Home | History | Annotate | Line # | Download | only in fpe
fpu_emulate.c revision 1.35
      1 /*	$NetBSD: fpu_emulate.c,v 1.35 2011/07/18 14:11:27 isaki Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Gordon W. Ross
      5  * some portion Copyright (c) 1995 Ken Nakata
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. The name of the author may not be used to endorse or promote products
     17  *    derived from this software without specific prior written permission.
     18  * 4. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *      This product includes software developed by Gordon Ross
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * mc68881 emulator
     36  * XXX - Just a start at it for now...
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: fpu_emulate.c,v 1.35 2011/07/18 14:11:27 isaki Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/types.h>
     44 #include <sys/signal.h>
     45 #include <sys/systm.h>
     46 #include <machine/frame.h>
     47 
     48 #if defined(DDB) && defined(DEBUG_FPE)
     49 # include <m68k/db_machdep.h>
     50 #endif
     51 
     52 #include "fpu_emulate.h"
     53 
     54 #define	fpe_abort(tfp, ksi, signo, code)			\
     55 	do {							\
     56 		(ksi)->ksi_signo = (signo);			\
     57 		(ksi)->ksi_code = (code);			\
     58 		(ksi)->ksi_addr = (void *)(frame)->f_pc;	\
     59 		return -1;					\
     60 	} while (/* CONSTCOND */ 0)
     61 
     62 static int fpu_emul_fmovmcr(struct fpemu *, struct instruction *);
     63 static int fpu_emul_fmovm(struct fpemu *, struct instruction *);
     64 static int fpu_emul_arith(struct fpemu *, struct instruction *);
     65 static int fpu_emul_type1(struct fpemu *, struct instruction *);
     66 static int fpu_emul_brcc(struct fpemu *, struct instruction *);
     67 static int test_cc(struct fpemu *, int);
     68 static struct fpn *fpu_cmp(struct fpemu *);
     69 
     70 #ifdef DEBUG_FPE
     71 #define DUMP_INSN(insn)							\
     72 	printf("%s: insn={adv=%d,siz=%d,op=%04x,w1=%04x}\n",		\
     73 	    __func__,							\
     74 	    (insn)->is_advance, (insn)->is_datasize,			\
     75 	    (insn)->is_opcode, (insn)->is_word1)
     76 #define DPRINTF(x)	printf x
     77 #else
     78 #define DUMP_INSN(insn)	do {} while (/* CONSTCOND */ 0)
     79 #define DPRINTF(x)	do {} while (/* CONSTCOND */ 0)
     80 #endif
     81 
     82 /*
     83  * Emulate a floating-point instruction.
     84  * Return zero for success, else signal number.
     85  * (Typically: zero, SIGFPE, SIGILL, SIGSEGV)
     86  */
     87 int
     88 fpu_emulate(struct frame *frame, struct fpframe *fpf, ksiginfo_t *ksi)
     89 {
     90 	static struct instruction insn;
     91 	static struct fpemu fe;
     92 	int word, optype, sig;
     93 
     94 
     95 	/* initialize insn.is_datasize to tell it is *not* initialized */
     96 	insn.is_datasize = -1;
     97 
     98 	fe.fe_frame = frame;
     99 	fe.fe_fpframe = fpf;
    100 	fe.fe_fpsr = fpf->fpf_fpsr;
    101 	fe.fe_fpcr = fpf->fpf_fpcr;
    102 
    103 	DPRINTF(("%s: ENTERING: FPSR=%08x, FPCR=%08x\n",
    104 	    __func__, fe.fe_fpsr, fe.fe_fpcr));
    105 
    106 	/* always set this (to avoid a warning) */
    107 	insn.is_pc = frame->f_pc;
    108 	insn.is_nextpc = 0;
    109 	if (frame->f_format == 4) {
    110 		/*
    111 		 * A format 4 is generated by the 68{EC,LC}040.  The PC is
    112 		 * already set to the instruction following the faulting
    113 		 * instruction.  We need to calculate that, anyway.  The
    114 		 * fslw is the PC of the faulted instruction, which is what
    115 		 * we expect to be in f_pc.
    116 		 *
    117 		 * XXX - This is a hack; it assumes we at least know the
    118 		 * sizes of all instructions we run across.
    119 		 * XXX TODO: This may not be true, so we might want to save
    120 		 * the PC in order to restore it later.
    121 		 */
    122 #if 0
    123 		insn.is_nextpc = frame->f_pc;
    124 #endif
    125 		insn.is_pc = frame->f_fmt4.f_fslw;
    126 		frame->f_pc = insn.is_pc;
    127 	}
    128 
    129 	word = fusword((void *)(insn.is_pc));
    130 	if (word < 0) {
    131 		DPRINTF(("%s: fault reading opcode\n", __func__));
    132 		fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
    133 	}
    134 
    135 	if ((word & 0xf000) != 0xf000) {
    136 		DPRINTF(("%s: not coproc. insn.: opcode=0x%x\n",
    137 		    __func__, word));
    138 		fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
    139 	}
    140 
    141 	if ((word & 0x0E00) != 0x0200) {
    142 		DPRINTF(("%s: bad coproc. id: opcode=0x%x\n", __func__, word));
    143 		fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
    144 	}
    145 
    146 	insn.is_opcode = word;
    147 	optype = (word & 0x01C0);
    148 
    149 	word = fusword((void *)(insn.is_pc + 2));
    150 	if (word < 0) {
    151 		DPRINTF(("%s: fault reading word1\n", __func__));
    152 		fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
    153 	}
    154 	insn.is_word1 = word;
    155 	/* all FPU instructions are at least 4-byte long */
    156 	insn.is_advance = 4;
    157 
    158 	DUMP_INSN(&insn);
    159 
    160 	/*
    161 	 * Which family (or type) of opcode is it?
    162 	 * Tests ordered by likelihood (hopefully).
    163 	 * Certainly, type 0 is the most common.
    164 	 */
    165 	if (optype == 0x0000) {
    166 		/* type=0: generic */
    167 		if ((word & 0xc000) == 0xc000) {
    168 			DPRINTF(("%s: fmovm FPr\n", __func__));
    169 			sig = fpu_emul_fmovm(&fe, &insn);
    170 		} else if ((word & 0xc000) == 0x8000) {
    171 			DPRINTF(("%s: fmovm FPcr\n", __func__));
    172 			sig = fpu_emul_fmovmcr(&fe, &insn);
    173 		} else if ((word & 0xe000) == 0x6000) {
    174 			/* fstore = fmove FPn,mem */
    175 			DPRINTF(("%s: fmove to mem\n", __func__));
    176 			sig = fpu_emul_fstore(&fe, &insn);
    177 		} else if ((word & 0xfc00) == 0x5c00) {
    178 			/* fmovecr */
    179 			DPRINTF(("%s: fmovecr\n", __func__));
    180 			sig = fpu_emul_fmovecr(&fe, &insn);
    181 		} else if ((word & 0xa07f) == 0x26) {
    182 			/* fscale */
    183 			DPRINTF(("%s: fscale\n", __func__));
    184 			sig = fpu_emul_fscale(&fe, &insn);
    185 		} else {
    186 			DPRINTF(("%s: other type0\n", __func__));
    187 			/* all other type0 insns are arithmetic */
    188 			sig = fpu_emul_arith(&fe, &insn);
    189 		}
    190 		if (sig == 0) {
    191 			DPRINTF(("%s: type 0 returned 0\n", __func__));
    192 			sig = fpu_upd_excp(&fe);
    193 		}
    194 	} else if (optype == 0x0080 || optype == 0x00C0) {
    195 		/* type=2 or 3: fbcc, short or long disp. */
    196 		DPRINTF(("%s: fbcc %s\n", __func__,
    197 		    (optype & 0x40) ? "long" : "short"));
    198 		sig = fpu_emul_brcc(&fe, &insn);
    199 	} else if (optype == 0x0040) {
    200 		/* type=1: fdbcc, fscc, ftrapcc */
    201 		DPRINTF(("%s: type1\n", __func__));
    202 		sig = fpu_emul_type1(&fe, &insn);
    203 	} else {
    204 		/* type=4: fsave    (privileged) */
    205 		/* type=5: frestore (privileged) */
    206 		/* type=6: reserved */
    207 		/* type=7: reserved */
    208 		DPRINTF(("%s: bad opcode type: opcode=0x%x\n", __func__,
    209 		    insn.is_opcode));
    210 		sig = SIGILL;
    211 	}
    212 
    213 	DUMP_INSN(&insn);
    214 
    215 	/*
    216 	 * XXX it is not clear to me, if we should progress the PC always,
    217 	 * for SIGFPE || 0, or only for 0; however, without SIGFPE, we
    218 	 * don't pass the signalling regression  tests.	-is
    219 	 */
    220 	if ((sig == 0) || (sig == SIGFPE))
    221 		frame->f_pc += insn.is_advance;
    222 #if defined(DDB) && defined(DEBUG_FPE)
    223 	else {
    224 		printf("%s: sig=%d, opcode=%x, word1=%x\n", __func__,
    225 		    sig, insn.is_opcode, insn.is_word1);
    226 		kdb_trap(-1, (db_regs_t *)&frame);
    227 	}
    228 #endif
    229 #if 0 /* XXX something is wrong */
    230 	if (frame->f_format == 4) {
    231 		/* XXX Restore PC -- 68{EC,LC}040 only */
    232 		if (insn.is_nextpc)
    233 			frame->f_pc = insn.is_nextpc;
    234 	}
    235 #endif
    236 
    237 	DPRINTF(("%s: EXITING: w/FPSR=%08x, FPCR=%08x\n", __func__,
    238 	    fe.fe_fpsr, fe.fe_fpcr));
    239 
    240 	if (sig)
    241 		fpe_abort(frame, ksi, sig, 0);
    242 	return sig;
    243 }
    244 
    245 /* update accrued exception bits and see if there's an FP exception */
    246 int
    247 fpu_upd_excp(struct fpemu *fe)
    248 {
    249 	u_int fpsr;
    250 	u_int fpcr;
    251 
    252 	fpsr = fe->fe_fpsr;
    253 	fpcr = fe->fe_fpcr;
    254 	/*
    255 	 * update fpsr accrued exception bits; each insn doesn't have to
    256 	 * update this
    257 	 */
    258 	if (fpsr & (FPSR_BSUN | FPSR_SNAN | FPSR_OPERR)) {
    259 		fpsr |= FPSR_AIOP;
    260 	}
    261 	if (fpsr & FPSR_OVFL) {
    262 		fpsr |= FPSR_AOVFL;
    263 	}
    264 	if ((fpsr & FPSR_UNFL) && (fpsr & FPSR_INEX2)) {
    265 		fpsr |= FPSR_AUNFL;
    266 	}
    267 	if (fpsr & FPSR_DZ) {
    268 		fpsr |= FPSR_ADZ;
    269 	}
    270 	if (fpsr & (FPSR_INEX1 | FPSR_INEX2 | FPSR_OVFL)) {
    271 		fpsr |= FPSR_AINEX;
    272 	}
    273 
    274 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
    275 
    276 	return (fpsr & fpcr & FPSR_EXCP) ? SIGFPE : 0;
    277 }
    278 
    279 /* update fpsr according to fp (= result of an fp op) */
    280 u_int
    281 fpu_upd_fpsr(struct fpemu *fe, struct fpn *fp)
    282 {
    283 	u_int fpsr;
    284 
    285 	DPRINTF(("%s: previous fpsr=%08x\n", __func__, fe->fe_fpsr));
    286 	/* clear all condition code */
    287 	fpsr = fe->fe_fpsr & ~FPSR_CCB;
    288 
    289 	DPRINTF(("%s: result is a ", __func__));
    290 	if (fp->fp_sign) {
    291 		DPRINTF(("negative "));
    292 		fpsr |= FPSR_NEG;
    293 	} else {
    294 		DPRINTF(("positive "));
    295 	}
    296 
    297 	switch (fp->fp_class) {
    298 	case FPC_SNAN:
    299 		DPRINTF(("signaling NAN\n"));
    300 		fpsr |= (FPSR_NAN | FPSR_SNAN);
    301 		break;
    302 	case FPC_QNAN:
    303 		DPRINTF(("quiet NAN\n"));
    304 		fpsr |= FPSR_NAN;
    305 		break;
    306 	case FPC_ZERO:
    307 		DPRINTF(("Zero\n"));
    308 		fpsr |= FPSR_ZERO;
    309 		break;
    310 	case FPC_INF:
    311 		DPRINTF(("Inf\n"));
    312 		fpsr |= FPSR_INF;
    313 		break;
    314 	default:
    315 		DPRINTF(("Number\n"));
    316 		/* anything else is treated as if it is a number */
    317 		break;
    318 	}
    319 
    320 	fe->fe_fpsr = fe->fe_fpframe->fpf_fpsr = fpsr;
    321 
    322 	DPRINTF(("%s: new fpsr=%08x\n", __func__, fe->fe_fpframe->fpf_fpsr));
    323 
    324 	return fpsr;
    325 }
    326 
    327 static int
    328 fpu_emul_fmovmcr(struct fpemu *fe, struct instruction *insn)
    329 {
    330 	struct frame *frame = fe->fe_frame;
    331 	struct fpframe *fpf = fe->fe_fpframe;
    332 	int sig;
    333 	int reglist;
    334 	int fpu_to_mem;
    335 
    336 	/* move to/from control registers */
    337 	reglist = (insn->is_word1 & 0x1c00) >> 10;
    338 	/* Bit 13 selects direction (FPU to/from Mem) */
    339 	fpu_to_mem = insn->is_word1 & 0x2000;
    340 
    341 	insn->is_datasize = 4;
    342 	insn->is_advance = 4;
    343 	sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
    344 	if (sig)
    345 		return sig;
    346 
    347 	if (reglist != 1 && reglist != 2 && reglist != 4 &&
    348 	    (insn->is_ea.ea_flags & EA_DIRECT)) {
    349 		/* attempted to copy more than one FPcr to CPU regs */
    350 		DPRINTF(("%s: tried to copy too many FPcr\n", __func__));
    351 		return SIGILL;
    352 	}
    353 
    354 	if (reglist & 4) {
    355 		/* fpcr */
    356 		if ((insn->is_ea.ea_flags & EA_DIRECT) &&
    357 		    insn->is_ea.ea_regnum >= 8 /* address reg */) {
    358 			/* attempted to copy FPCR to An */
    359 			DPRINTF(("%s: tried to copy FPCR from/to A%d\n",
    360 			    __func__, insn->is_ea.ea_regnum & 7));
    361 			return SIGILL;
    362 		}
    363 		if (fpu_to_mem) {
    364 			sig = fpu_store_ea(frame, insn, &insn->is_ea,
    365 			    (char *)&fpf->fpf_fpcr);
    366 		} else {
    367 			sig = fpu_load_ea(frame, insn, &insn->is_ea,
    368 			    (char *)&fpf->fpf_fpcr);
    369 		}
    370 	}
    371 	if (sig)
    372 		return sig;
    373 
    374 	if (reglist & 2) {
    375 		/* fpsr */
    376 		if ((insn->is_ea.ea_flags & EA_DIRECT) &&
    377 		    insn->is_ea.ea_regnum >= 8 /* address reg */) {
    378 			/* attempted to copy FPSR to An */
    379 			DPRINTF(("%s: tried to copy FPSR from/to A%d\n",
    380 			    __func__, insn->is_ea.ea_regnum & 7));
    381 			return SIGILL;
    382 		}
    383 		if (fpu_to_mem) {
    384 			sig = fpu_store_ea(frame, insn, &insn->is_ea,
    385 			    (char *)&fpf->fpf_fpsr);
    386 		} else {
    387 			sig = fpu_load_ea(frame, insn, &insn->is_ea,
    388 			    (char *)&fpf->fpf_fpsr);
    389 		}
    390 	}
    391 	if (sig)
    392 		return sig;
    393 
    394 	if (reglist & 1) {
    395 		/* fpiar - can be moved to/from An */
    396 		if (fpu_to_mem) {
    397 			sig = fpu_store_ea(frame, insn, &insn->is_ea,
    398 			    (char *)&fpf->fpf_fpiar);
    399 		} else {
    400 			sig = fpu_load_ea(frame, insn, &insn->is_ea,
    401 			    (char *)&fpf->fpf_fpiar);
    402 		}
    403 	}
    404 	return sig;
    405 }
    406 
    407 /*
    408  * type 0: fmovem
    409  * Separated out of fpu_emul_type0 for efficiency.
    410  * In this function, we know:
    411  *   (opcode & 0x01C0) == 0
    412  *   (word1 & 0x8000) == 0x8000
    413  *
    414  * No conversion or rounding is done by this instruction,
    415  * and the FPSR is not affected.
    416  */
    417 static int
    418 fpu_emul_fmovm(struct fpemu *fe, struct instruction *insn)
    419 {
    420 	struct frame *frame = fe->fe_frame;
    421 	struct fpframe *fpf = fe->fe_fpframe;
    422 	int word1, sig;
    423 	int reglist, regmask, regnum;
    424 	int fpu_to_mem, order;
    425 	int w1_post_incr;
    426 	int *fpregs;
    427 
    428 	insn->is_advance = 4;
    429 	insn->is_datasize = 12;
    430 	word1 = insn->is_word1;
    431 
    432 	/* Bit 13 selects direction (FPU to/from Mem) */
    433 	fpu_to_mem = word1 & 0x2000;
    434 
    435 	/*
    436 	 * Bits 12,11 select register list mode:
    437 	 * 0,0: Static  reg list, pre-decr.
    438 	 * 0,1: Dynamic reg list, pre-decr.
    439 	 * 1,0: Static  reg list, post-incr.
    440 	 * 1,1: Dynamic reg list, post-incr
    441 	 */
    442 	w1_post_incr = word1 & 0x1000;
    443 	if (word1 & 0x0800) {
    444 		/* dynamic reg list */
    445 		reglist = frame->f_regs[(word1 & 0x70) >> 4];
    446 	} else {
    447 		reglist = word1;
    448 	}
    449 	reglist &= 0xFF;
    450 
    451 	/* Get effective address. (modreg=opcode&077) */
    452 	sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
    453 	if (sig)
    454 		return sig;
    455 
    456 	/* Get address of soft coprocessor regs. */
    457 	fpregs = &fpf->fpf_regs[0];
    458 
    459 	if (insn->is_ea.ea_flags & EA_PREDECR) {
    460 		regnum = 7;
    461 		order = -1;
    462 	} else {
    463 		regnum = 0;
    464 		order = 1;
    465 	}
    466 
    467 	regmask = 0x80;
    468 	while ((0 <= regnum) && (regnum < 8)) {
    469 		if (regmask & reglist) {
    470 			if (fpu_to_mem) {
    471 				sig = fpu_store_ea(frame, insn, &insn->is_ea,
    472 				    (char *)&fpregs[regnum * 3]);
    473 				DPRINTF(("%s: FP%d (%08x,%08x,%08x) saved\n",
    474 				    __func__, regnum,
    475 				    fpregs[regnum * 3],
    476 				    fpregs[regnum * 3 + 1],
    477 				    fpregs[regnum * 3 + 2]));
    478 			} else {		/* mem to fpu */
    479 				sig = fpu_load_ea(frame, insn, &insn->is_ea,
    480 				    (char *)&fpregs[regnum * 3]);
    481 				DPRINTF(("%s: FP%d (%08x,%08x,%08x) loaded\n",
    482 				    __func__, regnum,
    483 				    fpregs[regnum * 3],
    484 				    fpregs[regnum * 3 + 1],
    485 				    fpregs[regnum * 3 + 2]));
    486 			}
    487 			if (sig)
    488 				break;
    489 		}
    490 		regnum += order;
    491 		regmask >>= 1;
    492 	}
    493 
    494 	return sig;
    495 }
    496 
    497 static struct fpn *
    498 fpu_cmp(struct fpemu *fe)
    499 {
    500 	struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
    501 
    502 	/* take care of special cases */
    503 	if (x->fp_class < 0 || y->fp_class < 0) {
    504 		/* if either of two is a SNAN, result is SNAN */
    505 		x->fp_class =
    506 		    (y->fp_class < x->fp_class) ? y->fp_class : x->fp_class;
    507 	} else if (x->fp_class == FPC_INF) {
    508 		if (y->fp_class == FPC_INF) {
    509 			/* both infinities */
    510 			if (x->fp_sign == y->fp_sign) {
    511 				/* return a signed zero */
    512 				x->fp_class = FPC_ZERO;
    513 			} else {
    514 				/* return a faked number w/x's sign */
    515 				x->fp_class = FPC_NUM;
    516 				x->fp_exp = 16383;
    517 				x->fp_mant[0] = FP_1;
    518 			}
    519 		} else {
    520 			/* y is a number */
    521 			/* return a forged number w/x's sign */
    522 			x->fp_class = FPC_NUM;
    523 			x->fp_exp = 16383;
    524 			x->fp_mant[0] = FP_1;
    525 		}
    526 	} else if (y->fp_class == FPC_INF) {
    527 		/* x is a Num but y is an Inf */
    528 		/* return a forged number w/y's sign inverted */
    529 		x->fp_class = FPC_NUM;
    530 		x->fp_sign = !y->fp_sign;
    531 		x->fp_exp = 16383;
    532 		x->fp_mant[0] = FP_1;
    533 	} else {
    534 		/*
    535 		 * x and y are both numbers or zeros,
    536 		 * or pair of a number and a zero
    537 		 */
    538 		y->fp_sign = !y->fp_sign;
    539 		x = fpu_add(fe);	/* (x - y) */
    540 		/*
    541 		 * FCMP does not set Inf bit in CC, so return a forged number
    542 		 * (value doesn't matter) if Inf is the result of fsub.
    543 		 */
    544 		if (x->fp_class == FPC_INF) {
    545 			x->fp_class = FPC_NUM;
    546 			x->fp_exp = 16383;
    547 			x->fp_mant[0] = FP_1;
    548 		}
    549 	}
    550 	return x;
    551 }
    552 
    553 /*
    554  * arithmetic oprations
    555  */
    556 static int
    557 fpu_emul_arith(struct fpemu *fe, struct instruction *insn)
    558 {
    559 	struct frame *frame = fe->fe_frame;
    560 	u_int *fpregs = &(fe->fe_fpframe->fpf_regs[0]);
    561 	struct fpn *res;
    562 	int word1, sig = 0;
    563 	int regnum, format;
    564 	int discard_result = 0;
    565 	u_int buf[3];
    566 #ifdef DEBUG_FPE
    567 	int flags;
    568 	char regname;
    569 #endif
    570 
    571 	fe->fe_fpsr &= ~FPSR_EXCP;
    572 
    573 	DUMP_INSN(insn);
    574 
    575 	DPRINTF(("%s: FPSR = %08x, FPCR = %08x\n", __func__,
    576 	    fe->fe_fpsr, fe->fe_fpcr));
    577 
    578 	word1 = insn->is_word1;
    579 	format = (word1 >> 10) & 7;
    580 	regnum = (word1 >> 7) & 7;
    581 
    582 	/* fetch a source operand : may not be used */
    583 	DPRINTF(("%s: dst/src FP%d=%08x,%08x,%08x\n", __func__,
    584 	    regnum, fpregs[regnum * 3], fpregs[regnum * 3 + 1],
    585 	    fpregs[regnum * 3 + 2]));
    586 
    587 	fpu_explode(fe, &fe->fe_f1, FTYPE_EXT, &fpregs[regnum * 3]);
    588 
    589 	DUMP_INSN(insn);
    590 
    591 	/* get the other operand which is always the source */
    592 	if ((word1 & 0x4000) == 0) {
    593 		DPRINTF(("%s: FP%d op FP%d => FP%d\n", __func__,
    594 		    format, regnum, regnum));
    595 		DPRINTF(("%s: src opr FP%d=%08x,%08x,%08x\n", __func__,
    596 		    format, fpregs[format * 3], fpregs[format * 3 + 1],
    597 		    fpregs[format * 3 + 2]));
    598 		fpu_explode(fe, &fe->fe_f2, FTYPE_EXT, &fpregs[format * 3]);
    599 	} else {
    600 		/* the operand is in memory */
    601 		if (format == FTYPE_DBL) {
    602 			insn->is_datasize = 8;
    603 		} else if (format == FTYPE_SNG || format == FTYPE_LNG) {
    604 			insn->is_datasize = 4;
    605 		} else if (format == FTYPE_WRD) {
    606 			insn->is_datasize = 2;
    607 		} else if (format == FTYPE_BYT) {
    608 			insn->is_datasize = 1;
    609 		} else if (format == FTYPE_EXT) {
    610 			insn->is_datasize = 12;
    611 		} else {
    612 			/* invalid or unsupported operand format */
    613 			sig = SIGFPE;
    614 			return sig;
    615 		}
    616 
    617 		/* Get effective address. (modreg=opcode&077) */
    618 		sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
    619 		if (sig) {
    620 			DPRINTF(("%s: error in fpu_decode_ea\n", __func__));
    621 			return sig;
    622 		}
    623 
    624 		DUMP_INSN(insn);
    625 
    626 #ifdef DEBUG_FPE
    627 		printf("%s: addr mode = ", __func__);
    628 		flags = insn->is_ea.ea_flags;
    629 		regname = (insn->is_ea.ea_regnum & 8) ? 'a' : 'd';
    630 
    631 		if (flags & EA_DIRECT) {
    632 			printf("%c%d\n", regname, insn->is_ea.ea_regnum & 7);
    633 		} else if (flags & EA_PC_REL) {
    634 			if (flags & EA_OFFSET) {
    635 				printf("pc@(%d)\n", insn->is_ea.ea_offset);
    636 			} else if (flags & EA_INDEXED) {
    637 				printf("pc@(...)\n");
    638 			}
    639 		} else if (flags & EA_PREDECR) {
    640 			printf("%c%d@-\n", regname, insn->is_ea.ea_regnum & 7);
    641 		} else if (flags & EA_POSTINCR) {
    642 			printf("%c%d@+\n", regname, insn->is_ea.ea_regnum & 7);
    643 		} else if (flags & EA_OFFSET) {
    644 			printf("%c%d@(%d)\n", regname,
    645 			    insn->is_ea.ea_regnum & 7,
    646 			    insn->is_ea.ea_offset);
    647 		} else if (flags & EA_INDEXED) {
    648 			printf("%c%d@(...)\n", regname,
    649 			    insn->is_ea.ea_regnum & 7);
    650 		} else if (flags & EA_ABS) {
    651 			printf("0x%08x\n", insn->is_ea.ea_absaddr);
    652 		} else if (flags & EA_IMMED) {
    653 			printf("#0x%08x,%08x,%08x\n",
    654 			    insn->is_ea.ea_immed[0],
    655 			    insn->is_ea.ea_immed[1],
    656 			    insn->is_ea.ea_immed[2]);
    657 		} else {
    658 			printf("%c%d@\n", regname, insn->is_ea.ea_regnum & 7);
    659 		}
    660 #endif /* DEBUG_FPE */
    661 
    662 		fpu_load_ea(frame, insn, &insn->is_ea, (char*)buf);
    663 		if (format == FTYPE_WRD) {
    664 			/* sign-extend */
    665 			buf[0] &= 0xffff;
    666 			if (buf[0] & 0x8000)
    667 				buf[0] |= 0xffff0000;
    668 			format = FTYPE_LNG;
    669 		} else if (format == FTYPE_BYT) {
    670 			/* sign-extend */
    671 			buf[0] &= 0xff;
    672 			if (buf[0] & 0x80)
    673 				buf[0] |= 0xffffff00;
    674 			format = FTYPE_LNG;
    675 		}
    676 		DPRINTF(("%s: src = %08x %08x %08x, siz = %d\n", __func__,
    677 		    buf[0], buf[1], buf[2], insn->is_datasize));
    678 		fpu_explode(fe, &fe->fe_f2, format, buf);
    679 	}
    680 
    681 	DUMP_INSN(insn);
    682 
    683 	/*
    684 	 * An arithmetic instruction emulate function has a prototype of
    685 	 * struct fpn *fpu_op(struct fpemu *);
    686 	 *
    687 	 * 1) If the instruction is monadic, then fpu_op() must use
    688 	 *    fe->fe_f2 as its operand, and return a pointer to the
    689 	 *    result.
    690 	 *
    691 	 * 2) If the instruction is diadic, then fpu_op() must use
    692 	 *    fe->fe_f1 and fe->fe_f2 as its two operands, and return a
    693 	 *    pointer to the result.
    694 	 *
    695 	 */
    696 	res = NULL;
    697 	switch (word1 & 0x7f) {
    698 	case 0x00:		/* fmove */
    699 		res = &fe->fe_f2;
    700 		break;
    701 
    702 	case 0x01:		/* fint */
    703 		res = fpu_int(fe);
    704 		break;
    705 
    706 	case 0x02:		/* fsinh */
    707 		res = fpu_sinh(fe);
    708 		break;
    709 
    710 	case 0x03:		/* fintrz */
    711 		res = fpu_intrz(fe);
    712 		break;
    713 
    714 	case 0x04:		/* fsqrt */
    715 		res = fpu_sqrt(fe);
    716 		break;
    717 
    718 	case 0x06:		/* flognp1 */
    719 		res = fpu_lognp1(fe);
    720 		break;
    721 
    722 	case 0x08:		/* fetoxm1 */
    723 		res = fpu_etoxm1(fe);
    724 		break;
    725 
    726 	case 0x09:		/* ftanh */
    727 		res = fpu_tanh(fe);
    728 		break;
    729 
    730 	case 0x0A:		/* fatan */
    731 		res = fpu_atan(fe);
    732 		break;
    733 
    734 	case 0x0C:		/* fasin */
    735 		res = fpu_asin(fe);
    736 		break;
    737 
    738 	case 0x0D:		/* fatanh */
    739 		res = fpu_atanh(fe);
    740 		break;
    741 
    742 	case 0x0E:		/* fsin */
    743 		res = fpu_sin(fe);
    744 		break;
    745 
    746 	case 0x0F:		/* ftan */
    747 		res = fpu_tan(fe);
    748 		break;
    749 
    750 	case 0x10:		/* fetox */
    751 		res = fpu_etox(fe);
    752 		break;
    753 
    754 	case 0x11:		/* ftwotox */
    755 		res = fpu_twotox(fe);
    756 		break;
    757 
    758 	case 0x12:		/* ftentox */
    759 		res = fpu_tentox(fe);
    760 		break;
    761 
    762 	case 0x14:		/* flogn */
    763 		res = fpu_logn(fe);
    764 		break;
    765 
    766 	case 0x15:		/* flog10 */
    767 		res = fpu_log10(fe);
    768 		break;
    769 
    770 	case 0x16:		/* flog2 */
    771 		res = fpu_log2(fe);
    772 		break;
    773 
    774 	case 0x18:		/* fabs */
    775 		fe->fe_f2.fp_sign = 0;
    776 		res = &fe->fe_f2;
    777 		break;
    778 
    779 	case 0x19:		/* fcosh */
    780 		res = fpu_cosh(fe);
    781 		break;
    782 
    783 	case 0x1A:		/* fneg */
    784 		fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign;
    785 		res = &fe->fe_f2;
    786 		break;
    787 
    788 	case 0x1C:		/* facos */
    789 		res = fpu_acos(fe);
    790 		break;
    791 
    792 	case 0x1D:		/* fcos */
    793 		res = fpu_cos(fe);
    794 		break;
    795 
    796 	case 0x1E:		/* fgetexp */
    797 		res = fpu_getexp(fe);
    798 		break;
    799 
    800 	case 0x1F:		/* fgetman */
    801 		res = fpu_getman(fe);
    802 		break;
    803 
    804 	case 0x20:		/* fdiv */
    805 	case 0x24:		/* fsgldiv: cheating - better than nothing */
    806 		res = fpu_div(fe);
    807 		break;
    808 
    809 	case 0x21:		/* fmod */
    810 		res = fpu_mod(fe);
    811 		break;
    812 
    813 	case 0x28:		/* fsub */
    814 		fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign; /* f2 = -f2 */
    815 		/* FALLTHROUGH */
    816 	case 0x22:		/* fadd */
    817 		res = fpu_add(fe);
    818 		break;
    819 
    820 	case 0x23:		/* fmul */
    821 	case 0x27:		/* fsglmul: cheating - better than nothing */
    822 		res = fpu_mul(fe);
    823 		break;
    824 
    825 	case 0x25:		/* frem */
    826 		res = fpu_rem(fe);
    827 		break;
    828 
    829 	case 0x26:
    830 		/* fscale is handled by a separate function */
    831 		break;
    832 
    833 	case 0x30:
    834 	case 0x31:
    835 	case 0x32:
    836 	case 0x33:
    837 	case 0x34:
    838 	case 0x35:
    839 	case 0x36:
    840 	case 0x37:		/* fsincos */
    841 		res = fpu_sincos(fe, word1 & 7);
    842 		break;
    843 
    844 	case 0x38:		/* fcmp */
    845 		res = fpu_cmp(fe);
    846 		discard_result = 1;
    847 		break;
    848 
    849 	case 0x3A:		/* ftst */
    850 		res = &fe->fe_f2;
    851 		discard_result = 1;
    852 		break;
    853 
    854 	default:		/* possibly 040/060 instructions */
    855 		DPRINTF(("%s: bad opcode=0x%x, word1=0x%x\n", __func__,
    856 		    insn->is_opcode, insn->is_word1));
    857 		sig = SIGILL;
    858 	}
    859 
    860 	/* for sanity */
    861 	if (res == NULL)
    862 		sig = SIGILL;
    863 
    864 	if (sig == 0) {
    865 		if (!discard_result)
    866 			fpu_implode(fe, res, FTYPE_EXT, &fpregs[regnum * 3]);
    867 
    868 		/* update fpsr according to the result of operation */
    869 		fpu_upd_fpsr(fe, res);
    870 #ifdef DEBUG_FPE
    871 		if (!discard_result) {
    872 			printf("%s: %08x,%08x,%08x stored in FP%d\n", __func__,
    873 			    fpregs[regnum * 3],
    874 			    fpregs[regnum * 3 + 1],
    875 			    fpregs[regnum * 3 + 2],
    876 			    regnum);
    877 		} else {
    878 			static const char *class_name[] =
    879 			    { "SNAN", "QNAN", "ZERO", "NUM", "INF" };
    880 			printf("%s: result(%s,%c,%d,%08x,%08x,%08x) "
    881 			    "discarded\n", __func__,
    882 			    class_name[res->fp_class + 2],
    883 			    res->fp_sign ? '-' : '+', res->fp_exp,
    884 			    res->fp_mant[0], res->fp_mant[1],
    885 			    res->fp_mant[2]);
    886 		}
    887 #endif
    888 	} else {
    889 		DPRINTF(("%s: received signal %d\n", __func__, sig));
    890 	}
    891 
    892 	DPRINTF(("%s: FPSR = %08x, FPCR = %08x\n", __func__,
    893 	    fe->fe_fpsr, fe->fe_fpcr));
    894 
    895 	DUMP_INSN(insn);
    896 
    897 	return sig;
    898 }
    899 
    900 /*
    901  * test condition code according to the predicate in the opcode.
    902  * returns -1 when the predicate evaluates to true, 0 when false.
    903  * signal numbers are returned when an error is detected.
    904  */
    905 static int
    906 test_cc(struct fpemu *fe, int pred)
    907 {
    908 	int result, sig_bsun, invert;
    909 	int fpsr;
    910 
    911 	fpsr = fe->fe_fpsr;
    912 	invert = 0;
    913 	fpsr &= ~FPSR_EXCP;		/* clear all exceptions */
    914 	DPRINTF(("%s: fpsr=0x%08x\n", __func__, fpsr));
    915 	pred &= 0x3f;		/* lowest 6 bits */
    916 
    917 	DPRINTF(("%s: ", __func__));
    918 
    919 	if (pred >= 0x20) {
    920 		DPRINTF(("Illegal condition code\n"));
    921 		return SIGILL;
    922 	} else if (pred & 0x10) {
    923 		/* IEEE nonaware tests */
    924 		sig_bsun = 1;
    925 		pred &= 0x0f;		/* lower 4 bits */
    926 	} else {
    927 		/* IEEE aware tests */
    928 		DPRINTF(("IEEE "));
    929 		sig_bsun = 0;
    930 	}
    931 
    932 	if (pred & 0x08) {
    933 		DPRINTF(("Not "));
    934 		/* predicate is "NOT ..." */
    935 		pred ^= 0xf;		/* invert */
    936 		invert = -1;
    937 	}
    938 	switch (pred) {
    939 	case 0:			/* (Signaling) False */
    940 		DPRINTF(("False"));
    941 		result = 0;
    942 		break;
    943 	case 1:			/* (Signaling) Equal */
    944 		DPRINTF(("Equal"));
    945 		result = -((fpsr & FPSR_ZERO) == FPSR_ZERO);
    946 		break;
    947 	case 2:			/* Greater Than */
    948 		DPRINTF(("GT"));
    949 		result = -((fpsr & (FPSR_NAN|FPSR_ZERO|FPSR_NEG)) == 0);
    950 		break;
    951 	case 3:			/* Greater or Equal */
    952 		DPRINTF(("GE"));
    953 		result = -((fpsr & FPSR_ZERO) ||
    954 		    (fpsr & (FPSR_NAN|FPSR_NEG)) == 0);
    955 		break;
    956 	case 4:			/* Less Than */
    957 		DPRINTF(("LT"));
    958 		result = -((fpsr & (FPSR_NAN|FPSR_ZERO|FPSR_NEG)) == FPSR_NEG);
    959 		break;
    960 	case 5:			/* Less or Equal */
    961 		DPRINTF(("LE"));
    962 		result = -((fpsr & FPSR_ZERO) ||
    963 		    ((fpsr & (FPSR_NAN|FPSR_NEG)) == FPSR_NEG));
    964 		break;
    965 	case 6:			/* Greater or Less than */
    966 		DPRINTF(("GLT"));
    967 		result = -((fpsr & (FPSR_NAN|FPSR_ZERO)) == 0);
    968 		break;
    969 	case 7:			/* Greater, Less or Equal */
    970 		DPRINTF(("GLE"));
    971 		result = -((fpsr & FPSR_NAN) == 0);
    972 		break;
    973 	default:
    974 		/* invalid predicate */
    975 		DPRINTF(("Invalid predicate\n"));
    976 		return SIGILL;
    977 	}
    978 	/* if the predicate is "NOT ...", then invert the result */
    979 	result ^= invert;
    980 	DPRINTF(("=> %s (%d)\n", result ? "true" : "false", result));
    981 	/* if it's an IEEE unaware test and NAN is set, BSUN is set */
    982 	if (sig_bsun && (fpsr & FPSR_NAN)) {
    983 		fpsr |= FPSR_BSUN;
    984 	}
    985 
    986 	/* put fpsr back */
    987 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
    988 
    989 	return result;
    990 }
    991 
    992 /*
    993  * type 1: fdbcc, fscc, ftrapcc
    994  * In this function, we know:
    995  *   (opcode & 0x01C0) == 0x0040
    996  */
    997 static int
    998 fpu_emul_type1(struct fpemu *fe, struct instruction *insn)
    999 {
   1000 	struct frame *frame = fe->fe_frame;
   1001 	int advance, sig, branch, displ;
   1002 
   1003 	branch = test_cc(fe, insn->is_word1);
   1004 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
   1005 
   1006 	insn->is_advance = 4;
   1007 	sig = 0;
   1008 
   1009 	switch (insn->is_opcode & 070) {
   1010 	case 010:			/* fdbcc */
   1011 		if (branch == -1) {
   1012 			/* advance */
   1013 			insn->is_advance = 6;
   1014 		} else if (!branch) {
   1015 			/* decrement Dn and if (Dn != -1) branch */
   1016 			uint16_t count = frame->f_regs[insn->is_opcode & 7];
   1017 
   1018 			if (count-- != 0) {
   1019 				displ = fusword((void *)(insn->is_pc +
   1020 				    insn->is_advance));
   1021 				if (displ < 0) {
   1022 					DPRINTF(("%s: fault reading "
   1023 					    "displacement\n", __func__));
   1024 					return SIGSEGV;
   1025 				}
   1026 				/* sign-extend the displacement */
   1027 				displ &= 0xffff;
   1028 				if (displ & 0x8000) {
   1029 					displ |= 0xffff0000;
   1030 				}
   1031 				insn->is_advance += displ;
   1032 #if 0				/* XXX */
   1033 				insn->is_nextpc = insn->is_pc +
   1034 				    insn->is_advance;
   1035 #endif
   1036 			} else {
   1037 				insn->is_advance = 6;
   1038 			}
   1039 			/* write it back */
   1040 			frame->f_regs[insn->is_opcode & 7] &= 0xffff0000;
   1041 			frame->f_regs[insn->is_opcode & 7] |= (uint32_t)count;
   1042 		} else {		/* got a signal */
   1043 			sig = SIGFPE;
   1044 		}
   1045 		break;
   1046 
   1047 	case 070:			/* ftrapcc or fscc */
   1048 		advance = 4;
   1049 		if ((insn->is_opcode & 07) >= 2) {
   1050 			switch (insn->is_opcode & 07) {
   1051 			case 3:		/* long opr */
   1052 				advance += 2;
   1053 			case 2:		/* word opr */
   1054 				advance += 2;
   1055 			case 4:		/* no opr */
   1056 				break;
   1057 			default:
   1058 				return SIGILL;
   1059 				break;
   1060 			}
   1061 
   1062 			if (branch == 0) {
   1063 				/* no trap */
   1064 				insn->is_advance = advance;
   1065 				sig = 0;
   1066 			} else {
   1067 				/* trap */
   1068 				sig = SIGFPE;
   1069 			}
   1070 			break;
   1071 		}
   1072 
   1073 		/* FALLTHROUGH */
   1074 	default:			/* fscc */
   1075 		insn->is_advance = 4;
   1076 		insn->is_datasize = 1;	/* always byte */
   1077 		sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
   1078 		if (sig) {
   1079 			break;
   1080 		}
   1081 		if (branch == -1 || branch == 0) {
   1082 			/* set result */
   1083 			sig = fpu_store_ea(frame, insn, &insn->is_ea,
   1084 			    (char *)&branch);
   1085 		} else {
   1086 			/* got an exception */
   1087 			sig = branch;
   1088 		}
   1089 		break;
   1090 	}
   1091 	return sig;
   1092 }
   1093 
   1094 /*
   1095  * Type 2 or 3: fbcc (also fnop)
   1096  * In this function, we know:
   1097  *   (opcode & 0x0180) == 0x0080
   1098  */
   1099 static int
   1100 fpu_emul_brcc(struct fpemu *fe, struct instruction *insn)
   1101 {
   1102 	int displ, word2;
   1103 	int sig;
   1104 
   1105 	/*
   1106 	 * Get branch displacement.
   1107 	 */
   1108 	insn->is_advance = 4;
   1109 	displ = insn->is_word1;
   1110 
   1111 	if (insn->is_opcode & 0x40) {
   1112 		word2 = fusword((void *)(insn->is_pc + insn->is_advance));
   1113 		if (word2 < 0) {
   1114 			DPRINTF(("%s: fault reading word2\n", __func__));
   1115 			return SIGSEGV;
   1116 		}
   1117 		displ <<= 16;
   1118 		displ |= word2;
   1119 		insn->is_advance += 2;
   1120 	} else {
   1121 		/* displacement is word sized */
   1122 		if (displ & 0x8000)
   1123 			displ |= 0xFFFF0000;
   1124 	}
   1125 
   1126 	/* XXX: If CC, insn->is_pc += displ */
   1127 	sig = test_cc(fe, insn->is_opcode);
   1128 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
   1129 
   1130 	if (fe->fe_fpsr & fe->fe_fpcr & FPSR_EXCP) {
   1131 		return SIGFPE;		/* caught an exception */
   1132 	}
   1133 	if (sig == -1) {
   1134 		/*
   1135 		 * branch does take place; 2 is the offset to the 1st disp word
   1136 		 */
   1137 		insn->is_advance = displ + 2;
   1138 #if 0		/* XXX */
   1139 		insn->is_nextpc = insn->is_pc + insn->is_advance;
   1140 #endif
   1141 	} else if (sig)
   1142 		return SIGILL;		/* got a signal */
   1143 	DPRINTF(("%s: %s insn @ %x (%x+%x) (disp=%x)\n", __func__,
   1144 	    (sig == -1) ? "BRANCH to" : "NEXT",
   1145 	    insn->is_pc + insn->is_advance, insn->is_pc, insn->is_advance,
   1146 	    displ));
   1147 	return 0;
   1148 }
   1149