnum & 7,
693 1.21 briggs insn->is_ea.ea_offset);
694 1.21 briggs } else if (flags & EA_INDEXED) {
695 1.21 briggs printf("%c%d@(...)\n", regname, insn->is_ea.ea_regnum & 7);
696 1.21 briggs } else if (flags & EA_ABS) {
697 1.21 briggs printf("0x%08x\n", insn->is_ea.ea_absaddr);
698 1.21 briggs } else if (flags & EA_IMMED) {
699 1.3 briggs
700 1.21 briggs printf("#0x%08x,%08x,%08x\n", insn->is_ea.ea_immed[0],
701 1.21 briggs insn->is_ea.ea_immed[1], insn->is_ea.ea_immed[2]);
702 1.21 briggs } else {
703 1.21 briggs printf("%c%d@\n", regname, insn->is_ea.ea_regnum & 7);
704 1.21 briggs }
705 1.21 briggs #endif /* DEBUG_FPE */
706 1.3 briggs
707 1.21 briggs fpu_load_ea(frame, insn, &insn->is_ea, (char*)buf);
708 1.3 briggs if (format == FTYPE_WRD) {
709 1.3 briggs /* sign-extend */
710 1.3 briggs buf[0] &= 0xffff;
711 1.3 briggs if (buf[0] & 0x8000) {
712 1.3 briggs buf[0] |= 0xffff0000;
713 1.3 briggs }
714 1.3 briggs format = FTYPE_LNG;
715 1.3 briggs } else if (format == FTYPE_BYT) {
716 1.3 briggs /* sign-extend */
717 1.3 briggs buf[0] &= 0xff;
718 1.3 briggs if (buf[0] & 0x80) {
719 1.3 briggs buf[0] |= 0xffffff00;
720 1.3 briggs }
721 1.3 briggs format = FTYPE_LNG;
722 1.3 briggs }
723 1.21 briggs #if DEBUG_FPE
724 1.21 briggs printf("fpu_emul_arith: src = %08x %08x %08x, siz = %d\n",
725 1.21 briggs buf[0], buf[1], buf[2], insn->is_datasize);
726 1.21 briggs #endif
727 1.3 briggs fpu_explode(fe, &fe->fe_f2, format, buf);
728 1.3 briggs }
729 1.1 gwr
730 1.3 briggs DUMP_INSN(insn);
731 1.1 gwr
732 1.3 briggs /* An arithmetic instruction emulate function has a prototype of
733 1.3 briggs * struct fpn *fpu_op(struct fpemu *);
734 1.3 briggs
735 1.3 briggs * 1) If the instruction is monadic, then fpu_op() must use
736 1.3 briggs * fe->fe_f2 as its operand, and return a pointer to the
737 1.3 briggs * result.
738 1.3 briggs
739 1.3 briggs * 2) If the instruction is diadic, then fpu_op() must use
740 1.3 briggs * fe->fe_f1 and fe->fe_f2 as its two operands, and return a
741 1.3 briggs * pointer to the result.
742 1.3 briggs
743 1.3 briggs */
744 1.6 leo res = 0;
745 1.3 briggs switch (word1 & 0x3f) {
746 1.3 briggs case 0x00: /* fmove */
747 1.3 briggs res = &fe->fe_f2;
748 1.3 briggs break;
749 1.3 briggs
750 1.3 briggs case 0x01: /* fint */
751 1.3 briggs res = fpu_int(fe);
752 1.3 briggs break;
753 1.3 briggs
754 1.3 briggs case 0x02: /* fsinh */
755 1.3 briggs res = fpu_sinh(fe);
756 1.3 briggs break;
757 1.3 briggs
758 1.3 briggs case 0x03: /* fintrz */
759 1.3 briggs res = fpu_intrz(fe);
760 1.3 briggs break;
761 1.3 briggs
762 1.3 briggs case 0x04: /* fsqrt */
763 1.3 briggs res = fpu_sqrt(fe);
764 1.3 briggs break;
765 1.3 briggs
766 1.3 briggs case 0x06: /* flognp1 */
767 1.3 briggs res = fpu_lognp1(fe);
768 1.3 briggs break;
769 1.3 briggs
770 1.3 briggs case 0x08: /* fetoxm1 */
771 1.3 briggs res = fpu_etoxm1(fe);
772 1.3 briggs break;
773 1.3 briggs
774 1.3 briggs case 0x09: /* ftanh */
775 1.3 briggs res = fpu_tanh(fe);
776 1.3 briggs break;
777 1.3 briggs
778 1.3 briggs case 0x0A: /* fatan */
779 1.3 briggs res = fpu_atan(fe);
780 1.3 briggs break;
781 1.3 briggs
782 1.3 briggs case 0x0C: /* fasin */
783 1.3 briggs res = fpu_asin(fe);
784 1.3 briggs break;
785 1.3 briggs
786 1.3 briggs case 0x0D: /* fatanh */
787 1.3 briggs res = fpu_atanh(fe);
788 1.3 briggs break;
789 1.3 briggs
790 1.3 briggs case 0x0E: /* fsin */
791 1.3 briggs res = fpu_sin(fe);
792 1.3 briggs break;
793 1.3 briggs
794 1.3 briggs case 0x0F: /* ftan */
795 1.3 briggs res = fpu_tan(fe);
796 1.3 briggs break;
797 1.3 briggs
798 1.3 briggs case 0x10: /* fetox */
799 1.3 briggs res = fpu_etox(fe);
800 1.3 briggs break;
801 1.3 briggs
802 1.3 briggs case 0x11: /* ftwotox */
803 1.3 briggs res = fpu_twotox(fe);
804 1.3 briggs break;
805 1.3 briggs
806 1.3 briggs case 0x12: /* ftentox */
807 1.3 briggs res = fpu_tentox(fe);
808 1.3 briggs break;
809 1.3 briggs
810 1.3 briggs case 0x14: /* flogn */
811 1.3 briggs res = fpu_logn(fe);
812 1.3 briggs break;
813 1.3 briggs
814 1.3 briggs case 0x15: /* flog10 */
815 1.3 briggs res = fpu_log10(fe);
816 1.3 briggs break;
817 1.3 briggs
818 1.3 briggs case 0x16: /* flog2 */
819 1.3 briggs res = fpu_log2(fe);
820 1.3 briggs break;
821 1.3 briggs
822 1.3 briggs case 0x18: /* fabs */
823 1.3 briggs fe->fe_f2.fp_sign = 0;
824 1.3 briggs res = &fe->fe_f2;
825 1.3 briggs break;
826 1.3 briggs
827 1.3 briggs case 0x19: /* fcosh */
828 1.3 briggs res = fpu_cosh(fe);
829 1.3 briggs break;
830 1.3 briggs
831 1.3 briggs case 0x1A: /* fneg */
832 1.3 briggs fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign;
833 1.3 briggs res = &fe->fe_f2;
834 1.3 briggs break;
835 1.3 briggs
836 1.3 briggs case 0x1C: /* facos */
837 1.3 briggs res = fpu_acos(fe);
838 1.3 briggs break;
839 1.3 briggs
840 1.3 briggs case 0x1D: /* fcos */
841 1.3 briggs res = fpu_cos(fe);
842 1.3 briggs break;
843 1.3 briggs
844 1.3 briggs case 0x1E: /* fgetexp */
845 1.3 briggs res = fpu_getexp(fe);
846 1.3 briggs break;
847 1.3 briggs
848 1.3 briggs case 0x1F: /* fgetman */
849 1.3 briggs res = fpu_getman(fe);
850 1.3 briggs break;
851 1.3 briggs
852 1.3 briggs case 0x20: /* fdiv */
853 1.3 briggs case 0x24: /* fsgldiv: cheating - better than nothing */
854 1.3 briggs res = fpu_div(fe);
855 1.3 briggs break;
856 1.3 briggs
857 1.3 briggs case 0x21: /* fmod */
858 1.3 briggs res = fpu_mod(fe);
859 1.3 briggs break;
860 1.3 briggs
861 1.3 briggs case 0x28: /* fsub */
862 1.3 briggs fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign; /* f2 = -f2 */
863 1.3 briggs case 0x22: /* fadd */
864 1.3 briggs res = fpu_add(fe);
865 1.3 briggs break;
866 1.3 briggs
867 1.3 briggs case 0x23: /* fmul */
868 1.3 briggs case 0x27: /* fsglmul: cheating - better than nothing */
869 1.3 briggs res = fpu_mul(fe);
870 1.3 briggs break;
871 1.3 briggs
872 1.3 briggs case 0x25: /* frem */
873 1.3 briggs res = fpu_rem(fe);
874 1.3 briggs break;
875 1.3 briggs
876 1.3 briggs case 0x26:
877 1.3 briggs /* fscale is handled by a separate function */
878 1.3 briggs break;
879 1.3 briggs
880 1.3 briggs case 0x30:
881 1.12 is case 0x31:
882 1.3 briggs case 0x32:
883 1.3 briggs case 0x33:
884 1.3 briggs case 0x34:
885 1.3 briggs case 0x35:
886 1.3 briggs case 0x36:
887 1.3 briggs case 0x37: /* fsincos */
888 1.3 briggs res = fpu_sincos(fe, word1 & 7);
889 1.3 briggs break;
890 1.3 briggs
891 1.3 briggs case 0x38: /* fcmp */
892 1.3 briggs res = fpu_cmp(fe);
893 1.3 briggs discard_result = 1;
894 1.3 briggs break;
895 1.3 briggs
896 1.3 briggs case 0x3A: /* ftst */
897 1.3 briggs res = &fe->fe_f2;
898 1.3 briggs discard_result = 1;
899 1.3 briggs break;
900 1.3 briggs
901 1.3 briggs default:
902 1.3 briggs #ifdef DEBUG
903 1.21 briggs printf("fpu_emul_arith: bad opcode=0x%x, word1=0x%x\n",
904 1.3 briggs insn->is_opcode, insn->is_word1);
905 1.3 briggs #endif
906 1.3 briggs sig = SIGILL;
907 1.3 briggs } /* switch (word1 & 0x3f) */
908 1.1 gwr
909 1.3 briggs if (!discard_result && sig == 0) {
910 1.3 briggs fpu_implode(fe, res, FTYPE_EXT, &fpregs[regnum * 3]);
911 1.21 briggs #if DEBUG_FPE
912 1.21 briggs printf("fpu_emul_arith: %08x,%08x,%08x stored in FP%d\n",
913 1.21 briggs fpregs[regnum*3], fpregs[regnum*3+1],
914 1.21 briggs fpregs[regnum*3+2], regnum);
915 1.21 briggs } else if (sig == 0) {
916 1.3 briggs static char *class_name[] = { "SNAN", "QNAN", "ZERO", "NUM", "INF" };
917 1.21 briggs printf("fpu_emul_arith: result(%s,%c,%d,%08x,%08x,%08x) discarded\n",
918 1.3 briggs class_name[res->fp_class + 2],
919 1.3 briggs res->fp_sign ? '-' : '+', res->fp_exp,
920 1.3 briggs res->fp_mant[0], res->fp_mant[1],
921 1.21 briggs res->fp_mant[2]);
922 1.21 briggs } else {
923 1.21 briggs printf("fpu_emul_arith: received signal %d\n", sig);
924 1.21 briggs #endif
925 1.3 briggs }
926 1.3 briggs
927 1.3 briggs /* update fpsr according to the result of operation */
928 1.3 briggs fpu_upd_fpsr(fe, res);
929 1.3 briggs
930 1.21 briggs #if DEBUG_FPE
931 1.21 briggs printf("fpu_emul_arith: FPSR = %08x, FPCR = %08x\n",
932 1.21 briggs fe->fe_fpsr, fe->fe_fpcr);
933 1.21 briggs #endif
934 1.1 gwr
935 1.3 briggs DUMP_INSN(insn);
936 1.1 gwr
937 1.3 briggs return sig;
938 1.1 gwr }
939 1.1 gwr
940 1.3 briggs /* test condition code according to the predicate in the opcode.
941 1.3 briggs * returns -1 when the predicate evaluates to true, 0 when false.
942 1.3 briggs * signal numbers are returned when an error is detected.
943 1.1 gwr */
944 1.3 briggs static int
945 1.3 briggs test_cc(fe, pred)
946 1.3 briggs struct fpemu *fe;
947 1.3 briggs int pred;
948 1.1 gwr {
949 1.3 briggs int result, sig_bsun, invert;
950 1.3 briggs int fpsr;
951 1.1 gwr
952 1.3 briggs fpsr = fe->fe_fpsr;
953 1.3 briggs invert = 0;
954 1.3 briggs fpsr &= ~FPSR_EXCP; /* clear all exceptions */
955 1.21 briggs #if DEBUG_FPE
956 1.21 briggs printf("test_cc: fpsr=0x%08x\n", fpsr);
957 1.21 briggs #endif
958 1.3 briggs pred &= 0x3f; /* lowest 6 bits */
959 1.3 briggs
960 1.21 briggs #if DEBUG_FPE
961 1.21 briggs printf("test_cc: ");
962 1.21 briggs #endif
963 1.1 gwr
964 1.21 briggs if (pred >= 0x20) {
965 1.3 briggs return SIGILL;
966 1.3 briggs } else if (pred & 0x10) {
967 1.3 briggs /* IEEE nonaware tests */
968 1.3 briggs sig_bsun = 1;
969 1.21 briggs pred &= 0x0f; /* lower 4 bits */
970 1.3 briggs } else {
971 1.3 briggs /* IEEE aware tests */
972 1.21 briggs #if DEBUG_FPE
973 1.21 briggs printf("IEEE ");
974 1.21 briggs #endif
975 1.3 briggs sig_bsun = 0;
976 1.3 briggs }
977 1.1 gwr
978 1.21 briggs if (pred & 0x08) {
979 1.21 briggs #if DEBUG_FPE
980 1.21 briggs printf("Not ");
981 1.21 briggs #endif
982 1.3 briggs /* predicate is "NOT ..." */
983 1.3 briggs pred ^= 0xf; /* invert */
984 1.3 briggs invert = -1;
985 1.3 briggs }
986 1.3 briggs switch (pred) {
987 1.3 briggs case 0: /* (Signaling) False */
988 1.21 briggs #if DEBUG_FPE
989 1.21 briggs printf("False");
990 1.21 briggs #endif
991 1.3 briggs result = 0;
992 1.3 briggs break;
993 1.3 briggs case 1: /* (Signaling) Equal */
994 1.21 briggs #if DEBUG_FPE
995 1.21 briggs printf("Equal");
996 1.21 briggs #endif
997 1.3 briggs result = -((fpsr & FPSR_ZERO) == FPSR_ZERO);
998 1.3 briggs break;
999 1.3 briggs case 2: /* Greater Than */
1000 1.21 briggs #if DEBUG_FPE
1001 1.21 briggs printf("GT");
1002 1.21 briggs #endif
1003 1.3 briggs result = -((fpsr & (FPSR_NAN|FPSR_ZERO|FPSR_NEG)) == 0);
1004 1.3 briggs break;
1005 1.3 briggs case 3: /* Greater or Equal */
1006 1.21 briggs #if DEBUG_FPE
1007 1.21 briggs printf("GE");
1008 1.21 briggs #endif
1009 1.3 briggs result = -((fpsr & FPSR_ZERO) ||
1010 1.3 briggs (fpsr & (FPSR_NAN|FPSR_NEG)) == 0);
1011 1.3 briggs break;
1012 1.3 briggs case 4: /* Less Than */
1013 1.21 briggs #if DEBUG_FPE
1014 1.21 briggs printf("LT");
1015 1.21 briggs #endif
1016 1.3 briggs result = -((fpsr & (FPSR_NAN|FPSR_ZERO|FPSR_NEG)) == FPSR_NEG);
1017 1.3 briggs break;
1018 1.3 briggs case 5: /* Less or Equal */
1019 1.21 briggs #if DEBUG_FPE
1020 1.21 briggs printf("LE");
1021 1.21 briggs #endif
1022 1.3 briggs result = -((fpsr & FPSR_ZERO) ||
1023 1.3 briggs ((fpsr & (FPSR_NAN|FPSR_NEG)) == FPSR_NEG));
1024 1.3 briggs break;
1025 1.3 briggs case 6: /* Greater or Less than */
1026 1.21 briggs #if DEBUG_FPE
1027 1.21 briggs printf("GLT");
1028 1.21 briggs #endif
1029 1.3 briggs result = -((fpsr & (FPSR_NAN|FPSR_ZERO)) == 0);
1030 1.3 briggs break;
1031 1.3 briggs case 7: /* Greater, Less or Equal */
1032 1.21 briggs #if DEBUG_FPE
1033 1.21 briggs printf("GLE");
1034 1.21 briggs #endif
1035 1.3 briggs result = -((fpsr & FPSR_NAN) == 0);
1036 1.3 briggs break;
1037 1.3 briggs default:
1038 1.3 briggs /* invalid predicate */
1039 1.3 briggs return SIGILL;
1040 1.3 briggs }
1041 1.3 briggs result ^= invert; /* if the predicate is "NOT ...", then
1042 1.3 briggs invert the result */
1043 1.21 briggs #if DEBUG_FPE
1044 1.21 briggs printf("=> %s (%d)\n", result ? "true" : "false", result);
1045 1.21 briggs #endif
1046 1.3 briggs /* if it's an IEEE unaware test and NAN is set, BSUN is set */
1047 1.3 briggs if (sig_bsun && (fpsr & FPSR_NAN)) {
1048 1.3 briggs fpsr |= FPSR_BSUN;
1049 1.3 briggs }
1050 1.1 gwr
1051 1.3 briggs /* put fpsr back */
1052 1.3 briggs fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
1053 1.1 gwr
1054 1.3 briggs return result;
1055 1.1 gwr }
1056 1.1 gwr
1057 1.1 gwr /*
1058 1.3 briggs * type 1: fdbcc, fscc, ftrapcc
1059 1.3 briggs * In this function, we know:
1060 1.3 briggs * (opcode & 0x01C0) == 0x0040
1061 1.1 gwr */
1062 1.3 briggs static int
1063 1.3 briggs fpu_emul_type1(fe, insn)
1064 1.3 briggs struct fpemu *fe;
1065 1.3 briggs struct instruction *insn;
1066 1.1 gwr {
1067 1.3 briggs struct frame *frame = fe->fe_frame;
1068 1.3 briggs int advance, sig, branch, displ;
1069 1.3 briggs
1070 1.3 briggs branch = test_cc(fe, insn->is_word1);
1071 1.3 briggs fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
1072 1.3 briggs
1073 1.3 briggs insn->is_advance = 4;
1074 1.3 briggs sig = 0;
1075 1.3 briggs
1076 1.3 briggs switch (insn->is_opcode & 070) {
1077 1.3 briggs case 010: /* fdbcc */
1078 1.3 briggs if (branch == -1) {
1079 1.3 briggs /* advance */
1080 1.3 briggs insn->is_advance = 6;
1081 1.3 briggs } else if (!branch) {
1082 1.3 briggs /* decrement Dn and if (Dn != -1) branch */
1083 1.3 briggs u_int16_t count = frame->f_regs[insn->is_opcode & 7];
1084 1.3 briggs
1085 1.3 briggs if (count-- != 0) {
1086 1.21 briggs displ = fusword((void *) (insn->is_pc + insn->is_advance));
1087 1.3 briggs if (displ < 0) {
1088 1.3 briggs #ifdef DEBUG
1089 1.21 briggs printf("fpu_emul_type1: fault reading displacement\n");
1090 1.3 briggs #endif
1091 1.3 briggs return SIGSEGV;
1092 1.3 briggs }
1093 1.3 briggs /* sign-extend the displacement */
1094 1.3 briggs displ &= 0xffff;
1095 1.3 briggs if (displ & 0x8000) {
1096 1.3 briggs displ |= 0xffff0000;
1097 1.3 briggs }
1098 1.3 briggs insn->is_advance += displ;
1099 1.22 is /* XXX insn->is_nextpc = insn->is_pc + insn->is_advance; */
1100 1.3 briggs } else {
1101 1.3 briggs insn->is_advance = 6;
1102 1.3 briggs }
1103 1.3 briggs /* write it back */
1104 1.3 briggs frame->f_regs[insn->is_opcode & 7] &= 0xffff0000;
1105 1.3 briggs frame->f_regs[insn->is_opcode & 7] |= (u_int32_t)count;
1106 1.3 briggs } else { /* got a signal */
1107 1.3 briggs sig = SIGFPE;
1108 1.3 briggs }
1109 1.3 briggs break;
1110 1.1 gwr
1111 1.3 briggs case 070: /* ftrapcc or fscc */
1112 1.3 briggs advance = 4;
1113 1.3 briggs if ((insn->is_opcode & 07) >= 2) {
1114 1.3 briggs switch (insn->is_opcode & 07) {
1115 1.3 briggs case 3: /* long opr */
1116 1.3 briggs advance += 2;
1117 1.3 briggs case 2: /* word opr */
1118 1.3 briggs advance += 2;
1119 1.3 briggs case 4: /* no opr */
1120 1.3 briggs break;
1121 1.3 briggs default:
1122 1.1 gwr return SIGILL;
1123 1.3 briggs break;
1124 1.3 briggs }
1125 1.1 gwr
1126 1.3 briggs if (branch == 0) {
1127 1.3 briggs /* no trap */
1128 1.3 briggs insn->is_advance = advance;
1129 1.3 briggs sig = 0;
1130 1.3 briggs } else {
1131 1.3 briggs /* trap */
1132 1.3 briggs sig = SIGFPE;
1133 1.3 briggs }
1134 1.3 briggs break;
1135 1.3 briggs } /* if ((insn->is_opcode & 7) < 2), fall through to FScc */
1136 1.3 briggs
1137 1.3 briggs default: /* fscc */
1138 1.3 briggs insn->is_advance = 4;
1139 1.3 briggs insn->is_datasize = 1; /* always byte */
1140 1.21 briggs sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
1141 1.3 briggs if (sig) {
1142 1.3 briggs break;
1143 1.3 briggs }
1144 1.3 briggs if (branch == -1 || branch == 0) {
1145 1.3 briggs /* set result */
1146 1.21 briggs sig = fpu_store_ea(frame, insn, &insn->is_ea, (char *)&branch);
1147 1.1 gwr } else {
1148 1.3 briggs /* got an exception */
1149 1.3 briggs sig = branch;
1150 1.3 briggs }
1151 1.3 briggs break;
1152 1.3 briggs }
1153 1.3 briggs return sig;
1154 1.3 briggs }
1155 1.1 gwr
1156 1.3 briggs /*
1157 1.3 briggs * Type 2 or 3: fbcc (also fnop)
1158 1.3 briggs * In this function, we know:
1159 1.3 briggs * (opcode & 0x0180) == 0x0080
1160 1.3 briggs */
1161 1.3 briggs static int
1162 1.3 briggs fpu_emul_brcc(fe, insn)
1163 1.3 briggs struct fpemu *fe;
1164 1.3 briggs struct instruction *insn;
1165 1.3 briggs {
1166 1.3 briggs int displ, word2;
1167 1.5 briggs int sig;
1168 1.3 briggs
1169 1.3 briggs /*
1170 1.3 briggs * Get branch displacement.
1171 1.3 briggs */
1172 1.3 briggs insn->is_advance = 4;
1173 1.3 briggs displ = insn->is_word1;
1174 1.3 briggs
1175 1.3 briggs if (insn->is_opcode & 0x40) {
1176 1.21 briggs word2 = fusword((void *) (insn->is_pc + insn->is_advance));
1177 1.3 briggs if (word2 < 0) {
1178 1.3 briggs #ifdef DEBUG
1179 1.21 briggs printf("fpu_emul_brcc: fault reading word2\n");
1180 1.3 briggs #endif
1181 1.3 briggs return SIGSEGV;
1182 1.1 gwr }
1183 1.3 briggs displ <<= 16;
1184 1.3 briggs displ |= word2;
1185 1.3 briggs insn->is_advance += 2;
1186 1.3 briggs } else /* displacement is word sized */
1187 1.3 briggs if (displ & 0x8000)
1188 1.3 briggs displ |= 0xFFFF0000;
1189 1.3 briggs
1190 1.21 briggs /* XXX: If CC, insn->is_pc += displ */
1191 1.3 briggs sig = test_cc(fe, insn->is_opcode);
1192 1.3 briggs fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
1193 1.3 briggs
1194 1.3 briggs if (fe->fe_fpsr & fe->fe_fpcr & FPSR_EXCP) {
1195 1.3 briggs return SIGFPE; /* caught an exception */
1196 1.3 briggs }
1197 1.3 briggs if (sig == -1) {
1198 1.3 briggs /* branch does take place; 2 is the offset to the 1st disp word */
1199 1.3 briggs insn->is_advance = displ + 2;
1200 1.22 is /* XXX insn->is_nextpc = insn->is_pc + insn->is_advance; */
1201 1.3 briggs } else if (sig) {
1202 1.3 briggs return SIGILL; /* got a signal */
1203 1.3 briggs }
1204 1.21 briggs #if DEBUG_FPE
1205 1.21 briggs printf("fpu_emul_brcc: %s insn @ %x (%x+%x) (disp=%x)\n",
1206 1.21 briggs (sig == -1) ? "BRANCH to" : "NEXT",
1207 1.21 briggs insn->is_pc + insn->is_advance, insn->is_pc, insn->is_advance,
1208 1.21 briggs displ);
1209 1.21 briggs #endif
1210 1.3 briggs return 0;
1211 1.1 gwr }
1212