Home | History | Annotate | Line # | Download | only in fpe
fpu_emulate.c revision 1.38
      1 /*	$NetBSD: fpu_emulate.c,v 1.38 2013/10/25 21:32:45 martin Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Gordon W. Ross
      5  * some portion Copyright (c) 1995 Ken Nakata
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. The name of the author may not be used to endorse or promote products
     17  *    derived from this software without specific prior written permission.
     18  * 4. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *      This product includes software developed by Gordon Ross
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * mc68881 emulator
     36  * XXX - Just a start at it for now...
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: fpu_emulate.c,v 1.38 2013/10/25 21:32:45 martin Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/types.h>
     44 #include <sys/signal.h>
     45 #include <sys/systm.h>
     46 #include <machine/frame.h>
     47 
     48 #if defined(DDB) && defined(DEBUG_FPE)
     49 # include <m68k/db_machdep.h>
     50 #endif
     51 
     52 #include "fpu_emulate.h"
     53 
     54 #define	fpe_abort(tfp, ksi, signo, code)			\
     55 	do {							\
     56 		(ksi)->ksi_signo = (signo);			\
     57 		(ksi)->ksi_code = (code);			\
     58 		(ksi)->ksi_addr = (void *)(frame)->f_pc;	\
     59 		return -1;					\
     60 	} while (/* CONSTCOND */ 0)
     61 
     62 static int fpu_emul_fmovmcr(struct fpemu *, struct instruction *);
     63 static int fpu_emul_fmovm(struct fpemu *, struct instruction *);
     64 static int fpu_emul_arith(struct fpemu *, struct instruction *);
     65 static int fpu_emul_type1(struct fpemu *, struct instruction *);
     66 static int fpu_emul_brcc(struct fpemu *, struct instruction *);
     67 static int test_cc(struct fpemu *, int);
     68 
     69 #ifdef DEBUG_FPE
     70 #define DUMP_INSN(insn)							\
     71 	printf("%s: insn={adv=%d,siz=%d,op=%04x,w1=%04x}\n",		\
     72 	    __func__,							\
     73 	    (insn)->is_advance, (insn)->is_datasize,			\
     74 	    (insn)->is_opcode, (insn)->is_word1)
     75 #define DPRINTF(x)	printf x
     76 #else
     77 #define DUMP_INSN(insn)	do {} while (/* CONSTCOND */ 0)
     78 #define DPRINTF(x)	do {} while (/* CONSTCOND */ 0)
     79 #endif
     80 
     81 /*
     82  * Emulate a floating-point instruction.
     83  * Return zero for success, else signal number.
     84  * (Typically: zero, SIGFPE, SIGILL, SIGSEGV)
     85  */
     86 int
     87 fpu_emulate(struct frame *frame, struct fpframe *fpf, ksiginfo_t *ksi)
     88 {
     89 	static struct instruction insn;
     90 	static struct fpemu fe;
     91 	int word, optype, sig;
     92 
     93 
     94 	/* initialize insn.is_datasize to tell it is *not* initialized */
     95 	insn.is_datasize = -1;
     96 
     97 	fe.fe_frame = frame;
     98 	fe.fe_fpframe = fpf;
     99 	fe.fe_fpsr = fpf->fpf_fpsr;
    100 	fe.fe_fpcr = fpf->fpf_fpcr;
    101 
    102 	DPRINTF(("%s: ENTERING: FPSR=%08x, FPCR=%08x\n",
    103 	    __func__, fe.fe_fpsr, fe.fe_fpcr));
    104 
    105 	/* always set this (to avoid a warning) */
    106 	insn.is_pc = frame->f_pc;
    107 	insn.is_nextpc = 0;
    108 	if (frame->f_format == 4) {
    109 		/*
    110 		 * A format 4 is generated by the 68{EC,LC}040.  The PC is
    111 		 * already set to the instruction following the faulting
    112 		 * instruction.  We need to calculate that, anyway.  The
    113 		 * fslw is the PC of the faulted instruction, which is what
    114 		 * we expect to be in f_pc.
    115 		 *
    116 		 * XXX - This is a hack; it assumes we at least know the
    117 		 * sizes of all instructions we run across.
    118 		 * XXX TODO: This may not be true, so we might want to save
    119 		 * the PC in order to restore it later.
    120 		 */
    121 #if 0
    122 		insn.is_nextpc = frame->f_pc;
    123 #endif
    124 		insn.is_pc = frame->f_fmt4.f_fslw;
    125 		frame->f_pc = insn.is_pc;
    126 	}
    127 
    128 	word = fusword((void *)(insn.is_pc));
    129 	if (word < 0) {
    130 		DPRINTF(("%s: fault reading opcode\n", __func__));
    131 		fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
    132 	}
    133 
    134 	if ((word & 0xf000) != 0xf000) {
    135 		DPRINTF(("%s: not coproc. insn.: opcode=0x%x\n",
    136 		    __func__, word));
    137 		fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
    138 	}
    139 
    140 	if ((word & 0x0E00) != 0x0200) {
    141 		DPRINTF(("%s: bad coproc. id: opcode=0x%x\n", __func__, word));
    142 		fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
    143 	}
    144 
    145 	insn.is_opcode = word;
    146 	optype = (word & 0x01C0);
    147 
    148 	word = fusword((void *)(insn.is_pc + 2));
    149 	if (word < 0) {
    150 		DPRINTF(("%s: fault reading word1\n", __func__));
    151 		fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
    152 	}
    153 	insn.is_word1 = word;
    154 	/* all FPU instructions are at least 4-byte long */
    155 	insn.is_advance = 4;
    156 
    157 	DUMP_INSN(&insn);
    158 
    159 	/*
    160 	 * Which family (or type) of opcode is it?
    161 	 * Tests ordered by likelihood (hopefully).
    162 	 * Certainly, type 0 is the most common.
    163 	 */
    164 	if (optype == 0x0000) {
    165 		/* type=0: generic */
    166 		if ((word & 0xc000) == 0xc000) {
    167 			DPRINTF(("%s: fmovm FPr\n", __func__));
    168 			sig = fpu_emul_fmovm(&fe, &insn);
    169 		} else if ((word & 0xc000) == 0x8000) {
    170 			DPRINTF(("%s: fmovm FPcr\n", __func__));
    171 			sig = fpu_emul_fmovmcr(&fe, &insn);
    172 		} else if ((word & 0xe000) == 0x6000) {
    173 			/* fstore = fmove FPn,mem */
    174 			DPRINTF(("%s: fmove to mem\n", __func__));
    175 			sig = fpu_emul_fstore(&fe, &insn);
    176 		} else if ((word & 0xfc00) == 0x5c00) {
    177 			/* fmovecr */
    178 			DPRINTF(("%s: fmovecr\n", __func__));
    179 			sig = fpu_emul_fmovecr(&fe, &insn);
    180 		} else if ((word & 0xa07f) == 0x26) {
    181 			/* fscale */
    182 			DPRINTF(("%s: fscale\n", __func__));
    183 			sig = fpu_emul_fscale(&fe, &insn);
    184 		} else {
    185 			DPRINTF(("%s: other type0\n", __func__));
    186 			/* all other type0 insns are arithmetic */
    187 			sig = fpu_emul_arith(&fe, &insn);
    188 		}
    189 		if (sig == 0) {
    190 			DPRINTF(("%s: type 0 returned 0\n", __func__));
    191 			sig = fpu_upd_excp(&fe);
    192 		}
    193 	} else if (optype == 0x0080 || optype == 0x00C0) {
    194 		/* type=2 or 3: fbcc, short or long disp. */
    195 		DPRINTF(("%s: fbcc %s\n", __func__,
    196 		    (optype & 0x40) ? "long" : "short"));
    197 		sig = fpu_emul_brcc(&fe, &insn);
    198 	} else if (optype == 0x0040) {
    199 		/* type=1: fdbcc, fscc, ftrapcc */
    200 		DPRINTF(("%s: type1\n", __func__));
    201 		sig = fpu_emul_type1(&fe, &insn);
    202 	} else {
    203 		/* type=4: fsave    (privileged) */
    204 		/* type=5: frestore (privileged) */
    205 		/* type=6: reserved */
    206 		/* type=7: reserved */
    207 		DPRINTF(("%s: bad opcode type: opcode=0x%x\n", __func__,
    208 		    insn.is_opcode));
    209 		sig = SIGILL;
    210 	}
    211 
    212 	DUMP_INSN(&insn);
    213 
    214 	/*
    215 	 * XXX it is not clear to me, if we should progress the PC always,
    216 	 * for SIGFPE || 0, or only for 0; however, without SIGFPE, we
    217 	 * don't pass the signalling regression  tests.	-is
    218 	 */
    219 	if ((sig == 0) || (sig == SIGFPE))
    220 		frame->f_pc += insn.is_advance;
    221 #if defined(DDB) && defined(DEBUG_FPE)
    222 	else {
    223 		printf("%s: sig=%d, opcode=%x, word1=%x\n", __func__,
    224 		    sig, insn.is_opcode, insn.is_word1);
    225 		kdb_trap(-1, (db_regs_t *)&frame);
    226 	}
    227 #endif
    228 #if 0 /* XXX something is wrong */
    229 	if (frame->f_format == 4) {
    230 		/* XXX Restore PC -- 68{EC,LC}040 only */
    231 		if (insn.is_nextpc)
    232 			frame->f_pc = insn.is_nextpc;
    233 	}
    234 #endif
    235 
    236 	DPRINTF(("%s: EXITING: w/FPSR=%08x, FPCR=%08x\n", __func__,
    237 	    fe.fe_fpsr, fe.fe_fpcr));
    238 
    239 	if (sig)
    240 		fpe_abort(frame, ksi, sig, 0);
    241 	return sig;
    242 }
    243 
    244 /* update accrued exception bits and see if there's an FP exception */
    245 int
    246 fpu_upd_excp(struct fpemu *fe)
    247 {
    248 	uint32_t fpsr;
    249 	uint32_t fpcr;
    250 
    251 	fpsr = fe->fe_fpsr;
    252 	fpcr = fe->fe_fpcr;
    253 	/*
    254 	 * update fpsr accrued exception bits; each insn doesn't have to
    255 	 * update this
    256 	 */
    257 	if (fpsr & (FPSR_BSUN | FPSR_SNAN | FPSR_OPERR)) {
    258 		fpsr |= FPSR_AIOP;
    259 	}
    260 	if (fpsr & FPSR_OVFL) {
    261 		fpsr |= FPSR_AOVFL;
    262 	}
    263 	if ((fpsr & FPSR_UNFL) && (fpsr & FPSR_INEX2)) {
    264 		fpsr |= FPSR_AUNFL;
    265 	}
    266 	if (fpsr & FPSR_DZ) {
    267 		fpsr |= FPSR_ADZ;
    268 	}
    269 	if (fpsr & (FPSR_INEX1 | FPSR_INEX2 | FPSR_OVFL)) {
    270 		fpsr |= FPSR_AINEX;
    271 	}
    272 
    273 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
    274 
    275 	return (fpsr & fpcr & FPSR_EXCP) ? SIGFPE : 0;
    276 }
    277 
    278 /* update fpsr according to fp (= result of an fp op) */
    279 uint32_t
    280 fpu_upd_fpsr(struct fpemu *fe, struct fpn *fp)
    281 {
    282 	uint32_t fpsr;
    283 
    284 	DPRINTF(("%s: previous fpsr=%08x\n", __func__, fe->fe_fpsr));
    285 	/* clear all condition code */
    286 	fpsr = fe->fe_fpsr & ~FPSR_CCB;
    287 
    288 	DPRINTF(("%s: result is a ", __func__));
    289 	if (fp->fp_sign) {
    290 		DPRINTF(("negative "));
    291 		fpsr |= FPSR_NEG;
    292 	} else {
    293 		DPRINTF(("positive "));
    294 	}
    295 
    296 	switch (fp->fp_class) {
    297 	case FPC_SNAN:
    298 		DPRINTF(("signaling NAN\n"));
    299 		fpsr |= (FPSR_NAN | FPSR_SNAN);
    300 		break;
    301 	case FPC_QNAN:
    302 		DPRINTF(("quiet NAN\n"));
    303 		fpsr |= FPSR_NAN;
    304 		break;
    305 	case FPC_ZERO:
    306 		DPRINTF(("Zero\n"));
    307 		fpsr |= FPSR_ZERO;
    308 		break;
    309 	case FPC_INF:
    310 		DPRINTF(("Inf\n"));
    311 		fpsr |= FPSR_INF;
    312 		break;
    313 	default:
    314 		DPRINTF(("Number\n"));
    315 		/* anything else is treated as if it is a number */
    316 		break;
    317 	}
    318 
    319 	fe->fe_fpsr = fe->fe_fpframe->fpf_fpsr = fpsr;
    320 
    321 	DPRINTF(("%s: new fpsr=%08x\n", __func__, fe->fe_fpframe->fpf_fpsr));
    322 
    323 	return fpsr;
    324 }
    325 
    326 static int
    327 fpu_emul_fmovmcr(struct fpemu *fe, struct instruction *insn)
    328 {
    329 	struct frame *frame = fe->fe_frame;
    330 	struct fpframe *fpf = fe->fe_fpframe;
    331 	int sig;
    332 	int reglist;
    333 	int fpu_to_mem;
    334 
    335 	/* move to/from control registers */
    336 	reglist = (insn->is_word1 & 0x1c00) >> 10;
    337 	/* Bit 13 selects direction (FPU to/from Mem) */
    338 	fpu_to_mem = insn->is_word1 & 0x2000;
    339 
    340 	insn->is_datasize = 4;
    341 	insn->is_advance = 4;
    342 	sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
    343 	if (sig)
    344 		return sig;
    345 
    346 	if (reglist != 1 && reglist != 2 && reglist != 4 &&
    347 	    (insn->is_ea.ea_flags & EA_DIRECT)) {
    348 		/* attempted to copy more than one FPcr to CPU regs */
    349 		DPRINTF(("%s: tried to copy too many FPcr\n", __func__));
    350 		return SIGILL;
    351 	}
    352 
    353 	if (reglist & 4) {
    354 		/* fpcr */
    355 		if ((insn->is_ea.ea_flags & EA_DIRECT) &&
    356 		    insn->is_ea.ea_regnum >= 8 /* address reg */) {
    357 			/* attempted to copy FPCR to An */
    358 			DPRINTF(("%s: tried to copy FPCR from/to A%d\n",
    359 			    __func__, insn->is_ea.ea_regnum & 7));
    360 			return SIGILL;
    361 		}
    362 		if (fpu_to_mem) {
    363 			sig = fpu_store_ea(frame, insn, &insn->is_ea,
    364 			    (char *)&fpf->fpf_fpcr);
    365 		} else {
    366 			sig = fpu_load_ea(frame, insn, &insn->is_ea,
    367 			    (char *)&fpf->fpf_fpcr);
    368 		}
    369 	}
    370 	if (sig)
    371 		return sig;
    372 
    373 	if (reglist & 2) {
    374 		/* fpsr */
    375 		if ((insn->is_ea.ea_flags & EA_DIRECT) &&
    376 		    insn->is_ea.ea_regnum >= 8 /* address reg */) {
    377 			/* attempted to copy FPSR to An */
    378 			DPRINTF(("%s: tried to copy FPSR from/to A%d\n",
    379 			    __func__, insn->is_ea.ea_regnum & 7));
    380 			return SIGILL;
    381 		}
    382 		if (fpu_to_mem) {
    383 			sig = fpu_store_ea(frame, insn, &insn->is_ea,
    384 			    (char *)&fpf->fpf_fpsr);
    385 		} else {
    386 			sig = fpu_load_ea(frame, insn, &insn->is_ea,
    387 			    (char *)&fpf->fpf_fpsr);
    388 		}
    389 	}
    390 	if (sig)
    391 		return sig;
    392 
    393 	if (reglist & 1) {
    394 		/* fpiar - can be moved to/from An */
    395 		if (fpu_to_mem) {
    396 			sig = fpu_store_ea(frame, insn, &insn->is_ea,
    397 			    (char *)&fpf->fpf_fpiar);
    398 		} else {
    399 			sig = fpu_load_ea(frame, insn, &insn->is_ea,
    400 			    (char *)&fpf->fpf_fpiar);
    401 		}
    402 	}
    403 	return sig;
    404 }
    405 
    406 /*
    407  * type 0: fmovem
    408  * Separated out of fpu_emul_type0 for efficiency.
    409  * In this function, we know:
    410  *   (opcode & 0x01C0) == 0
    411  *   (word1 & 0x8000) == 0x8000
    412  *
    413  * No conversion or rounding is done by this instruction,
    414  * and the FPSR is not affected.
    415  */
    416 static int
    417 fpu_emul_fmovm(struct fpemu *fe, struct instruction *insn)
    418 {
    419 	struct frame *frame = fe->fe_frame;
    420 	struct fpframe *fpf = fe->fe_fpframe;
    421 	int word1, sig;
    422 	int reglist, regmask, regnum;
    423 	int fpu_to_mem, order;
    424 	/* int w1_post_incr; */
    425 	int *fpregs;
    426 
    427 	insn->is_advance = 4;
    428 	insn->is_datasize = 12;
    429 	word1 = insn->is_word1;
    430 
    431 	/* Bit 13 selects direction (FPU to/from Mem) */
    432 	fpu_to_mem = word1 & 0x2000;
    433 
    434 	/*
    435 	 * Bits 12,11 select register list mode:
    436 	 * 0,0: Static  reg list, pre-decr.
    437 	 * 0,1: Dynamic reg list, pre-decr.
    438 	 * 1,0: Static  reg list, post-incr.
    439 	 * 1,1: Dynamic reg list, post-incr
    440 	 */
    441 	/* w1_post_incr = word1 & 0x1000; */
    442 	if (word1 & 0x0800) {
    443 		/* dynamic reg list */
    444 		reglist = frame->f_regs[(word1 & 0x70) >> 4];
    445 	} else {
    446 		reglist = word1;
    447 	}
    448 	reglist &= 0xFF;
    449 
    450 	/* Get effective address. (modreg=opcode&077) */
    451 	sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
    452 	if (sig)
    453 		return sig;
    454 
    455 	/* Get address of soft coprocessor regs. */
    456 	fpregs = &fpf->fpf_regs[0];
    457 
    458 	if (insn->is_ea.ea_flags & EA_PREDECR) {
    459 		regnum = 7;
    460 		order = -1;
    461 	} else {
    462 		regnum = 0;
    463 		order = 1;
    464 	}
    465 
    466 	regmask = 0x80;
    467 	while ((0 <= regnum) && (regnum < 8)) {
    468 		if (regmask & reglist) {
    469 			if (fpu_to_mem) {
    470 				sig = fpu_store_ea(frame, insn, &insn->is_ea,
    471 				    (char *)&fpregs[regnum * 3]);
    472 				DPRINTF(("%s: FP%d (%08x,%08x,%08x) saved\n",
    473 				    __func__, regnum,
    474 				    fpregs[regnum * 3],
    475 				    fpregs[regnum * 3 + 1],
    476 				    fpregs[regnum * 3 + 2]));
    477 			} else {		/* mem to fpu */
    478 				sig = fpu_load_ea(frame, insn, &insn->is_ea,
    479 				    (char *)&fpregs[regnum * 3]);
    480 				DPRINTF(("%s: FP%d (%08x,%08x,%08x) loaded\n",
    481 				    __func__, regnum,
    482 				    fpregs[regnum * 3],
    483 				    fpregs[regnum * 3 + 1],
    484 				    fpregs[regnum * 3 + 2]));
    485 			}
    486 			if (sig)
    487 				break;
    488 		}
    489 		regnum += order;
    490 		regmask >>= 1;
    491 	}
    492 
    493 	return sig;
    494 }
    495 
    496 struct fpn *
    497 fpu_cmp(struct fpemu *fe)
    498 {
    499 	struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
    500 
    501 	/* take care of special cases */
    502 	if (x->fp_class < 0 || y->fp_class < 0) {
    503 		/* if either of two is a SNAN, result is SNAN */
    504 		x->fp_class =
    505 		    (y->fp_class < x->fp_class) ? y->fp_class : x->fp_class;
    506 	} else if (x->fp_class == FPC_INF) {
    507 		if (y->fp_class == FPC_INF) {
    508 			/* both infinities */
    509 			if (x->fp_sign == y->fp_sign) {
    510 				/* return a signed zero */
    511 				x->fp_class = FPC_ZERO;
    512 			} else {
    513 				/* return a faked number w/x's sign */
    514 				x->fp_class = FPC_NUM;
    515 				x->fp_exp = 16383;
    516 				x->fp_mant[0] = FP_1;
    517 			}
    518 		} else {
    519 			/* y is a number */
    520 			/* return a forged number w/x's sign */
    521 			x->fp_class = FPC_NUM;
    522 			x->fp_exp = 16383;
    523 			x->fp_mant[0] = FP_1;
    524 		}
    525 	} else if (y->fp_class == FPC_INF) {
    526 		/* x is a Num but y is an Inf */
    527 		/* return a forged number w/y's sign inverted */
    528 		x->fp_class = FPC_NUM;
    529 		x->fp_sign = !y->fp_sign;
    530 		x->fp_exp = 16383;
    531 		x->fp_mant[0] = FP_1;
    532 	} else {
    533 		/*
    534 		 * x and y are both numbers or zeros,
    535 		 * or pair of a number and a zero
    536 		 */
    537 		y->fp_sign = !y->fp_sign;
    538 		x = fpu_add(fe);	/* (x - y) */
    539 		/*
    540 		 * FCMP does not set Inf bit in CC, so return a forged number
    541 		 * (value doesn't matter) if Inf is the result of fsub.
    542 		 */
    543 		if (x->fp_class == FPC_INF) {
    544 			x->fp_class = FPC_NUM;
    545 			x->fp_exp = 16383;
    546 			x->fp_mant[0] = FP_1;
    547 		}
    548 	}
    549 	return x;
    550 }
    551 
    552 /*
    553  * arithmetic oprations
    554  */
    555 static int
    556 fpu_emul_arith(struct fpemu *fe, struct instruction *insn)
    557 {
    558 	struct frame *frame = fe->fe_frame;
    559 	uint32_t *fpregs = &(fe->fe_fpframe->fpf_regs[0]);
    560 	struct fpn *res;
    561 	int word1, sig = 0;
    562 	int regnum, format;
    563 	int discard_result = 0;
    564 	uint32_t buf[3];
    565 #ifdef DEBUG_FPE
    566 	int flags;
    567 	char regname;
    568 #endif
    569 
    570 	fe->fe_fpsr &= ~FPSR_EXCP;
    571 
    572 	DUMP_INSN(insn);
    573 
    574 	DPRINTF(("%s: FPSR = %08x, FPCR = %08x\n", __func__,
    575 	    fe->fe_fpsr, fe->fe_fpcr));
    576 
    577 	word1 = insn->is_word1;
    578 	format = (word1 >> 10) & 7;
    579 	regnum = (word1 >> 7) & 7;
    580 
    581 	/* fetch a source operand : may not be used */
    582 	DPRINTF(("%s: dst/src FP%d=%08x,%08x,%08x\n", __func__,
    583 	    regnum, fpregs[regnum * 3], fpregs[regnum * 3 + 1],
    584 	    fpregs[regnum * 3 + 2]));
    585 
    586 	fpu_explode(fe, &fe->fe_f1, FTYPE_EXT, &fpregs[regnum * 3]);
    587 
    588 	DUMP_INSN(insn);
    589 
    590 	/* get the other operand which is always the source */
    591 	if ((word1 & 0x4000) == 0) {
    592 		DPRINTF(("%s: FP%d op FP%d => FP%d\n", __func__,
    593 		    format, regnum, regnum));
    594 		DPRINTF(("%s: src opr FP%d=%08x,%08x,%08x\n", __func__,
    595 		    format, fpregs[format * 3], fpregs[format * 3 + 1],
    596 		    fpregs[format * 3 + 2]));
    597 		fpu_explode(fe, &fe->fe_f2, FTYPE_EXT, &fpregs[format * 3]);
    598 	} else {
    599 		/* the operand is in memory */
    600 		if (format == FTYPE_DBL) {
    601 			insn->is_datasize = 8;
    602 		} else if (format == FTYPE_SNG || format == FTYPE_LNG) {
    603 			insn->is_datasize = 4;
    604 		} else if (format == FTYPE_WRD) {
    605 			insn->is_datasize = 2;
    606 		} else if (format == FTYPE_BYT) {
    607 			insn->is_datasize = 1;
    608 		} else if (format == FTYPE_EXT) {
    609 			insn->is_datasize = 12;
    610 		} else {
    611 			/* invalid or unsupported operand format */
    612 			sig = SIGFPE;
    613 			return sig;
    614 		}
    615 
    616 		/* Get effective address. (modreg=opcode&077) */
    617 		sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
    618 		if (sig) {
    619 			DPRINTF(("%s: error in fpu_decode_ea\n", __func__));
    620 			return sig;
    621 		}
    622 
    623 		DUMP_INSN(insn);
    624 
    625 #ifdef DEBUG_FPE
    626 		printf("%s: addr mode = ", __func__);
    627 		flags = insn->is_ea.ea_flags;
    628 		regname = (insn->is_ea.ea_regnum & 8) ? 'a' : 'd';
    629 
    630 		if (flags & EA_DIRECT) {
    631 			printf("%c%d\n", regname, insn->is_ea.ea_regnum & 7);
    632 		} else if (flags & EA_PC_REL) {
    633 			if (flags & EA_OFFSET) {
    634 				printf("pc@(%d)\n", insn->is_ea.ea_offset);
    635 			} else if (flags & EA_INDEXED) {
    636 				printf("pc@(...)\n");
    637 			}
    638 		} else if (flags & EA_PREDECR) {
    639 			printf("%c%d@-\n", regname, insn->is_ea.ea_regnum & 7);
    640 		} else if (flags & EA_POSTINCR) {
    641 			printf("%c%d@+\n", regname, insn->is_ea.ea_regnum & 7);
    642 		} else if (flags & EA_OFFSET) {
    643 			printf("%c%d@(%d)\n", regname,
    644 			    insn->is_ea.ea_regnum & 7,
    645 			    insn->is_ea.ea_offset);
    646 		} else if (flags & EA_INDEXED) {
    647 			printf("%c%d@(...)\n", regname,
    648 			    insn->is_ea.ea_regnum & 7);
    649 		} else if (flags & EA_ABS) {
    650 			printf("0x%08x\n", insn->is_ea.ea_absaddr);
    651 		} else if (flags & EA_IMMED) {
    652 			printf("#0x%08x,%08x,%08x\n",
    653 			    insn->is_ea.ea_immed[0],
    654 			    insn->is_ea.ea_immed[1],
    655 			    insn->is_ea.ea_immed[2]);
    656 		} else {
    657 			printf("%c%d@\n", regname, insn->is_ea.ea_regnum & 7);
    658 		}
    659 #endif /* DEBUG_FPE */
    660 
    661 		fpu_load_ea(frame, insn, &insn->is_ea, (char*)buf);
    662 		if (format == FTYPE_WRD) {
    663 			/* sign-extend */
    664 			buf[0] &= 0xffff;
    665 			if (buf[0] & 0x8000)
    666 				buf[0] |= 0xffff0000;
    667 			format = FTYPE_LNG;
    668 		} else if (format == FTYPE_BYT) {
    669 			/* sign-extend */
    670 			buf[0] &= 0xff;
    671 			if (buf[0] & 0x80)
    672 				buf[0] |= 0xffffff00;
    673 			format = FTYPE_LNG;
    674 		}
    675 		DPRINTF(("%s: src = %08x %08x %08x, siz = %d\n", __func__,
    676 		    buf[0], buf[1], buf[2], insn->is_datasize));
    677 		fpu_explode(fe, &fe->fe_f2, format, buf);
    678 	}
    679 
    680 	DUMP_INSN(insn);
    681 
    682 	/*
    683 	 * An arithmetic instruction emulate function has a prototype of
    684 	 * struct fpn *fpu_op(struct fpemu *);
    685 	 *
    686 	 * 1) If the instruction is monadic, then fpu_op() must use
    687 	 *    fe->fe_f2 as its operand, and return a pointer to the
    688 	 *    result.
    689 	 *
    690 	 * 2) If the instruction is diadic, then fpu_op() must use
    691 	 *    fe->fe_f1 and fe->fe_f2 as its two operands, and return a
    692 	 *    pointer to the result.
    693 	 *
    694 	 */
    695 	res = NULL;
    696 	switch (word1 & 0x7f) {
    697 	case 0x00:		/* fmove */
    698 		res = &fe->fe_f2;
    699 		break;
    700 
    701 	case 0x01:		/* fint */
    702 		res = fpu_int(fe);
    703 		break;
    704 
    705 	case 0x02:		/* fsinh */
    706 		res = fpu_sinh(fe);
    707 		break;
    708 
    709 	case 0x03:		/* fintrz */
    710 		res = fpu_intrz(fe);
    711 		break;
    712 
    713 	case 0x04:		/* fsqrt */
    714 		res = fpu_sqrt(fe);
    715 		break;
    716 
    717 	case 0x06:		/* flognp1 */
    718 		res = fpu_lognp1(fe);
    719 		break;
    720 
    721 	case 0x08:		/* fetoxm1 */
    722 		res = fpu_etoxm1(fe);
    723 		break;
    724 
    725 	case 0x09:		/* ftanh */
    726 		res = fpu_tanh(fe);
    727 		break;
    728 
    729 	case 0x0A:		/* fatan */
    730 		res = fpu_atan(fe);
    731 		break;
    732 
    733 	case 0x0C:		/* fasin */
    734 		res = fpu_asin(fe);
    735 		break;
    736 
    737 	case 0x0D:		/* fatanh */
    738 		res = fpu_atanh(fe);
    739 		break;
    740 
    741 	case 0x0E:		/* fsin */
    742 		res = fpu_sin(fe);
    743 		break;
    744 
    745 	case 0x0F:		/* ftan */
    746 		res = fpu_tan(fe);
    747 		break;
    748 
    749 	case 0x10:		/* fetox */
    750 		res = fpu_etox(fe);
    751 		break;
    752 
    753 	case 0x11:		/* ftwotox */
    754 		res = fpu_twotox(fe);
    755 		break;
    756 
    757 	case 0x12:		/* ftentox */
    758 		res = fpu_tentox(fe);
    759 		break;
    760 
    761 	case 0x14:		/* flogn */
    762 		res = fpu_logn(fe);
    763 		break;
    764 
    765 	case 0x15:		/* flog10 */
    766 		res = fpu_log10(fe);
    767 		break;
    768 
    769 	case 0x16:		/* flog2 */
    770 		res = fpu_log2(fe);
    771 		break;
    772 
    773 	case 0x18:		/* fabs */
    774 		fe->fe_f2.fp_sign = 0;
    775 		res = &fe->fe_f2;
    776 		break;
    777 
    778 	case 0x19:		/* fcosh */
    779 		res = fpu_cosh(fe);
    780 		break;
    781 
    782 	case 0x1A:		/* fneg */
    783 		fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign;
    784 		res = &fe->fe_f2;
    785 		break;
    786 
    787 	case 0x1C:		/* facos */
    788 		res = fpu_acos(fe);
    789 		break;
    790 
    791 	case 0x1D:		/* fcos */
    792 		res = fpu_cos(fe);
    793 		break;
    794 
    795 	case 0x1E:		/* fgetexp */
    796 		res = fpu_getexp(fe);
    797 		break;
    798 
    799 	case 0x1F:		/* fgetman */
    800 		res = fpu_getman(fe);
    801 		break;
    802 
    803 	case 0x20:		/* fdiv */
    804 	case 0x24:		/* fsgldiv: cheating - better than nothing */
    805 		res = fpu_div(fe);
    806 		break;
    807 
    808 	case 0x21:		/* fmod */
    809 		res = fpu_mod(fe);
    810 		break;
    811 
    812 	case 0x28:		/* fsub */
    813 		fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign; /* f2 = -f2 */
    814 		/* FALLTHROUGH */
    815 	case 0x22:		/* fadd */
    816 		res = fpu_add(fe);
    817 		break;
    818 
    819 	case 0x23:		/* fmul */
    820 	case 0x27:		/* fsglmul: cheating - better than nothing */
    821 		res = fpu_mul(fe);
    822 		break;
    823 
    824 	case 0x25:		/* frem */
    825 		res = fpu_rem(fe);
    826 		break;
    827 
    828 	case 0x26:
    829 		/* fscale is handled by a separate function */
    830 		break;
    831 
    832 	case 0x30:
    833 	case 0x31:
    834 	case 0x32:
    835 	case 0x33:
    836 	case 0x34:
    837 	case 0x35:
    838 	case 0x36:
    839 	case 0x37:		/* fsincos */
    840 		res = fpu_sincos(fe, word1 & 7);
    841 		break;
    842 
    843 	case 0x38:		/* fcmp */
    844 		res = fpu_cmp(fe);
    845 		discard_result = 1;
    846 		break;
    847 
    848 	case 0x3A:		/* ftst */
    849 		res = &fe->fe_f2;
    850 		discard_result = 1;
    851 		break;
    852 
    853 	default:		/* possibly 040/060 instructions */
    854 		DPRINTF(("%s: bad opcode=0x%x, word1=0x%x\n", __func__,
    855 		    insn->is_opcode, insn->is_word1));
    856 		sig = SIGILL;
    857 	}
    858 
    859 	/* for sanity */
    860 	if (res == NULL)
    861 		sig = SIGILL;
    862 
    863 	if (sig == 0) {
    864 		if (!discard_result)
    865 			fpu_implode(fe, res, FTYPE_EXT, &fpregs[regnum * 3]);
    866 
    867 		/* update fpsr according to the result of operation */
    868 		fpu_upd_fpsr(fe, res);
    869 #ifdef DEBUG_FPE
    870 		if (!discard_result) {
    871 			printf("%s: %08x,%08x,%08x stored in FP%d\n", __func__,
    872 			    fpregs[regnum * 3],
    873 			    fpregs[regnum * 3 + 1],
    874 			    fpregs[regnum * 3 + 2],
    875 			    regnum);
    876 		} else {
    877 			static const char *class_name[] =
    878 			    { "SNAN", "QNAN", "ZERO", "NUM", "INF" };
    879 			printf("%s: result(%s,%c,%d,%08x,%08x,%08x) "
    880 			    "discarded\n", __func__,
    881 			    class_name[res->fp_class + 2],
    882 			    res->fp_sign ? '-' : '+', res->fp_exp,
    883 			    res->fp_mant[0], res->fp_mant[1],
    884 			    res->fp_mant[2]);
    885 		}
    886 #endif
    887 	} else {
    888 		DPRINTF(("%s: received signal %d\n", __func__, sig));
    889 	}
    890 
    891 	DPRINTF(("%s: FPSR = %08x, FPCR = %08x\n", __func__,
    892 	    fe->fe_fpsr, fe->fe_fpcr));
    893 
    894 	DUMP_INSN(insn);
    895 
    896 	return sig;
    897 }
    898 
    899 /*
    900  * test condition code according to the predicate in the opcode.
    901  * returns -1 when the predicate evaluates to true, 0 when false.
    902  * signal numbers are returned when an error is detected.
    903  */
    904 static int
    905 test_cc(struct fpemu *fe, int pred)
    906 {
    907 	int result, sig_bsun, invert;
    908 	int fpsr;
    909 
    910 	fpsr = fe->fe_fpsr;
    911 	invert = 0;
    912 	fpsr &= ~FPSR_EXCP;		/* clear all exceptions */
    913 	DPRINTF(("%s: fpsr=0x%08x\n", __func__, fpsr));
    914 	pred &= 0x3f;		/* lowest 6 bits */
    915 
    916 	DPRINTF(("%s: ", __func__));
    917 
    918 	if (pred >= 0x20) {
    919 		DPRINTF(("Illegal condition code\n"));
    920 		return SIGILL;
    921 	} else if (pred & 0x10) {
    922 		/* IEEE nonaware tests */
    923 		sig_bsun = 1;
    924 		pred &= 0x0f;		/* lower 4 bits */
    925 	} else {
    926 		/* IEEE aware tests */
    927 		DPRINTF(("IEEE "));
    928 		sig_bsun = 0;
    929 	}
    930 
    931 	if (pred & 0x08) {
    932 		DPRINTF(("Not "));
    933 		/* predicate is "NOT ..." */
    934 		pred ^= 0xf;		/* invert */
    935 		invert = -1;
    936 	}
    937 	switch (pred) {
    938 	case 0:			/* (Signaling) False */
    939 		DPRINTF(("False"));
    940 		result = 0;
    941 		break;
    942 	case 1:			/* (Signaling) Equal */
    943 		DPRINTF(("Equal"));
    944 		result = -((fpsr & FPSR_ZERO) == FPSR_ZERO);
    945 		break;
    946 	case 2:			/* Greater Than */
    947 		DPRINTF(("GT"));
    948 		result = -((fpsr & (FPSR_NAN|FPSR_ZERO|FPSR_NEG)) == 0);
    949 		break;
    950 	case 3:			/* Greater or Equal */
    951 		DPRINTF(("GE"));
    952 		result = -((fpsr & FPSR_ZERO) ||
    953 		    (fpsr & (FPSR_NAN|FPSR_NEG)) == 0);
    954 		break;
    955 	case 4:			/* Less Than */
    956 		DPRINTF(("LT"));
    957 		result = -((fpsr & (FPSR_NAN|FPSR_ZERO|FPSR_NEG)) == FPSR_NEG);
    958 		break;
    959 	case 5:			/* Less or Equal */
    960 		DPRINTF(("LE"));
    961 		result = -((fpsr & FPSR_ZERO) ||
    962 		    ((fpsr & (FPSR_NAN|FPSR_NEG)) == FPSR_NEG));
    963 		break;
    964 	case 6:			/* Greater or Less than */
    965 		DPRINTF(("GLT"));
    966 		result = -((fpsr & (FPSR_NAN|FPSR_ZERO)) == 0);
    967 		break;
    968 	case 7:			/* Greater, Less or Equal */
    969 		DPRINTF(("GLE"));
    970 		result = -((fpsr & FPSR_NAN) == 0);
    971 		break;
    972 	default:
    973 		/* invalid predicate */
    974 		DPRINTF(("Invalid predicate\n"));
    975 		return SIGILL;
    976 	}
    977 	/* if the predicate is "NOT ...", then invert the result */
    978 	result ^= invert;
    979 	DPRINTF(("=> %s (%d)\n", result ? "true" : "false", result));
    980 	/* if it's an IEEE unaware test and NAN is set, BSUN is set */
    981 	if (sig_bsun && (fpsr & FPSR_NAN)) {
    982 		fpsr |= FPSR_BSUN;
    983 	}
    984 
    985 	/* put fpsr back */
    986 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
    987 
    988 	return result;
    989 }
    990 
    991 /*
    992  * type 1: fdbcc, fscc, ftrapcc
    993  * In this function, we know:
    994  *   (opcode & 0x01C0) == 0x0040
    995  */
    996 static int
    997 fpu_emul_type1(struct fpemu *fe, struct instruction *insn)
    998 {
    999 	struct frame *frame = fe->fe_frame;
   1000 	int advance, sig, branch, displ;
   1001 
   1002 	branch = test_cc(fe, insn->is_word1);
   1003 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
   1004 
   1005 	insn->is_advance = 4;
   1006 	sig = 0;
   1007 
   1008 	switch (insn->is_opcode & 070) {
   1009 	case 010:			/* fdbcc */
   1010 		if (branch == -1) {
   1011 			/* advance */
   1012 			insn->is_advance = 6;
   1013 		} else if (!branch) {
   1014 			/* decrement Dn and if (Dn != -1) branch */
   1015 			uint16_t count = frame->f_regs[insn->is_opcode & 7];
   1016 
   1017 			if (count-- != 0) {
   1018 				displ = fusword((void *)(insn->is_pc +
   1019 				    insn->is_advance));
   1020 				if (displ < 0) {
   1021 					DPRINTF(("%s: fault reading "
   1022 					    "displacement\n", __func__));
   1023 					return SIGSEGV;
   1024 				}
   1025 				/* sign-extend the displacement */
   1026 				displ &= 0xffff;
   1027 				if (displ & 0x8000) {
   1028 					displ |= 0xffff0000;
   1029 				}
   1030 				insn->is_advance += displ;
   1031 #if 0				/* XXX */
   1032 				insn->is_nextpc = insn->is_pc +
   1033 				    insn->is_advance;
   1034 #endif
   1035 			} else {
   1036 				insn->is_advance = 6;
   1037 			}
   1038 			/* write it back */
   1039 			frame->f_regs[insn->is_opcode & 7] &= 0xffff0000;
   1040 			frame->f_regs[insn->is_opcode & 7] |= (uint32_t)count;
   1041 		} else {		/* got a signal */
   1042 			sig = SIGFPE;
   1043 		}
   1044 		break;
   1045 
   1046 	case 070:			/* ftrapcc or fscc */
   1047 		advance = 4;
   1048 		if ((insn->is_opcode & 07) >= 2) {
   1049 			switch (insn->is_opcode & 07) {
   1050 			case 3:		/* long opr */
   1051 				advance += 2;
   1052 			case 2:		/* word opr */
   1053 				advance += 2;
   1054 			case 4:		/* no opr */
   1055 				break;
   1056 			default:
   1057 				return SIGILL;
   1058 				break;
   1059 			}
   1060 
   1061 			if (branch == 0) {
   1062 				/* no trap */
   1063 				insn->is_advance = advance;
   1064 				sig = 0;
   1065 			} else {
   1066 				/* trap */
   1067 				sig = SIGFPE;
   1068 			}
   1069 			break;
   1070 		}
   1071 
   1072 		/* FALLTHROUGH */
   1073 	default:			/* fscc */
   1074 		insn->is_advance = 4;
   1075 		insn->is_datasize = 1;	/* always byte */
   1076 		sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
   1077 		if (sig) {
   1078 			break;
   1079 		}
   1080 		if (branch == -1 || branch == 0) {
   1081 			/* set result */
   1082 			sig = fpu_store_ea(frame, insn, &insn->is_ea,
   1083 			    (char *)&branch);
   1084 		} else {
   1085 			/* got an exception */
   1086 			sig = branch;
   1087 		}
   1088 		break;
   1089 	}
   1090 	return sig;
   1091 }
   1092 
   1093 /*
   1094  * Type 2 or 3: fbcc (also fnop)
   1095  * In this function, we know:
   1096  *   (opcode & 0x0180) == 0x0080
   1097  */
   1098 static int
   1099 fpu_emul_brcc(struct fpemu *fe, struct instruction *insn)
   1100 {
   1101 	int displ, word2;
   1102 	int sig;
   1103 
   1104 	/*
   1105 	 * Get branch displacement.
   1106 	 */
   1107 	insn->is_advance = 4;
   1108 	displ = insn->is_word1;
   1109 
   1110 	if (insn->is_opcode & 0x40) {
   1111 		word2 = fusword((void *)(insn->is_pc + insn->is_advance));
   1112 		if (word2 < 0) {
   1113 			DPRINTF(("%s: fault reading word2\n", __func__));
   1114 			return SIGSEGV;
   1115 		}
   1116 		displ <<= 16;
   1117 		displ |= word2;
   1118 		insn->is_advance += 2;
   1119 	} else {
   1120 		/* displacement is word sized */
   1121 		if (displ & 0x8000)
   1122 			displ |= 0xFFFF0000;
   1123 	}
   1124 
   1125 	/* XXX: If CC, insn->is_pc += displ */
   1126 	sig = test_cc(fe, insn->is_opcode);
   1127 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
   1128 
   1129 	if (fe->fe_fpsr & fe->fe_fpcr & FPSR_EXCP) {
   1130 		return SIGFPE;		/* caught an exception */
   1131 	}
   1132 	if (sig == -1) {
   1133 		/*
   1134 		 * branch does take place; 2 is the offset to the 1st disp word
   1135 		 */
   1136 		insn->is_advance = displ + 2;
   1137 #if 0		/* XXX */
   1138 		insn->is_nextpc = insn->is_pc + insn->is_advance;
   1139 #endif
   1140 	} else if (sig)
   1141 		return SIGILL;		/* got a signal */
   1142 	DPRINTF(("%s: %s insn @ %x (%x+%x) (disp=%x)\n", __func__,
   1143 	    (sig == -1) ? "BRANCH to" : "NEXT",
   1144 	    insn->is_pc + insn->is_advance, insn->is_pc, insn->is_advance,
   1145 	    displ));
   1146 	return 0;
   1147 }
   1148