fpu_emulate.c revision 1.30 1 1.30 dsl /* $NetBSD: fpu_emulate.c,v 1.30 2009/03/14 15:36:09 dsl Exp $ */
2 1.1 gwr
3 1.1 gwr /*
4 1.1 gwr * Copyright (c) 1995 Gordon W. Ross
5 1.3 briggs * some portion Copyright (c) 1995 Ken Nakata
6 1.1 gwr * All rights reserved.
7 1.1 gwr *
8 1.1 gwr * Redistribution and use in source and binary forms, with or without
9 1.1 gwr * modification, are permitted provided that the following conditions
10 1.1 gwr * are met:
11 1.1 gwr * 1. Redistributions of source code must retain the above copyright
12 1.1 gwr * notice, this list of conditions and the following disclaimer.
13 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 gwr * notice, this list of conditions and the following disclaimer in the
15 1.1 gwr * documentation and/or other materials provided with the distribution.
16 1.1 gwr * 3. The name of the author may not be used to endorse or promote products
17 1.1 gwr * derived from this software without specific prior written permission.
18 1.1 gwr * 4. All advertising materials mentioning features or use of this software
19 1.1 gwr * must display the following acknowledgement:
20 1.1 gwr * This product includes software developed by Gordon Ross
21 1.1 gwr *
22 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 1.1 gwr * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 1.1 gwr * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 1.1 gwr * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 1.1 gwr * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 1.1 gwr * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 1.1 gwr * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 1.1 gwr * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 1.1 gwr * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 1.1 gwr * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 1.1 gwr */
33 1.1 gwr
34 1.1 gwr /*
35 1.1 gwr * mc68881 emulator
36 1.1 gwr * XXX - Just a start at it for now...
37 1.1 gwr */
38 1.24 lukem
39 1.24 lukem #include <sys/cdefs.h>
40 1.30 dsl __KERNEL_RCSID(0, "$NetBSD: fpu_emulate.c,v 1.30 2009/03/14 15:36:09 dsl Exp $");
41 1.20 jonathan
42 1.27 tsutsui #include <sys/param.h>
43 1.1 gwr #include <sys/types.h>
44 1.1 gwr #include <sys/signal.h>
45 1.5 briggs #include <sys/systm.h>
46 1.1 gwr #include <machine/frame.h>
47 1.1 gwr
48 1.21 briggs #if defined(DDB) && defined(DEBUG_FPE)
49 1.15 veego # include <m68k/db_machdep.h>
50 1.15 veego #endif
51 1.15 veego
52 1.3 briggs #include "fpu_emulate.h"
53 1.1 gwr
54 1.25 cl #define fpe_abort(tfp, ksi, signo, code) \
55 1.25 cl do { \
56 1.25 cl (ksi)->ksi_signo = (signo); \
57 1.25 cl (ksi)->ksi_code = (code); \
58 1.25 cl (ksi)->ksi_addr = (void *)(frame)->f_pc; \
59 1.25 cl return -1; \
60 1.25 cl } while (/*CONSTCOND*/0)
61 1.25 cl
62 1.29 dsl static int fpu_emul_fmovmcr(struct fpemu *fe, struct instruction *insn);
63 1.29 dsl static int fpu_emul_fmovm(struct fpemu *fe, struct instruction *insn);
64 1.29 dsl static int fpu_emul_arith(struct fpemu *fe, struct instruction *insn);
65 1.29 dsl static int fpu_emul_type1(struct fpemu *fe, struct instruction *insn);
66 1.29 dsl static int fpu_emul_brcc(struct fpemu *fe, struct instruction *insn);
67 1.29 dsl static int test_cc(struct fpemu *fe, int pred);
68 1.29 dsl static struct fpn *fpu_cmp(struct fpemu *fe);
69 1.5 briggs
70 1.21 briggs #if DEBUG_FPE
71 1.21 briggs # define DUMP_INSN(insn) \
72 1.21 briggs printf("fpu_emulate: insn={adv=%d,siz=%d,op=%04x,w1=%04x}\n", \
73 1.3 briggs (insn)->is_advance, (insn)->is_datasize, \
74 1.21 briggs (insn)->is_opcode, (insn)->is_word1)
75 1.21 briggs #else
76 1.21 briggs # define DUMP_INSN(insn)
77 1.3 briggs #endif
78 1.1 gwr
79 1.1 gwr /*
80 1.1 gwr * Emulate a floating-point instruction.
81 1.1 gwr * Return zero for success, else signal number.
82 1.1 gwr * (Typically: zero, SIGFPE, SIGILL, SIGSEGV)
83 1.1 gwr */
84 1.3 briggs int
85 1.30 dsl fpu_emulate(struct frame *frame, struct fpframe *fpf, ksiginfo_t *ksi)
86 1.1 gwr {
87 1.4 briggs static struct instruction insn;
88 1.4 briggs static struct fpemu fe;
89 1.3 briggs int word, optype, sig;
90 1.3 briggs
91 1.21 briggs
92 1.4 briggs /* initialize insn.is_datasize to tell it is *not* initialized */
93 1.3 briggs insn.is_datasize = -1;
94 1.21 briggs
95 1.3 briggs fe.fe_frame = frame;
96 1.3 briggs fe.fe_fpframe = fpf;
97 1.3 briggs fe.fe_fpsr = fpf->fpf_fpsr;
98 1.3 briggs fe.fe_fpcr = fpf->fpf_fpcr;
99 1.1 gwr
100 1.21 briggs #if DEBUG_FPE
101 1.21 briggs printf("ENTERING fpu_emulate: FPSR=%08x, FPCR=%08x\n",
102 1.21 briggs fe.fe_fpsr, fe.fe_fpcr);
103 1.1 gwr #endif
104 1.1 gwr
105 1.13 gwr /* always set this (to avoid a warning) */
106 1.21 briggs insn.is_pc = frame->f_pc;
107 1.21 briggs insn.is_nextpc = 0;
108 1.8 scottr if (frame->f_format == 4) {
109 1.8 scottr /*
110 1.8 scottr * A format 4 is generated by the 68{EC,LC}040. The PC is
111 1.8 scottr * already set to the instruction following the faulting
112 1.8 scottr * instruction. We need to calculate that, anyway. The
113 1.8 scottr * fslw is the PC of the faulted instruction, which is what
114 1.8 scottr * we expect to be in f_pc.
115 1.8 scottr *
116 1.8 scottr * XXX - This is a hack; it assumes we at least know the
117 1.22 is * sizes of all instructions we run across.
118 1.22 is * XXX TODO: This may not be true, so we might want to save the PC
119 1.22 is * in order to restore it later.
120 1.8 scottr */
121 1.22 is /* insn.is_nextpc = frame->f_pc; */
122 1.21 briggs insn.is_pc = frame->f_fmt4.f_fslw;
123 1.22 is frame->f_pc = insn.is_pc;
124 1.8 scottr }
125 1.8 scottr
126 1.21 briggs word = fusword((void *) (insn.is_pc));
127 1.3 briggs if (word < 0) {
128 1.3 briggs #ifdef DEBUG
129 1.21 briggs printf("fpu_emulate: fault reading opcode\n");
130 1.3 briggs #endif
131 1.25 cl fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
132 1.3 briggs }
133 1.3 briggs
134 1.3 briggs if ((word & 0xf000) != 0xf000) {
135 1.3 briggs #ifdef DEBUG
136 1.21 briggs printf("fpu_emulate: not coproc. insn.: opcode=0x%x\n", word);
137 1.1 gwr #endif
138 1.25 cl fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
139 1.3 briggs }
140 1.1 gwr
141 1.21 briggs if ((word & 0x0E00) != 0x0200) {
142 1.3 briggs #ifdef DEBUG
143 1.21 briggs printf("fpu_emulate: bad coproc. id: opcode=0x%x\n", word);
144 1.3 briggs #endif
145 1.25 cl fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
146 1.3 briggs }
147 1.1 gwr
148 1.3 briggs insn.is_opcode = word;
149 1.3 briggs optype = (word & 0x01C0);
150 1.1 gwr
151 1.21 briggs word = fusword((void *) (insn.is_pc + 2));
152 1.3 briggs if (word < 0) {
153 1.3 briggs #ifdef DEBUG
154 1.21 briggs printf("fpu_emulate: fault reading word1\n");
155 1.1 gwr #endif
156 1.25 cl fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
157 1.3 briggs }
158 1.3 briggs insn.is_word1 = word;
159 1.3 briggs /* all FPU instructions are at least 4-byte long */
160 1.3 briggs insn.is_advance = 4;
161 1.3 briggs
162 1.3 briggs DUMP_INSN(&insn);
163 1.3 briggs
164 1.3 briggs /*
165 1.3 briggs * Which family (or type) of opcode is it?
166 1.3 briggs * Tests ordered by likelihood (hopefully).
167 1.3 briggs * Certainly, type 0 is the most common.
168 1.3 briggs */
169 1.3 briggs if (optype == 0x0000) {
170 1.3 briggs /* type=0: generic */
171 1.3 briggs if ((word & 0xc000) == 0xc000) {
172 1.21 briggs #if DEBUG_FPE
173 1.21 briggs printf("fpu_emulate: fmovm FPr\n");
174 1.21 briggs #endif
175 1.3 briggs sig = fpu_emul_fmovm(&fe, &insn);
176 1.3 briggs } else if ((word & 0xc000) == 0x8000) {
177 1.21 briggs #if DEBUG_FPE
178 1.21 briggs printf("fpu_emulate: fmovm FPcr\n");
179 1.21 briggs #endif
180 1.3 briggs sig = fpu_emul_fmovmcr(&fe, &insn);
181 1.3 briggs } else if ((word & 0xe000) == 0x6000) {
182 1.3 briggs /* fstore = fmove FPn,mem */
183 1.21 briggs #if DEBUG_FPE
184 1.21 briggs printf("fpu_emulate: fmove to mem\n");
185 1.21 briggs #endif
186 1.3 briggs sig = fpu_emul_fstore(&fe, &insn);
187 1.3 briggs } else if ((word & 0xfc00) == 0x5c00) {
188 1.3 briggs /* fmovecr */
189 1.21 briggs #if DEBUG_FPE
190 1.21 briggs printf("fpu_emulate: fmovecr\n");
191 1.21 briggs #endif
192 1.3 briggs sig = fpu_emul_fmovecr(&fe, &insn);
193 1.3 briggs } else if ((word & 0xa07f) == 0x26) {
194 1.3 briggs /* fscale */
195 1.21 briggs #if DEBUG_FPE
196 1.21 briggs printf("fpu_emulate: fscale\n");
197 1.21 briggs #endif
198 1.3 briggs sig = fpu_emul_fscale(&fe, &insn);
199 1.3 briggs } else {
200 1.21 briggs #if DEBUG_FPE
201 1.21 briggs printf("fpu_emulate: other type0\n");
202 1.21 briggs #endif
203 1.3 briggs /* all other type0 insns are arithmetic */
204 1.3 briggs sig = fpu_emul_arith(&fe, &insn);
205 1.1 gwr }
206 1.3 briggs if (sig == 0) {
207 1.21 briggs #if DEBUG_FPE
208 1.21 briggs printf("fpu_emulate: type 0 returned 0\n");
209 1.21 briggs #endif
210 1.3 briggs sig = fpu_upd_excp(&fe);
211 1.1 gwr }
212 1.3 briggs } else if (optype == 0x0080 || optype == 0x00C0) {
213 1.3 briggs /* type=2 or 3: fbcc, short or long disp. */
214 1.21 briggs #if DEBUG_FPE
215 1.21 briggs printf("fpu_emulate: fbcc %s\n",
216 1.21 briggs (optype & 0x40) ? "long" : "short");
217 1.21 briggs #endif
218 1.3 briggs sig = fpu_emul_brcc(&fe, &insn);
219 1.3 briggs } else if (optype == 0x0040) {
220 1.3 briggs /* type=1: fdbcc, fscc, ftrapcc */
221 1.21 briggs #if DEBUG_FPE
222 1.21 briggs printf("fpu_emulate: type1\n");
223 1.21 briggs #endif
224 1.3 briggs sig = fpu_emul_type1(&fe, &insn);
225 1.3 briggs } else {
226 1.3 briggs /* type=4: fsave (privileged) */
227 1.3 briggs /* type=5: frestore (privileged) */
228 1.3 briggs /* type=6: reserved */
229 1.3 briggs /* type=7: reserved */
230 1.3 briggs #ifdef DEBUG
231 1.21 briggs printf("fpu_emulate: bad opcode type: opcode=0x%x\n", insn.is_opcode);
232 1.1 gwr #endif
233 1.3 briggs sig = SIGILL;
234 1.3 briggs }
235 1.3 briggs
236 1.3 briggs DUMP_INSN(&insn);
237 1.1 gwr
238 1.17 is /*
239 1.17 is * XXX it is not clear to me, if we should progress the PC always,
240 1.17 is * for SIGFPE || 0, or only for 0; however, without SIGFPE, we
241 1.17 is * don't pass the signalling regression tests. -is
242 1.17 is */
243 1.17 is if ((sig == 0) || (sig == SIGFPE))
244 1.3 briggs frame->f_pc += insn.is_advance;
245 1.23 chs #if defined(DDB) && defined(DEBUG_FPE)
246 1.3 briggs else {
247 1.21 briggs printf("fpu_emulate: sig=%d, opcode=%x, word1=%x\n",
248 1.3 briggs sig, insn.is_opcode, insn.is_word1);
249 1.15 veego kdb_trap(-1, (db_regs_t *)&frame);
250 1.3 briggs }
251 1.1 gwr #endif
252 1.22 is #if 0 /* XXX something is wrong */
253 1.22 is if (frame->f_format == 4) {
254 1.21 briggs /* XXX Restore PC -- 68{EC,LC}040 only */
255 1.22 is if (insn.is_nextpc)
256 1.22 is frame->f_pc = insn.is_nextpc;
257 1.22 is }
258 1.22 is #endif
259 1.1 gwr
260 1.21 briggs #if DEBUG_FPE
261 1.21 briggs printf("EXITING fpu_emulate: w/FPSR=%08x, FPCR=%08x\n",
262 1.21 briggs fe.fe_fpsr, fe.fe_fpcr);
263 1.21 briggs #endif
264 1.3 briggs
265 1.25 cl if (sig)
266 1.25 cl fpe_abort(frame, ksi, sig, 0);
267 1.3 briggs return (sig);
268 1.1 gwr }
269 1.1 gwr
270 1.3 briggs /* update accrued exception bits and see if there's an FP exception */
271 1.3 briggs int
272 1.30 dsl fpu_upd_excp(struct fpemu *fe)
273 1.1 gwr {
274 1.3 briggs u_int fpsr;
275 1.3 briggs u_int fpcr;
276 1.3 briggs
277 1.3 briggs fpsr = fe->fe_fpsr;
278 1.3 briggs fpcr = fe->fe_fpcr;
279 1.3 briggs /* update fpsr accrued exception bits; each insn doesn't have to
280 1.3 briggs update this */
281 1.3 briggs if (fpsr & (FPSR_BSUN | FPSR_SNAN | FPSR_OPERR)) {
282 1.3 briggs fpsr |= FPSR_AIOP;
283 1.3 briggs }
284 1.3 briggs if (fpsr & FPSR_OVFL) {
285 1.3 briggs fpsr |= FPSR_AOVFL;
286 1.3 briggs }
287 1.3 briggs if ((fpsr & FPSR_UNFL) && (fpsr & FPSR_INEX2)) {
288 1.3 briggs fpsr |= FPSR_AUNFL;
289 1.3 briggs }
290 1.3 briggs if (fpsr & FPSR_DZ) {
291 1.3 briggs fpsr |= FPSR_ADZ;
292 1.3 briggs }
293 1.3 briggs if (fpsr & (FPSR_INEX1 | FPSR_INEX2 | FPSR_OVFL)) {
294 1.3 briggs fpsr |= FPSR_AINEX;
295 1.3 briggs }
296 1.1 gwr
297 1.3 briggs fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
298 1.1 gwr
299 1.3 briggs return (fpsr & fpcr & FPSR_EXCP) ? SIGFPE : 0;
300 1.3 briggs }
301 1.1 gwr
302 1.3 briggs /* update fpsr according to fp (= result of an fp op) */
303 1.3 briggs u_int
304 1.30 dsl fpu_upd_fpsr(struct fpemu *fe, struct fpn *fp)
305 1.3 briggs {
306 1.3 briggs u_int fpsr;
307 1.1 gwr
308 1.21 briggs #if DEBUG_FPE
309 1.21 briggs printf("fpu_upd_fpsr: previous fpsr=%08x\n", fe->fe_fpsr);
310 1.21 briggs #endif
311 1.3 briggs /* clear all condition code */
312 1.3 briggs fpsr = fe->fe_fpsr & ~FPSR_CCB;
313 1.1 gwr
314 1.21 briggs #if DEBUG_FPE
315 1.21 briggs printf("fpu_upd_fpsr: result is a ");
316 1.21 briggs #endif
317 1.3 briggs if (fp->fp_sign) {
318 1.21 briggs #if DEBUG_FPE
319 1.21 briggs printf("negative ");
320 1.21 briggs #endif
321 1.3 briggs fpsr |= FPSR_NEG;
322 1.21 briggs #if DEBUG_FPE
323 1.3 briggs } else {
324 1.21 briggs printf("positive ");
325 1.21 briggs #endif
326 1.3 briggs }
327 1.3 briggs
328 1.3 briggs switch (fp->fp_class) {
329 1.3 briggs case FPC_SNAN:
330 1.21 briggs #if DEBUG_FPE
331 1.21 briggs printf("signaling NAN\n");
332 1.21 briggs #endif
333 1.3 briggs fpsr |= (FPSR_NAN | FPSR_SNAN);
334 1.3 briggs break;
335 1.3 briggs case FPC_QNAN:
336 1.21 briggs #if DEBUG_FPE
337 1.21 briggs printf("quiet NAN\n");
338 1.21 briggs #endif
339 1.3 briggs fpsr |= FPSR_NAN;
340 1.3 briggs break;
341 1.3 briggs case FPC_ZERO:
342 1.21 briggs #if DEBUG_FPE
343 1.21 briggs printf("Zero\n");
344 1.21 briggs #endif
345 1.3 briggs fpsr |= FPSR_ZERO;
346 1.3 briggs break;
347 1.3 briggs case FPC_INF:
348 1.21 briggs #if DEBUG_FPE
349 1.21 briggs printf("Inf\n");
350 1.21 briggs #endif
351 1.3 briggs fpsr |= FPSR_INF;
352 1.3 briggs break;
353 1.3 briggs default:
354 1.21 briggs #if DEBUG_FPE
355 1.21 briggs printf("Number\n");
356 1.21 briggs #endif
357 1.3 briggs /* anything else is treated as if it is a number */
358 1.3 briggs break;
359 1.3 briggs }
360 1.1 gwr
361 1.3 briggs fe->fe_fpsr = fe->fe_fpframe->fpf_fpsr = fpsr;
362 1.1 gwr
363 1.21 briggs #if DEBUG_FPE
364 1.21 briggs printf("fpu_upd_fpsr: new fpsr=%08x\n", fe->fe_fpframe->fpf_fpsr);
365 1.21 briggs #endif
366 1.1 gwr
367 1.3 briggs return fpsr;
368 1.3 briggs }
369 1.1 gwr
370 1.3 briggs static int
371 1.30 dsl fpu_emul_fmovmcr(struct fpemu *fe, struct instruction *insn)
372 1.3 briggs {
373 1.3 briggs struct frame *frame = fe->fe_frame;
374 1.3 briggs struct fpframe *fpf = fe->fe_fpframe;
375 1.5 briggs int sig;
376 1.5 briggs int reglist;
377 1.3 briggs int fpu_to_mem;
378 1.3 briggs
379 1.3 briggs /* move to/from control registers */
380 1.3 briggs reglist = (insn->is_word1 & 0x1c00) >> 10;
381 1.3 briggs /* Bit 13 selects direction (FPU to/from Mem) */
382 1.3 briggs fpu_to_mem = insn->is_word1 & 0x2000;
383 1.3 briggs
384 1.3 briggs insn->is_datasize = 4;
385 1.3 briggs insn->is_advance = 4;
386 1.21 briggs sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
387 1.3 briggs if (sig) { return sig; }
388 1.3 briggs
389 1.3 briggs if (reglist != 1 && reglist != 2 && reglist != 4 &&
390 1.21 briggs (insn->is_ea.ea_flags & EA_DIRECT)) {
391 1.3 briggs /* attempted to copy more than one FPcr to CPU regs */
392 1.3 briggs #ifdef DEBUG
393 1.21 briggs printf("fpu_emul_fmovmcr: tried to copy too many FPcr\n");
394 1.3 briggs #endif
395 1.3 briggs return SIGILL;
396 1.3 briggs }
397 1.1 gwr
398 1.3 briggs if (reglist & 4) {
399 1.3 briggs /* fpcr */
400 1.21 briggs if ((insn->is_ea.ea_flags & EA_DIRECT) &&
401 1.21 briggs insn->is_ea.ea_regnum >= 8 /* address reg */) {
402 1.3 briggs /* attempted to copy FPCR to An */
403 1.3 briggs #ifdef DEBUG
404 1.21 briggs printf("fpu_emul_fmovmcr: tried to copy FPCR from/to A%d\n",
405 1.21 briggs insn->is_ea.ea_regnum & 7);
406 1.1 gwr #endif
407 1.3 briggs return SIGILL;
408 1.3 briggs }
409 1.3 briggs if (fpu_to_mem) {
410 1.21 briggs sig = fpu_store_ea(frame, insn, &insn->is_ea,
411 1.3 briggs (char *)&fpf->fpf_fpcr);
412 1.3 briggs } else {
413 1.21 briggs sig = fpu_load_ea(frame, insn, &insn->is_ea,
414 1.3 briggs (char *)&fpf->fpf_fpcr);
415 1.3 briggs }
416 1.3 briggs }
417 1.3 briggs if (sig) { return sig; }
418 1.1 gwr
419 1.3 briggs if (reglist & 2) {
420 1.3 briggs /* fpsr */
421 1.21 briggs if ((insn->is_ea.ea_flags & EA_DIRECT) &&
422 1.21 briggs insn->is_ea.ea_regnum >= 8 /* address reg */) {
423 1.3 briggs /* attempted to copy FPSR to An */
424 1.3 briggs #ifdef DEBUG
425 1.21 briggs printf("fpu_emul_fmovmcr: tried to copy FPSR from/to A%d\n",
426 1.21 briggs insn->is_ea.ea_regnum & 7);
427 1.3 briggs #endif
428 1.3 briggs return SIGILL;
429 1.3 briggs }
430 1.3 briggs if (fpu_to_mem) {
431 1.21 briggs sig = fpu_store_ea(frame, insn, &insn->is_ea,
432 1.3 briggs (char *)&fpf->fpf_fpsr);
433 1.3 briggs } else {
434 1.21 briggs sig = fpu_load_ea(frame, insn, &insn->is_ea,
435 1.3 briggs (char *)&fpf->fpf_fpsr);
436 1.3 briggs }
437 1.3 briggs }
438 1.3 briggs if (sig) { return sig; }
439 1.3 briggs
440 1.3 briggs if (reglist & 1) {
441 1.3 briggs /* fpiar - can be moved to/from An */
442 1.3 briggs if (fpu_to_mem) {
443 1.21 briggs sig = fpu_store_ea(frame, insn, &insn->is_ea,
444 1.3 briggs (char *)&fpf->fpf_fpiar);
445 1.3 briggs } else {
446 1.21 briggs sig = fpu_load_ea(frame, insn, &insn->is_ea,
447 1.3 briggs (char *)&fpf->fpf_fpiar);
448 1.3 briggs }
449 1.3 briggs }
450 1.3 briggs return sig;
451 1.1 gwr }
452 1.1 gwr
453 1.1 gwr /*
454 1.3 briggs * type 0: fmovem
455 1.3 briggs * Separated out of fpu_emul_type0 for efficiency.
456 1.1 gwr * In this function, we know:
457 1.3 briggs * (opcode & 0x01C0) == 0
458 1.3 briggs * (word1 & 0x8000) == 0x8000
459 1.3 briggs *
460 1.3 briggs * No conversion or rounding is done by this instruction,
461 1.3 briggs * and the FPSR is not affected.
462 1.1 gwr */
463 1.3 briggs static int
464 1.30 dsl fpu_emul_fmovm(struct fpemu *fe, struct instruction *insn)
465 1.1 gwr {
466 1.3 briggs struct frame *frame = fe->fe_frame;
467 1.3 briggs struct fpframe *fpf = fe->fe_fpframe;
468 1.3 briggs int word1, sig;
469 1.3 briggs int reglist, regmask, regnum;
470 1.3 briggs int fpu_to_mem, order;
471 1.7 scottr int w1_post_incr;
472 1.3 briggs int *fpregs;
473 1.3 briggs
474 1.3 briggs insn->is_advance = 4;
475 1.3 briggs insn->is_datasize = 12;
476 1.3 briggs word1 = insn->is_word1;
477 1.3 briggs
478 1.3 briggs /* Bit 13 selects direction (FPU to/from Mem) */
479 1.3 briggs fpu_to_mem = word1 & 0x2000;
480 1.3 briggs
481 1.3 briggs /*
482 1.3 briggs * Bits 12,11 select register list mode:
483 1.3 briggs * 0,0: Static reg list, pre-decr.
484 1.3 briggs * 0,1: Dynamic reg list, pre-decr.
485 1.3 briggs * 1,0: Static reg list, post-incr.
486 1.3 briggs * 1,1: Dynamic reg list, post-incr
487 1.3 briggs */
488 1.3 briggs w1_post_incr = word1 & 0x1000;
489 1.3 briggs if (word1 & 0x0800) {
490 1.3 briggs /* dynamic reg list */
491 1.3 briggs reglist = frame->f_regs[(word1 & 0x70) >> 4];
492 1.3 briggs } else {
493 1.3 briggs reglist = word1;
494 1.3 briggs }
495 1.3 briggs reglist &= 0xFF;
496 1.3 briggs
497 1.3 briggs /* Get effective address. (modreg=opcode&077) */
498 1.21 briggs sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
499 1.3 briggs if (sig) { return sig; }
500 1.3 briggs
501 1.3 briggs /* Get address of soft coprocessor regs. */
502 1.3 briggs fpregs = &fpf->fpf_regs[0];
503 1.3 briggs
504 1.21 briggs if (insn->is_ea.ea_flags & EA_PREDECR) {
505 1.3 briggs regnum = 7;
506 1.3 briggs order = -1;
507 1.3 briggs } else {
508 1.3 briggs regnum = 0;
509 1.3 briggs order = 1;
510 1.3 briggs }
511 1.3 briggs
512 1.21 briggs regmask = 0x80;
513 1.3 briggs while ((0 <= regnum) && (regnum < 8)) {
514 1.3 briggs if (regmask & reglist) {
515 1.3 briggs if (fpu_to_mem) {
516 1.21 briggs sig = fpu_store_ea(frame, insn, &insn->is_ea,
517 1.3 briggs (char*)&fpregs[regnum * 3]);
518 1.21 briggs #if DEBUG_FPE
519 1.21 briggs printf("fpu_emul_fmovm: FP%d (%08x,%08x,%08x) saved\n",
520 1.21 briggs regnum, fpregs[regnum * 3], fpregs[regnum * 3 + 1],
521 1.21 briggs fpregs[regnum * 3 + 2]);
522 1.21 briggs #endif
523 1.3 briggs } else { /* mem to fpu */
524 1.21 briggs sig = fpu_load_ea(frame, insn, &insn->is_ea,
525 1.3 briggs (char*)&fpregs[regnum * 3]);
526 1.21 briggs #if DEBUG_FPE
527 1.21 briggs printf("fpu_emul_fmovm: FP%d (%08x,%08x,%08x) loaded\n",
528 1.21 briggs regnum, fpregs[regnum * 3], fpregs[regnum * 3 + 1],
529 1.21 briggs fpregs[regnum * 3 + 2]);
530 1.21 briggs #endif
531 1.3 briggs }
532 1.3 briggs if (sig) { break; }
533 1.3 briggs }
534 1.3 briggs regnum += order;
535 1.21 briggs regmask >>= 1;
536 1.3 briggs }
537 1.1 gwr
538 1.3 briggs return sig;
539 1.1 gwr }
540 1.1 gwr
541 1.3 briggs static struct fpn *
542 1.30 dsl fpu_cmp(struct fpemu *fe)
543 1.1 gwr {
544 1.3 briggs struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
545 1.1 gwr
546 1.3 briggs /* take care of special cases */
547 1.3 briggs if (x->fp_class < 0 || y->fp_class < 0) {
548 1.3 briggs /* if either of two is a SNAN, result is SNAN */
549 1.3 briggs x->fp_class = (y->fp_class < x->fp_class) ? y->fp_class : x->fp_class;
550 1.3 briggs } else if (x->fp_class == FPC_INF) {
551 1.3 briggs if (y->fp_class == FPC_INF) {
552 1.3 briggs /* both infinities */
553 1.3 briggs if (x->fp_sign == y->fp_sign) {
554 1.3 briggs x->fp_class = FPC_ZERO; /* return a signed zero */
555 1.3 briggs } else {
556 1.3 briggs x->fp_class = FPC_NUM; /* return a faked number w/x's sign */
557 1.3 briggs x->fp_exp = 16383;
558 1.3 briggs x->fp_mant[0] = FP_1;
559 1.3 briggs }
560 1.3 briggs } else {
561 1.3 briggs /* y is a number */
562 1.3 briggs x->fp_class = FPC_NUM; /* return a forged number w/x's sign */
563 1.3 briggs x->fp_exp = 16383;
564 1.3 briggs x->fp_mant[0] = FP_1;
565 1.3 briggs }
566 1.3 briggs } else if (y->fp_class == FPC_INF) {
567 1.3 briggs /* x is a Num but y is an Inf */
568 1.3 briggs /* return a forged number w/y's sign inverted */
569 1.3 briggs x->fp_class = FPC_NUM;
570 1.3 briggs x->fp_sign = !y->fp_sign;
571 1.3 briggs x->fp_exp = 16383;
572 1.3 briggs x->fp_mant[0] = FP_1;
573 1.3 briggs } else {
574 1.3 briggs /* x and y are both numbers or zeros, or pair of a number and a zero */
575 1.3 briggs y->fp_sign = !y->fp_sign;
576 1.3 briggs x = fpu_add(fe); /* (x - y) */
577 1.1 gwr /*
578 1.3 briggs * FCMP does not set Inf bit in CC, so return a forged number
579 1.3 briggs * (value doesn't matter) if Inf is the result of fsub.
580 1.1 gwr */
581 1.3 briggs if (x->fp_class == FPC_INF) {
582 1.3 briggs x->fp_class = FPC_NUM;
583 1.3 briggs x->fp_exp = 16383;
584 1.3 briggs x->fp_mant[0] = FP_1;
585 1.1 gwr }
586 1.3 briggs }
587 1.3 briggs return x;
588 1.1 gwr }
589 1.1 gwr
590 1.1 gwr /*
591 1.3 briggs * arithmetic oprations
592 1.1 gwr */
593 1.3 briggs static int
594 1.30 dsl fpu_emul_arith(struct fpemu *fe, struct instruction *insn)
595 1.1 gwr {
596 1.3 briggs struct frame *frame = fe->fe_frame;
597 1.3 briggs u_int *fpregs = &(fe->fe_fpframe->fpf_regs[0]);
598 1.3 briggs struct fpn *res;
599 1.3 briggs int word1, sig = 0;
600 1.3 briggs int regnum, format;
601 1.3 briggs int discard_result = 0;
602 1.3 briggs u_int buf[3];
603 1.21 briggs #if DEBUG_FPE
604 1.3 briggs int flags;
605 1.3 briggs char regname;
606 1.21 briggs #endif
607 1.16 is
608 1.16 is fe->fe_fpsr &= ~FPSR_EXCP;
609 1.3 briggs
610 1.3 briggs DUMP_INSN(insn);
611 1.3 briggs
612 1.21 briggs #if DEBUG_FPE
613 1.21 briggs printf("fpu_emul_arith: FPSR = %08x, FPCR = %08x\n",
614 1.21 briggs fe->fe_fpsr, fe->fe_fpcr);
615 1.21 briggs #endif
616 1.3 briggs
617 1.3 briggs word1 = insn->is_word1;
618 1.3 briggs format = (word1 >> 10) & 7;
619 1.3 briggs regnum = (word1 >> 7) & 7;
620 1.3 briggs
621 1.3 briggs /* fetch a source operand : may not be used */
622 1.21 briggs #if DEBUG_FPE
623 1.21 briggs printf("fpu_emul_arith: dst/src FP%d=%08x,%08x,%08x\n",
624 1.21 briggs regnum, fpregs[regnum*3], fpregs[regnum*3+1],
625 1.21 briggs fpregs[regnum*3+2]);
626 1.21 briggs #endif
627 1.21 briggs
628 1.3 briggs fpu_explode(fe, &fe->fe_f1, FTYPE_EXT, &fpregs[regnum * 3]);
629 1.3 briggs
630 1.3 briggs DUMP_INSN(insn);
631 1.3 briggs
632 1.3 briggs /* get the other operand which is always the source */
633 1.3 briggs if ((word1 & 0x4000) == 0) {
634 1.21 briggs #if DEBUG_FPE
635 1.21 briggs printf("fpu_emul_arith: FP%d op FP%d => FP%d\n",
636 1.21 briggs format, regnum, regnum);
637 1.21 briggs printf("fpu_emul_arith: src opr FP%d=%08x,%08x,%08x\n",
638 1.21 briggs format, fpregs[format*3], fpregs[format*3+1],
639 1.21 briggs fpregs[format*3+2]);
640 1.21 briggs #endif
641 1.3 briggs fpu_explode(fe, &fe->fe_f2, FTYPE_EXT, &fpregs[format * 3]);
642 1.3 briggs } else {
643 1.3 briggs /* the operand is in memory */
644 1.3 briggs if (format == FTYPE_DBL) {
645 1.3 briggs insn->is_datasize = 8;
646 1.3 briggs } else if (format == FTYPE_SNG || format == FTYPE_LNG) {
647 1.3 briggs insn->is_datasize = 4;
648 1.3 briggs } else if (format == FTYPE_WRD) {
649 1.3 briggs insn->is_datasize = 2;
650 1.3 briggs } else if (format == FTYPE_BYT) {
651 1.3 briggs insn->is_datasize = 1;
652 1.3 briggs } else if (format == FTYPE_EXT) {
653 1.3 briggs insn->is_datasize = 12;
654 1.3 briggs } else {
655 1.3 briggs /* invalid or unsupported operand format */
656 1.3 briggs sig = SIGFPE;
657 1.3 briggs return sig;
658 1.3 briggs }
659 1.1 gwr
660 1.3 briggs /* Get effective address. (modreg=opcode&077) */
661 1.21 briggs sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
662 1.3 briggs if (sig) {
663 1.21 briggs #if DEBUG_FPE
664 1.21 briggs printf("fpu_emul_arith: error in fpu_decode_ea\n");
665 1.21 briggs #endif
666 1.3 briggs return sig;
667 1.3 briggs }
668 1.1 gwr
669 1.3 briggs DUMP_INSN(insn);
670 1.1 gwr
671 1.21 briggs #if DEBUG_FPE
672 1.21 briggs printf("fpu_emul_arith: addr mode = ");
673 1.21 briggs flags = insn->is_ea.ea_flags;
674 1.21 briggs regname = (insn->is_ea.ea_regnum & 8) ? 'a' : 'd';
675 1.21 briggs
676 1.21 briggs if (flags & EA_DIRECT) {
677 1.21 briggs printf("%c%d\n",
678 1.21 briggs regname, insn->is_ea.ea_regnum & 7);
679 1.21 briggs } else if (flags & EA_PC_REL) {
680 1.21 briggs if (flags & EA_OFFSET) {
681 1.21 briggs printf("pc@(%d)\n", insn->is_ea.ea_offset);
682 1.3 briggs } else if (flags & EA_INDEXED) {
683 1.21 briggs printf("pc@(...)\n");
684 1.21 briggs }
685 1.21 briggs } else if (flags & EA_PREDECR) {
686 1.21 briggs printf("%c%d@-\n",
687 1.21 briggs regname, insn->is_ea.ea_regnum & 7);
688 1.21 briggs } else if (flags & EA_POSTINCR) {
689 1.21 briggs printf("%c%d@+\n", regname, insn->is_ea.ea_regnum & 7);
690 1.21 briggs } else if (flags & EA_OFFSET) {
691 1.21 briggs printf("%c%d@(%d)\n", regname, insn->is_ea.ea_regnum & 7,
692 1.21 briggs insn->is_ea.ea_offset);
693 1.21 briggs } else if (flags & EA_INDEXED) {
694 1.21 briggs printf("%c%d@(...)\n", regname, insn->is_ea.ea_regnum & 7);
695 1.21 briggs } else if (flags & EA_ABS) {
696 1.21 briggs printf("0x%08x\n", insn->is_ea.ea_absaddr);
697 1.21 briggs } else if (flags & EA_IMMED) {
698 1.3 briggs
699 1.21 briggs printf("#0x%08x,%08x,%08x\n", insn->is_ea.ea_immed[0],
700 1.21 briggs insn->is_ea.ea_immed[1], insn->is_ea.ea_immed[2]);
701 1.21 briggs } else {
702 1.21 briggs printf("%c%d@\n", regname, insn->is_ea.ea_regnum & 7);
703 1.21 briggs }
704 1.21 briggs #endif /* DEBUG_FPE */
705 1.3 briggs
706 1.21 briggs fpu_load_ea(frame, insn, &insn->is_ea, (char*)buf);
707 1.3 briggs if (format == FTYPE_WRD) {
708 1.3 briggs /* sign-extend */
709 1.3 briggs buf[0] &= 0xffff;
710 1.3 briggs if (buf[0] & 0x8000) {
711 1.3 briggs buf[0] |= 0xffff0000;
712 1.3 briggs }
713 1.3 briggs format = FTYPE_LNG;
714 1.3 briggs } else if (format == FTYPE_BYT) {
715 1.3 briggs /* sign-extend */
716 1.3 briggs buf[0] &= 0xff;
717 1.3 briggs if (buf[0] & 0x80) {
718 1.3 briggs buf[0] |= 0xffffff00;
719 1.3 briggs }
720 1.3 briggs format = FTYPE_LNG;
721 1.3 briggs }
722 1.21 briggs #if DEBUG_FPE
723 1.21 briggs printf("fpu_emul_arith: src = %08x %08x %08x, siz = %d\n",
724 1.21 briggs buf[0], buf[1], buf[2], insn->is_datasize);
725 1.21 briggs #endif
726 1.3 briggs fpu_explode(fe, &fe->fe_f2, format, buf);
727 1.3 briggs }
728 1.1 gwr
729 1.3 briggs DUMP_INSN(insn);
730 1.1 gwr
731 1.3 briggs /* An arithmetic instruction emulate function has a prototype of
732 1.3 briggs * struct fpn *fpu_op(struct fpemu *);
733 1.3 briggs
734 1.3 briggs * 1) If the instruction is monadic, then fpu_op() must use
735 1.3 briggs * fe->fe_f2 as its operand, and return a pointer to the
736 1.3 briggs * result.
737 1.3 briggs
738 1.3 briggs * 2) If the instruction is diadic, then fpu_op() must use
739 1.3 briggs * fe->fe_f1 and fe->fe_f2 as its two operands, and return a
740 1.3 briggs * pointer to the result.
741 1.3 briggs
742 1.3 briggs */
743 1.28 tsutsui res = NULL;
744 1.28 tsutsui switch (word1 & 0x7f) {
745 1.3 briggs case 0x00: /* fmove */
746 1.3 briggs res = &fe->fe_f2;
747 1.3 briggs break;
748 1.3 briggs
749 1.3 briggs case 0x01: /* fint */
750 1.3 briggs res = fpu_int(fe);
751 1.3 briggs break;
752 1.3 briggs
753 1.3 briggs case 0x02: /* fsinh */
754 1.3 briggs res = fpu_sinh(fe);
755 1.3 briggs break;
756 1.3 briggs
757 1.3 briggs case 0x03: /* fintrz */
758 1.3 briggs res = fpu_intrz(fe);
759 1.3 briggs break;
760 1.3 briggs
761 1.3 briggs case 0x04: /* fsqrt */
762 1.3 briggs res = fpu_sqrt(fe);
763 1.3 briggs break;
764 1.3 briggs
765 1.3 briggs case 0x06: /* flognp1 */
766 1.3 briggs res = fpu_lognp1(fe);
767 1.3 briggs break;
768 1.3 briggs
769 1.3 briggs case 0x08: /* fetoxm1 */
770 1.3 briggs res = fpu_etoxm1(fe);
771 1.3 briggs break;
772 1.3 briggs
773 1.3 briggs case 0x09: /* ftanh */
774 1.3 briggs res = fpu_tanh(fe);
775 1.3 briggs break;
776 1.3 briggs
777 1.3 briggs case 0x0A: /* fatan */
778 1.3 briggs res = fpu_atan(fe);
779 1.3 briggs break;
780 1.3 briggs
781 1.3 briggs case 0x0C: /* fasin */
782 1.3 briggs res = fpu_asin(fe);
783 1.3 briggs break;
784 1.3 briggs
785 1.3 briggs case 0x0D: /* fatanh */
786 1.3 briggs res = fpu_atanh(fe);
787 1.3 briggs break;
788 1.3 briggs
789 1.3 briggs case 0x0E: /* fsin */
790 1.3 briggs res = fpu_sin(fe);
791 1.3 briggs break;
792 1.3 briggs
793 1.3 briggs case 0x0F: /* ftan */
794 1.3 briggs res = fpu_tan(fe);
795 1.3 briggs break;
796 1.3 briggs
797 1.3 briggs case 0x10: /* fetox */
798 1.3 briggs res = fpu_etox(fe);
799 1.3 briggs break;
800 1.3 briggs
801 1.3 briggs case 0x11: /* ftwotox */
802 1.3 briggs res = fpu_twotox(fe);
803 1.3 briggs break;
804 1.3 briggs
805 1.3 briggs case 0x12: /* ftentox */
806 1.3 briggs res = fpu_tentox(fe);
807 1.3 briggs break;
808 1.3 briggs
809 1.3 briggs case 0x14: /* flogn */
810 1.3 briggs res = fpu_logn(fe);
811 1.3 briggs break;
812 1.3 briggs
813 1.3 briggs case 0x15: /* flog10 */
814 1.3 briggs res = fpu_log10(fe);
815 1.3 briggs break;
816 1.3 briggs
817 1.3 briggs case 0x16: /* flog2 */
818 1.3 briggs res = fpu_log2(fe);
819 1.3 briggs break;
820 1.3 briggs
821 1.3 briggs case 0x18: /* fabs */
822 1.3 briggs fe->fe_f2.fp_sign = 0;
823 1.3 briggs res = &fe->fe_f2;
824 1.3 briggs break;
825 1.3 briggs
826 1.3 briggs case 0x19: /* fcosh */
827 1.3 briggs res = fpu_cosh(fe);
828 1.3 briggs break;
829 1.3 briggs
830 1.3 briggs case 0x1A: /* fneg */
831 1.3 briggs fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign;
832 1.3 briggs res = &fe->fe_f2;
833 1.3 briggs break;
834 1.3 briggs
835 1.3 briggs case 0x1C: /* facos */
836 1.3 briggs res = fpu_acos(fe);
837 1.3 briggs break;
838 1.3 briggs
839 1.3 briggs case 0x1D: /* fcos */
840 1.3 briggs res = fpu_cos(fe);
841 1.3 briggs break;
842 1.3 briggs
843 1.3 briggs case 0x1E: /* fgetexp */
844 1.3 briggs res = fpu_getexp(fe);
845 1.3 briggs break;
846 1.3 briggs
847 1.3 briggs case 0x1F: /* fgetman */
848 1.3 briggs res = fpu_getman(fe);
849 1.3 briggs break;
850 1.3 briggs
851 1.3 briggs case 0x20: /* fdiv */
852 1.3 briggs case 0x24: /* fsgldiv: cheating - better than nothing */
853 1.3 briggs res = fpu_div(fe);
854 1.3 briggs break;
855 1.3 briggs
856 1.3 briggs case 0x21: /* fmod */
857 1.3 briggs res = fpu_mod(fe);
858 1.3 briggs break;
859 1.3 briggs
860 1.3 briggs case 0x28: /* fsub */
861 1.3 briggs fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign; /* f2 = -f2 */
862 1.3 briggs case 0x22: /* fadd */
863 1.3 briggs res = fpu_add(fe);
864 1.3 briggs break;
865 1.3 briggs
866 1.3 briggs case 0x23: /* fmul */
867 1.3 briggs case 0x27: /* fsglmul: cheating - better than nothing */
868 1.3 briggs res = fpu_mul(fe);
869 1.3 briggs break;
870 1.3 briggs
871 1.3 briggs case 0x25: /* frem */
872 1.3 briggs res = fpu_rem(fe);
873 1.3 briggs break;
874 1.3 briggs
875 1.3 briggs case 0x26:
876 1.3 briggs /* fscale is handled by a separate function */
877 1.3 briggs break;
878 1.3 briggs
879 1.3 briggs case 0x30:
880 1.12 is case 0x31:
881 1.3 briggs case 0x32:
882 1.3 briggs case 0x33:
883 1.3 briggs case 0x34:
884 1.3 briggs case 0x35:
885 1.3 briggs case 0x36:
886 1.3 briggs case 0x37: /* fsincos */
887 1.3 briggs res = fpu_sincos(fe, word1 & 7);
888 1.3 briggs break;
889 1.3 briggs
890 1.3 briggs case 0x38: /* fcmp */
891 1.3 briggs res = fpu_cmp(fe);
892 1.3 briggs discard_result = 1;
893 1.3 briggs break;
894 1.3 briggs
895 1.3 briggs case 0x3A: /* ftst */
896 1.3 briggs res = &fe->fe_f2;
897 1.3 briggs discard_result = 1;
898 1.3 briggs break;
899 1.3 briggs
900 1.28 tsutsui default: /* possibly 040/060 instructions */
901 1.3 briggs #ifdef DEBUG
902 1.21 briggs printf("fpu_emul_arith: bad opcode=0x%x, word1=0x%x\n",
903 1.3 briggs insn->is_opcode, insn->is_word1);
904 1.3 briggs #endif
905 1.3 briggs sig = SIGILL;
906 1.3 briggs } /* switch (word1 & 0x3f) */
907 1.1 gwr
908 1.28 tsutsui /* for sanity */
909 1.28 tsutsui if (res == NULL)
910 1.28 tsutsui sig = SIGILL;
911 1.28 tsutsui
912 1.3 briggs if (!discard_result && sig == 0) {
913 1.3 briggs fpu_implode(fe, res, FTYPE_EXT, &fpregs[regnum * 3]);
914 1.28 tsutsui
915 1.28 tsutsui /* update fpsr according to the result of operation */
916 1.28 tsutsui fpu_upd_fpsr(fe, res);
917 1.21 briggs #if DEBUG_FPE
918 1.21 briggs printf("fpu_emul_arith: %08x,%08x,%08x stored in FP%d\n",
919 1.21 briggs fpregs[regnum*3], fpregs[regnum*3+1],
920 1.21 briggs fpregs[regnum*3+2], regnum);
921 1.21 briggs } else if (sig == 0) {
922 1.27 tsutsui static const char *class_name[] =
923 1.27 tsutsui { "SNAN", "QNAN", "ZERO", "NUM", "INF" };
924 1.21 briggs printf("fpu_emul_arith: result(%s,%c,%d,%08x,%08x,%08x) discarded\n",
925 1.3 briggs class_name[res->fp_class + 2],
926 1.3 briggs res->fp_sign ? '-' : '+', res->fp_exp,
927 1.3 briggs res->fp_mant[0], res->fp_mant[1],
928 1.21 briggs res->fp_mant[2]);
929 1.21 briggs } else {
930 1.21 briggs printf("fpu_emul_arith: received signal %d\n", sig);
931 1.21 briggs #endif
932 1.3 briggs }
933 1.3 briggs
934 1.21 briggs #if DEBUG_FPE
935 1.21 briggs printf("fpu_emul_arith: FPSR = %08x, FPCR = %08x\n",
936 1.21 briggs fe->fe_fpsr, fe->fe_fpcr);
937 1.21 briggs #endif
938 1.1 gwr
939 1.3 briggs DUMP_INSN(insn);
940 1.1 gwr
941 1.3 briggs return sig;
942 1.1 gwr }
943 1.1 gwr
944 1.3 briggs /* test condition code according to the predicate in the opcode.
945 1.3 briggs * returns -1 when the predicate evaluates to true, 0 when false.
946 1.3 briggs * signal numbers are returned when an error is detected.
947 1.1 gwr */
948 1.3 briggs static int
949 1.30 dsl test_cc(struct fpemu *fe, int pred)
950 1.1 gwr {
951 1.3 briggs int result, sig_bsun, invert;
952 1.3 briggs int fpsr;
953 1.1 gwr
954 1.3 briggs fpsr = fe->fe_fpsr;
955 1.3 briggs invert = 0;
956 1.3 briggs fpsr &= ~FPSR_EXCP; /* clear all exceptions */
957 1.21 briggs #if DEBUG_FPE
958 1.21 briggs printf("test_cc: fpsr=0x%08x\n", fpsr);
959 1.21 briggs #endif
960 1.3 briggs pred &= 0x3f; /* lowest 6 bits */
961 1.3 briggs
962 1.21 briggs #if DEBUG_FPE
963 1.21 briggs printf("test_cc: ");
964 1.21 briggs #endif
965 1.1 gwr
966 1.21 briggs if (pred >= 0x20) {
967 1.3 briggs return SIGILL;
968 1.3 briggs } else if (pred & 0x10) {
969 1.3 briggs /* IEEE nonaware tests */
970 1.3 briggs sig_bsun = 1;
971 1.21 briggs pred &= 0x0f; /* lower 4 bits */
972 1.3 briggs } else {
973 1.3 briggs /* IEEE aware tests */
974 1.21 briggs #if DEBUG_FPE
975 1.21 briggs printf("IEEE ");
976 1.21 briggs #endif
977 1.3 briggs sig_bsun = 0;
978 1.3 briggs }
979 1.1 gwr
980 1.21 briggs if (pred & 0x08) {
981 1.21 briggs #if DEBUG_FPE
982 1.21 briggs printf("Not ");
983 1.21 briggs #endif
984 1.3 briggs /* predicate is "NOT ..." */
985 1.3 briggs pred ^= 0xf; /* invert */
986 1.3 briggs invert = -1;
987 1.3 briggs }
988 1.3 briggs switch (pred) {
989 1.3 briggs case 0: /* (Signaling) False */
990 1.21 briggs #if DEBUG_FPE
991 1.21 briggs printf("False");
992 1.21 briggs #endif
993 1.3 briggs result = 0;
994 1.3 briggs break;
995 1.3 briggs case 1: /* (Signaling) Equal */
996 1.21 briggs #if DEBUG_FPE
997 1.21 briggs printf("Equal");
998 1.21 briggs #endif
999 1.3 briggs result = -((fpsr & FPSR_ZERO) == FPSR_ZERO);
1000 1.3 briggs break;
1001 1.3 briggs case 2: /* Greater Than */
1002 1.21 briggs #if DEBUG_FPE
1003 1.21 briggs printf("GT");
1004 1.21 briggs #endif
1005 1.3 briggs result = -((fpsr & (FPSR_NAN|FPSR_ZERO|FPSR_NEG)) == 0);
1006 1.3 briggs break;
1007 1.3 briggs case 3: /* Greater or Equal */
1008 1.21 briggs #if DEBUG_FPE
1009 1.21 briggs printf("GE");
1010 1.21 briggs #endif
1011 1.3 briggs result = -((fpsr & FPSR_ZERO) ||
1012 1.3 briggs (fpsr & (FPSR_NAN|FPSR_NEG)) == 0);
1013 1.3 briggs break;
1014 1.3 briggs case 4: /* Less Than */
1015 1.21 briggs #if DEBUG_FPE
1016 1.21 briggs printf("LT");
1017 1.21 briggs #endif
1018 1.3 briggs result = -((fpsr & (FPSR_NAN|FPSR_ZERO|FPSR_NEG)) == FPSR_NEG);
1019 1.3 briggs break;
1020 1.3 briggs case 5: /* Less or Equal */
1021 1.21 briggs #if DEBUG_FPE
1022 1.21 briggs printf("LE");
1023 1.21 briggs #endif
1024 1.3 briggs result = -((fpsr & FPSR_ZERO) ||
1025 1.3 briggs ((fpsr & (FPSR_NAN|FPSR_NEG)) == FPSR_NEG));
1026 1.3 briggs break;
1027 1.3 briggs case 6: /* Greater or Less than */
1028 1.21 briggs #if DEBUG_FPE
1029 1.21 briggs printf("GLT");
1030 1.21 briggs #endif
1031 1.3 briggs result = -((fpsr & (FPSR_NAN|FPSR_ZERO)) == 0);
1032 1.3 briggs break;
1033 1.3 briggs case 7: /* Greater, Less or Equal */
1034 1.21 briggs #if DEBUG_FPE
1035 1.21 briggs printf("GLE");
1036 1.21 briggs #endif
1037 1.3 briggs result = -((fpsr & FPSR_NAN) == 0);
1038 1.3 briggs break;
1039 1.3 briggs default:
1040 1.3 briggs /* invalid predicate */
1041 1.3 briggs return SIGILL;
1042 1.3 briggs }
1043 1.3 briggs result ^= invert; /* if the predicate is "NOT ...", then
1044 1.3 briggs invert the result */
1045 1.21 briggs #if DEBUG_FPE
1046 1.21 briggs printf("=> %s (%d)\n", result ? "true" : "false", result);
1047 1.21 briggs #endif
1048 1.3 briggs /* if it's an IEEE unaware test and NAN is set, BSUN is set */
1049 1.3 briggs if (sig_bsun && (fpsr & FPSR_NAN)) {
1050 1.3 briggs fpsr |= FPSR_BSUN;
1051 1.3 briggs }
1052 1.1 gwr
1053 1.3 briggs /* put fpsr back */
1054 1.3 briggs fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
1055 1.1 gwr
1056 1.3 briggs return result;
1057 1.1 gwr }
1058 1.1 gwr
1059 1.1 gwr /*
1060 1.3 briggs * type 1: fdbcc, fscc, ftrapcc
1061 1.3 briggs * In this function, we know:
1062 1.3 briggs * (opcode & 0x01C0) == 0x0040
1063 1.1 gwr */
1064 1.3 briggs static int
1065 1.30 dsl fpu_emul_type1(struct fpemu *fe, struct instruction *insn)
1066 1.1 gwr {
1067 1.3 briggs struct frame *frame = fe->fe_frame;
1068 1.3 briggs int advance, sig, branch, displ;
1069 1.3 briggs
1070 1.3 briggs branch = test_cc(fe, insn->is_word1);
1071 1.3 briggs fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
1072 1.3 briggs
1073 1.3 briggs insn->is_advance = 4;
1074 1.3 briggs sig = 0;
1075 1.3 briggs
1076 1.3 briggs switch (insn->is_opcode & 070) {
1077 1.3 briggs case 010: /* fdbcc */
1078 1.3 briggs if (branch == -1) {
1079 1.3 briggs /* advance */
1080 1.3 briggs insn->is_advance = 6;
1081 1.3 briggs } else if (!branch) {
1082 1.3 briggs /* decrement Dn and if (Dn != -1) branch */
1083 1.3 briggs u_int16_t count = frame->f_regs[insn->is_opcode & 7];
1084 1.3 briggs
1085 1.3 briggs if (count-- != 0) {
1086 1.21 briggs displ = fusword((void *) (insn->is_pc + insn->is_advance));
1087 1.3 briggs if (displ < 0) {
1088 1.3 briggs #ifdef DEBUG
1089 1.21 briggs printf("fpu_emul_type1: fault reading displacement\n");
1090 1.3 briggs #endif
1091 1.3 briggs return SIGSEGV;
1092 1.3 briggs }
1093 1.3 briggs /* sign-extend the displacement */
1094 1.3 briggs displ &= 0xffff;
1095 1.3 briggs if (displ & 0x8000) {
1096 1.3 briggs displ |= 0xffff0000;
1097 1.3 briggs }
1098 1.3 briggs insn->is_advance += displ;
1099 1.22 is /* XXX insn->is_nextpc = insn->is_pc + insn->is_advance; */
1100 1.3 briggs } else {
1101 1.3 briggs insn->is_advance = 6;
1102 1.3 briggs }
1103 1.3 briggs /* write it back */
1104 1.3 briggs frame->f_regs[insn->is_opcode & 7] &= 0xffff0000;
1105 1.3 briggs frame->f_regs[insn->is_opcode & 7] |= (u_int32_t)count;
1106 1.3 briggs } else { /* got a signal */
1107 1.3 briggs sig = SIGFPE;
1108 1.3 briggs }
1109 1.3 briggs break;
1110 1.1 gwr
1111 1.3 briggs case 070: /* ftrapcc or fscc */
1112 1.3 briggs advance = 4;
1113 1.3 briggs if ((insn->is_opcode & 07) >= 2) {
1114 1.3 briggs switch (insn->is_opcode & 07) {
1115 1.3 briggs case 3: /* long opr */
1116 1.3 briggs advance += 2;
1117 1.3 briggs case 2: /* word opr */
1118 1.3 briggs advance += 2;
1119 1.3 briggs case 4: /* no opr */
1120 1.3 briggs break;
1121 1.3 briggs default:
1122 1.1 gwr return SIGILL;
1123 1.3 briggs break;
1124 1.3 briggs }
1125 1.1 gwr
1126 1.3 briggs if (branch == 0) {
1127 1.3 briggs /* no trap */
1128 1.3 briggs insn->is_advance = advance;
1129 1.3 briggs sig = 0;
1130 1.3 briggs } else {
1131 1.3 briggs /* trap */
1132 1.3 briggs sig = SIGFPE;
1133 1.3 briggs }
1134 1.3 briggs break;
1135 1.3 briggs } /* if ((insn->is_opcode & 7) < 2), fall through to FScc */
1136 1.3 briggs
1137 1.3 briggs default: /* fscc */
1138 1.3 briggs insn->is_advance = 4;
1139 1.3 briggs insn->is_datasize = 1; /* always byte */
1140 1.21 briggs sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
1141 1.3 briggs if (sig) {
1142 1.3 briggs break;
1143 1.3 briggs }
1144 1.3 briggs if (branch == -1 || branch == 0) {
1145 1.3 briggs /* set result */
1146 1.21 briggs sig = fpu_store_ea(frame, insn, &insn->is_ea, (char *)&branch);
1147 1.1 gwr } else {
1148 1.3 briggs /* got an exception */
1149 1.3 briggs sig = branch;
1150 1.3 briggs }
1151 1.3 briggs break;
1152 1.3 briggs }
1153 1.3 briggs return sig;
1154 1.3 briggs }
1155 1.1 gwr
1156 1.3 briggs /*
1157 1.3 briggs * Type 2 or 3: fbcc (also fnop)
1158 1.3 briggs * In this function, we know:
1159 1.3 briggs * (opcode & 0x0180) == 0x0080
1160 1.3 briggs */
1161 1.3 briggs static int
1162 1.30 dsl fpu_emul_brcc(struct fpemu *fe, struct instruction *insn)
1163 1.3 briggs {
1164 1.3 briggs int displ, word2;
1165 1.5 briggs int sig;
1166 1.3 briggs
1167 1.3 briggs /*
1168 1.3 briggs * Get branch displacement.
1169 1.3 briggs */
1170 1.3 briggs insn->is_advance = 4;
1171 1.3 briggs displ = insn->is_word1;
1172 1.3 briggs
1173 1.3 briggs if (insn->is_opcode & 0x40) {
1174 1.21 briggs word2 = fusword((void *) (insn->is_pc + insn->is_advance));
1175 1.3 briggs if (word2 < 0) {
1176 1.3 briggs #ifdef DEBUG
1177 1.21 briggs printf("fpu_emul_brcc: fault reading word2\n");
1178 1.3 briggs #endif
1179 1.3 briggs return SIGSEGV;
1180 1.1 gwr }
1181 1.3 briggs displ <<= 16;
1182 1.3 briggs displ |= word2;
1183 1.3 briggs insn->is_advance += 2;
1184 1.3 briggs } else /* displacement is word sized */
1185 1.3 briggs if (displ & 0x8000)
1186 1.3 briggs displ |= 0xFFFF0000;
1187 1.3 briggs
1188 1.21 briggs /* XXX: If CC, insn->is_pc += displ */
1189 1.3 briggs sig = test_cc(fe, insn->is_opcode);
1190 1.3 briggs fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
1191 1.3 briggs
1192 1.3 briggs if (fe->fe_fpsr & fe->fe_fpcr & FPSR_EXCP) {
1193 1.3 briggs return SIGFPE; /* caught an exception */
1194 1.3 briggs }
1195 1.3 briggs if (sig == -1) {
1196 1.3 briggs /* branch does take place; 2 is the offset to the 1st disp word */
1197 1.3 briggs insn->is_advance = displ + 2;
1198 1.22 is /* XXX insn->is_nextpc = insn->is_pc + insn->is_advance; */
1199 1.3 briggs } else if (sig) {
1200 1.3 briggs return SIGILL; /* got a signal */
1201 1.3 briggs }
1202 1.21 briggs #if DEBUG_FPE
1203 1.21 briggs printf("fpu_emul_brcc: %s insn @ %x (%x+%x) (disp=%x)\n",
1204 1.21 briggs (sig == -1) ? "BRANCH to" : "NEXT",
1205 1.21 briggs insn->is_pc + insn->is_advance, insn->is_pc, insn->is_advance,
1206 1.21 briggs displ);
1207 1.21 briggs #endif
1208 1.3 briggs return 0;
1209 1.1 gwr }
1210