fpu_emulate.c revision 1.43 1 /* $NetBSD: fpu_emulate.c,v 1.43 2024/12/28 05:56:15 isaki Exp $ */
2
3 /*
4 * Copyright (c) 1995 Gordon W. Ross
5 * some portion Copyright (c) 1995 Ken Nakata
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 * 4. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Gordon Ross
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * mc68881 emulator
36 * XXX - Just a start at it for now...
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: fpu_emulate.c,v 1.43 2024/12/28 05:56:15 isaki Exp $");
41
42 #include <sys/param.h>
43 #include <sys/types.h>
44 #include <sys/signal.h>
45 #include <sys/systm.h>
46 #include <machine/frame.h>
47
48 #if defined(DDB) && defined(DEBUG_FPE)
49 # include <m68k/db_machdep.h>
50 #endif
51
52 #include "fpu_emulate.h"
53
54 #define fpe_abort(tfp, ksi, signo, code) \
55 do { \
56 (ksi)->ksi_signo = (signo); \
57 (ksi)->ksi_code = (code); \
58 (ksi)->ksi_addr = (void *)(frame)->f_pc; \
59 return -1; \
60 } while (/* CONSTCOND */ 0)
61
62 static int fpu_emul_fmovmcr(struct fpemu *, struct instruction *);
63 static int fpu_emul_fmovm(struct fpemu *, struct instruction *);
64 static int fpu_emul_arith(struct fpemu *, struct instruction *);
65 static int fpu_emul_type1(struct fpemu *, struct instruction *);
66 static int fpu_emul_brcc(struct fpemu *, struct instruction *);
67 static int test_cc(struct fpemu *, int);
68
69 #ifdef DEBUG_FPE
70 #define DUMP_INSN(insn) \
71 printf("%s: insn={adv=%d,siz=%d,op=%04x,w1=%04x}\n", \
72 __func__, \
73 (insn)->is_advance, (insn)->is_datasize, \
74 (insn)->is_opcode, (insn)->is_word1)
75 #define DPRINTF(x) printf x
76 #else
77 #define DUMP_INSN(insn) do {} while (/* CONSTCOND */ 0)
78 #define DPRINTF(x) do {} while (/* CONSTCOND */ 0)
79 #endif
80
81 /*
82 * Emulate a floating-point instruction.
83 * Return zero for success, else signal number.
84 * (Typically: zero, SIGFPE, SIGILL, SIGSEGV)
85 */
86 int
87 fpu_emulate(struct frame *frame, struct fpframe *fpf, ksiginfo_t *ksi)
88 {
89 static struct instruction insn;
90 static struct fpemu fe;
91 int optype, sig;
92 unsigned short sval;
93
94 /* initialize insn.is_datasize to tell it is *not* initialized */
95 insn.is_datasize = -1;
96
97 fe.fe_frame = frame;
98 fe.fe_fpframe = fpf;
99 fe.fe_fpsr = fpf->fpf_fpsr;
100 fe.fe_fpcr = fpf->fpf_fpcr;
101
102 DPRINTF(("%s: ENTERING: FPSR=%08x, FPCR=%08x\n",
103 __func__, fe.fe_fpsr, fe.fe_fpcr));
104
105 /* always set this (to avoid a warning) */
106 insn.is_pc = frame->f_pc;
107 insn.is_nextpc = 0;
108 if (frame->f_format == 4) {
109 /*
110 * A format 4 is generated by the 68{EC,LC}040. The PC is
111 * already set to the instruction following the faulting
112 * instruction. We need to calculate that, anyway. The
113 * fslw is the PC of the faulted instruction, which is what
114 * we expect to be in f_pc.
115 *
116 * XXX - This is a hack; it assumes we at least know the
117 * sizes of all instructions we run across.
118 * XXX TODO: This may not be true, so we might want to save
119 * the PC in order to restore it later.
120 */
121 #if 0
122 insn.is_nextpc = frame->f_pc;
123 #endif
124 insn.is_pc = frame->f_fmt4.f_fslw;
125 frame->f_pc = insn.is_pc;
126 }
127
128 if (ufetch_short((void *)(insn.is_pc), &sval)) {
129 DPRINTF(("%s: fault reading opcode\n", __func__));
130 fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
131 }
132
133 if ((sval & 0xf000) != 0xf000) {
134 DPRINTF(("%s: not coproc. insn.: opcode=0x%x\n",
135 __func__, sval));
136 fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
137 }
138
139 if ((sval & 0x0E00) != 0x0200) {
140 DPRINTF(("%s: bad coproc. id: opcode=0x%x\n", __func__, sval));
141 fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
142 }
143
144 insn.is_opcode = sval;
145 optype = (sval & 0x01C0);
146
147 if (ufetch_short((void *)(insn.is_pc + 2), &sval)) {
148 DPRINTF(("%s: fault reading word1\n", __func__));
149 fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
150 }
151 insn.is_word1 = sval;
152 /* all FPU instructions are at least 4-byte long */
153 insn.is_advance = 4;
154
155 DUMP_INSN(&insn);
156
157 /*
158 * Which family (or type) of opcode is it?
159 * Tests ordered by likelihood (hopefully).
160 * Certainly, type 0 is the most common.
161 */
162 if (optype == 0x0000) {
163 /* type=0: generic */
164 if ((sval & 0x8000)) {
165 if ((sval & 0x4000)) {
166 DPRINTF(("%s: fmovm FPr\n", __func__));
167 sig = fpu_emul_fmovm(&fe, &insn);
168 } else {
169 DPRINTF(("%s: fmovm FPcr\n", __func__));
170 sig = fpu_emul_fmovmcr(&fe, &insn);
171 }
172 } else {
173 if ((sval & 0xe000) == 0x6000) {
174 /* fstore = fmove FPn,mem */
175 DPRINTF(("%s: fmove to mem\n", __func__));
176 sig = fpu_emul_fstore(&fe, &insn);
177 } else if ((sval & 0xfc00) == 0x5c00) {
178 /* fmovecr */
179 DPRINTF(("%s: fmovecr\n", __func__));
180 sig = fpu_emul_fmovecr(&fe, &insn);
181 } else if ((sval & 0xa07f) == 0x26) {
182 /* fscale */
183 DPRINTF(("%s: fscale\n", __func__));
184 sig = fpu_emul_fscale(&fe, &insn);
185 } else {
186 DPRINTF(("%s: other type0\n", __func__));
187 /* all other type0 insns are arithmetic */
188 sig = fpu_emul_arith(&fe, &insn);
189 }
190 if (sig == 0) {
191 DPRINTF(("%s: type 0 returned 0\n", __func__));
192 sig = fpu_upd_excp(&fe);
193 }
194 }
195 } else if (optype == 0x0080 || optype == 0x00C0) {
196 /* type=2 or 3: fbcc, short or long disp. */
197 DPRINTF(("%s: fbcc %s\n", __func__,
198 (optype & 0x40) ? "long" : "short"));
199 sig = fpu_emul_brcc(&fe, &insn);
200 } else if (optype == 0x0040) {
201 /* type=1: fdbcc, fscc, ftrapcc */
202 DPRINTF(("%s: type1\n", __func__));
203 sig = fpu_emul_type1(&fe, &insn);
204 } else {
205 /* type=4: fsave (privileged) */
206 /* type=5: frestore (privileged) */
207 /* type=6: reserved */
208 /* type=7: reserved */
209 DPRINTF(("%s: bad opcode type: opcode=0x%x\n", __func__,
210 insn.is_opcode));
211 sig = SIGILL;
212 }
213
214 DUMP_INSN(&insn);
215
216 /*
217 * XXX it is not clear to me, if we should progress the PC always,
218 * for SIGFPE || 0, or only for 0; however, without SIGFPE, we
219 * don't pass the signalling regression tests. -is
220 */
221 if ((sig == 0) || (sig == SIGFPE))
222 frame->f_pc += insn.is_advance;
223 #if defined(DDB) && defined(DEBUG_FPE)
224 else {
225 printf("%s: sig=%d, opcode=%x, word1=%x\n", __func__,
226 sig, insn.is_opcode, insn.is_word1);
227 kdb_trap(-1, (db_regs_t *)&frame);
228 }
229 #endif
230 #if 0 /* XXX something is wrong */
231 if (frame->f_format == 4) {
232 /* XXX Restore PC -- 68{EC,LC}040 only */
233 if (insn.is_nextpc)
234 frame->f_pc = insn.is_nextpc;
235 }
236 #endif
237
238 DPRINTF(("%s: EXITING: w/FPSR=%08x, FPCR=%08x\n", __func__,
239 fe.fe_fpsr, fe.fe_fpcr));
240
241 if (sig)
242 fpe_abort(frame, ksi, sig, 0);
243 return sig;
244 }
245
246 /* update accrued exception bits and see if there's an FP exception */
247 int
248 fpu_upd_excp(struct fpemu *fe)
249 {
250 uint32_t fpsr;
251 uint32_t fpcr;
252
253 fpsr = fe->fe_fpsr;
254 fpcr = fe->fe_fpcr;
255 /*
256 * update fpsr accrued exception bits; each insn doesn't have to
257 * update this
258 */
259 if (fpsr & (FPSR_BSUN | FPSR_SNAN | FPSR_OPERR)) {
260 fpsr |= FPSR_AIOP;
261 }
262 if (fpsr & FPSR_OVFL) {
263 fpsr |= FPSR_AOVFL;
264 }
265 if ((fpsr & FPSR_UNFL) && (fpsr & FPSR_INEX2)) {
266 fpsr |= FPSR_AUNFL;
267 }
268 if (fpsr & FPSR_DZ) {
269 fpsr |= FPSR_ADZ;
270 }
271 if (fpsr & (FPSR_INEX1 | FPSR_INEX2 | FPSR_OVFL)) {
272 fpsr |= FPSR_AINEX;
273 }
274
275 fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
276
277 return (fpsr & fpcr & FPSR_EXCP) ? SIGFPE : 0;
278 }
279
280 /* update fpsr according to fp (= result of an fp op) */
281 uint32_t
282 fpu_upd_fpsr(struct fpemu *fe, struct fpn *fp)
283 {
284 uint32_t fpsr;
285
286 DPRINTF(("%s: previous fpsr=%08x\n", __func__, fe->fe_fpsr));
287 /* clear all condition code */
288 fpsr = fe->fe_fpsr & ~FPSR_CCB;
289
290 DPRINTF(("%s: result is a ", __func__));
291 if (fp->fp_sign) {
292 DPRINTF(("negative "));
293 fpsr |= FPSR_NEG;
294 } else {
295 DPRINTF(("positive "));
296 }
297
298 switch (fp->fp_class) {
299 case FPC_SNAN:
300 DPRINTF(("signaling NAN\n"));
301 fpsr |= (FPSR_NAN | FPSR_SNAN);
302 break;
303 case FPC_QNAN:
304 DPRINTF(("quiet NAN\n"));
305 fpsr |= FPSR_NAN;
306 break;
307 case FPC_ZERO:
308 DPRINTF(("Zero\n"));
309 fpsr |= FPSR_ZERO;
310 break;
311 case FPC_INF:
312 DPRINTF(("Inf\n"));
313 fpsr |= FPSR_INF;
314 break;
315 default:
316 DPRINTF(("Number\n"));
317 /* anything else is treated as if it is a number */
318 break;
319 }
320
321 fe->fe_fpsr = fe->fe_fpframe->fpf_fpsr = fpsr;
322
323 DPRINTF(("%s: new fpsr=%08x\n", __func__, fe->fe_fpframe->fpf_fpsr));
324
325 return fpsr;
326 }
327
328 static int
329 fpu_emul_fmovmcr(struct fpemu *fe, struct instruction *insn)
330 {
331 struct frame *frame = fe->fe_frame;
332 struct fpframe *fpf = fe->fe_fpframe;
333 int sig;
334 int reglist;
335 int regcount;
336 int fpu_to_mem;
337 uint32_t tmp[3];
338
339 /* move to/from control registers */
340 reglist = (insn->is_word1 & 0x1c00) >> 10;
341 /*
342 * If reglist is 0b000, treat it as FPIAR. This is not specification
343 * but the behavior described in the 6888x user's manual.
344 */
345 if (reglist == 0)
346 reglist = 1;
347
348 if (reglist == 7) {
349 regcount = 3;
350 } else if (reglist == 3 || reglist == 5 || reglist == 6) {
351 regcount = 2;
352 } else {
353 regcount = 1;
354 }
355 insn->is_datasize = regcount * 4;
356 insn->is_advance = 4;
357 sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
358 if (sig)
359 return sig;
360
361 /*
362 * For data register, only single register can be transferred.
363 * For addr register, only FPIAR can be transferred.
364 */
365 if ((insn->is_ea.ea_flags & EA_DIRECT)) {
366 if (insn->is_ea.ea_regnum < 8) {
367 if (regcount != 1) {
368 return SIGILL;
369 }
370 } else {
371 if (reglist != 1) {
372 return SIGILL;
373 }
374 }
375 }
376
377 /* Bit 13 selects direction (FPU to/from Mem) */
378 fpu_to_mem = insn->is_word1 & 0x2000;
379 if (fpu_to_mem) {
380 uint32_t *s = &tmp[0];
381
382 if ((reglist & 4)) {
383 *s++ = fpf->fpf_fpcr;
384 }
385 if ((reglist & 2)) {
386 *s++ = fpf->fpf_fpsr;
387 }
388 if ((reglist & 1)) {
389 *s++ = fpf->fpf_fpiar;
390 }
391
392 sig = fpu_store_ea(frame, insn, &insn->is_ea, (char *)tmp);
393 } else {
394 const uint32_t *d = &tmp[0];
395
396 sig = fpu_load_ea(frame, insn, &insn->is_ea, (char *)tmp);
397 if (sig)
398 return sig;
399
400 if ((reglist & 4)) {
401 fpf->fpf_fpcr = *d++;
402 fpf->fpf_fpcr &= 0x0000fff0;
403 }
404 if ((reglist & 2)) {
405 fpf->fpf_fpsr = *d++;
406 fpf->fpf_fpsr &= 0x0ffffff8;
407 }
408 if ((reglist & 1)) {
409 fpf->fpf_fpiar = *d++;
410 }
411 }
412 return sig;
413 }
414
415 /*
416 * type 0: fmovem
417 * Separated out of fpu_emul_type0 for efficiency.
418 * In this function, we know:
419 * (opcode & 0x01C0) == 0
420 * (word1 & 0x8000) == 0x8000
421 *
422 * No conversion or rounding is done by this instruction,
423 * and the FPSR is not affected.
424 */
425 static int
426 fpu_emul_fmovm(struct fpemu *fe, struct instruction *insn)
427 {
428 struct frame *frame = fe->fe_frame;
429 struct fpframe *fpf = fe->fe_fpframe;
430 int word1, sig;
431 int reglist, regmask, regnum;
432 int fpu_to_mem, order;
433 /* int w1_post_incr; */
434 int *fpregs;
435
436 insn->is_advance = 4;
437 insn->is_datasize = 12;
438 word1 = insn->is_word1;
439
440 /* Bit 13 selects direction (FPU to/from Mem) */
441 fpu_to_mem = word1 & 0x2000;
442
443 /*
444 * Bits 12,11 select register list mode:
445 * 0,0: Static reg list, pre-decr.
446 * 0,1: Dynamic reg list, pre-decr.
447 * 1,0: Static reg list, post-incr.
448 * 1,1: Dynamic reg list, post-incr
449 */
450 /* w1_post_incr = word1 & 0x1000; */
451 if (word1 & 0x0800) {
452 /* dynamic reg list */
453 reglist = frame->f_regs[(word1 & 0x70) >> 4];
454 } else {
455 reglist = word1;
456 }
457 reglist &= 0xFF;
458
459 /* Get effective address. (modreg=opcode&077) */
460 sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
461 if (sig)
462 return sig;
463
464 /* Get address of soft coprocessor regs. */
465 fpregs = &fpf->fpf_regs[0];
466
467 if (insn->is_ea.ea_flags & EA_PREDECR) {
468 regnum = 7;
469 order = -1;
470 } else {
471 regnum = 0;
472 order = 1;
473 }
474
475 regmask = 0x80;
476 while ((0 <= regnum) && (regnum < 8)) {
477 if (regmask & reglist) {
478 if (fpu_to_mem) {
479 sig = fpu_store_ea(frame, insn, &insn->is_ea,
480 (char *)&fpregs[regnum * 3]);
481 DPRINTF(("%s: FP%d (%08x,%08x,%08x) saved\n",
482 __func__, regnum,
483 fpregs[regnum * 3],
484 fpregs[regnum * 3 + 1],
485 fpregs[regnum * 3 + 2]));
486 } else { /* mem to fpu */
487 sig = fpu_load_ea(frame, insn, &insn->is_ea,
488 (char *)&fpregs[regnum * 3]);
489 DPRINTF(("%s: FP%d (%08x,%08x,%08x) loaded\n",
490 __func__, regnum,
491 fpregs[regnum * 3],
492 fpregs[regnum * 3 + 1],
493 fpregs[regnum * 3 + 2]));
494 }
495 if (sig)
496 break;
497 }
498 regnum += order;
499 regmask >>= 1;
500 }
501
502 return sig;
503 }
504
505 struct fpn *
506 fpu_cmp(struct fpemu *fe)
507 {
508 struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
509
510 /* take care of special cases */
511 if (x->fp_class < 0 || y->fp_class < 0) {
512 /* if either of two is a SNAN, result is SNAN */
513 x->fp_class =
514 (y->fp_class < x->fp_class) ? y->fp_class : x->fp_class;
515 } else if (x->fp_class == FPC_INF) {
516 if (y->fp_class == FPC_INF) {
517 /* both infinities */
518 if (x->fp_sign == y->fp_sign) {
519 /* return a signed zero */
520 x->fp_class = FPC_ZERO;
521 } else {
522 /* return a faked number w/x's sign */
523 x->fp_class = FPC_NUM;
524 x->fp_exp = 16383;
525 x->fp_mant[0] = FP_1;
526 }
527 } else {
528 /* y is a number */
529 /* return a forged number w/x's sign */
530 x->fp_class = FPC_NUM;
531 x->fp_exp = 16383;
532 x->fp_mant[0] = FP_1;
533 }
534 } else if (y->fp_class == FPC_INF) {
535 /* x is a Num but y is an Inf */
536 /* return a forged number w/y's sign inverted */
537 x->fp_class = FPC_NUM;
538 x->fp_sign = !y->fp_sign;
539 x->fp_exp = 16383;
540 x->fp_mant[0] = FP_1;
541 } else {
542 /*
543 * x and y are both numbers or zeros,
544 * or pair of a number and a zero
545 */
546 y->fp_sign = !y->fp_sign;
547 x = fpu_add(fe); /* (x - y) */
548 /*
549 * FCMP does not set Inf bit in CC, so return a forged number
550 * (value doesn't matter) if Inf is the result of fsub.
551 */
552 if (x->fp_class == FPC_INF) {
553 x->fp_class = FPC_NUM;
554 x->fp_exp = 16383;
555 x->fp_mant[0] = FP_1;
556 }
557 }
558 return x;
559 }
560
561 /*
562 * arithmetic operations
563 */
564 static int
565 fpu_emul_arith(struct fpemu *fe, struct instruction *insn)
566 {
567 struct frame *frame = fe->fe_frame;
568 uint32_t *fpregs = &(fe->fe_fpframe->fpf_regs[0]);
569 struct fpn *res;
570 int word1, sig = 0;
571 int regnum, format;
572 int discard_result = 0;
573 uint32_t buf[3];
574 #ifdef DEBUG_FPE
575 int flags;
576 char regname;
577 #endif
578
579 fe->fe_fpsr &= ~FPSR_EXCP;
580
581 DUMP_INSN(insn);
582
583 DPRINTF(("%s: FPSR = %08x, FPCR = %08x\n", __func__,
584 fe->fe_fpsr, fe->fe_fpcr));
585
586 word1 = insn->is_word1;
587 format = (word1 >> 10) & 7;
588 regnum = (word1 >> 7) & 7;
589
590 /* fetch a source operand : may not be used */
591 DPRINTF(("%s: dst/src FP%d=%08x,%08x,%08x\n", __func__,
592 regnum, fpregs[regnum * 3], fpregs[regnum * 3 + 1],
593 fpregs[regnum * 3 + 2]));
594
595 fpu_explode(fe, &fe->fe_f1, FTYPE_EXT, &fpregs[regnum * 3]);
596
597 DUMP_INSN(insn);
598
599 /* get the other operand which is always the source */
600 if ((word1 & 0x4000) == 0) {
601 DPRINTF(("%s: FP%d op FP%d => FP%d\n", __func__,
602 format, regnum, regnum));
603 DPRINTF(("%s: src opr FP%d=%08x,%08x,%08x\n", __func__,
604 format, fpregs[format * 3], fpregs[format * 3 + 1],
605 fpregs[format * 3 + 2]));
606 fpu_explode(fe, &fe->fe_f2, FTYPE_EXT, &fpregs[format * 3]);
607 } else {
608 /* the operand is in memory */
609 if (format == FTYPE_DBL) {
610 insn->is_datasize = 8;
611 } else if (format == FTYPE_SNG || format == FTYPE_LNG) {
612 insn->is_datasize = 4;
613 } else if (format == FTYPE_WRD) {
614 insn->is_datasize = 2;
615 } else if (format == FTYPE_BYT) {
616 insn->is_datasize = 1;
617 } else if (format == FTYPE_EXT) {
618 insn->is_datasize = 12;
619 } else {
620 /* invalid or unsupported operand format */
621 sig = SIGFPE;
622 return sig;
623 }
624
625 /* Get effective address. (modreg=opcode&077) */
626 sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
627 if (sig) {
628 DPRINTF(("%s: error in fpu_decode_ea\n", __func__));
629 return sig;
630 }
631
632 DUMP_INSN(insn);
633
634 #ifdef DEBUG_FPE
635 printf("%s: addr mode = ", __func__);
636 flags = insn->is_ea.ea_flags;
637 regname = (insn->is_ea.ea_regnum & 8) ? 'a' : 'd';
638
639 if (flags & EA_DIRECT) {
640 printf("%c%d\n", regname, insn->is_ea.ea_regnum & 7);
641 } else if (flags & EA_PC_REL) {
642 if (flags & EA_OFFSET) {
643 printf("pc@(%d)\n", insn->is_ea.ea_offset);
644 } else if (flags & EA_INDEXED) {
645 printf("pc@(...)\n");
646 }
647 } else if (flags & EA_PREDECR) {
648 printf("%c%d@-\n", regname, insn->is_ea.ea_regnum & 7);
649 } else if (flags & EA_POSTINCR) {
650 printf("%c%d@+\n", regname, insn->is_ea.ea_regnum & 7);
651 } else if (flags & EA_OFFSET) {
652 printf("%c%d@(%d)\n", regname,
653 insn->is_ea.ea_regnum & 7,
654 insn->is_ea.ea_offset);
655 } else if (flags & EA_INDEXED) {
656 printf("%c%d@(...)\n", regname,
657 insn->is_ea.ea_regnum & 7);
658 } else if (flags & EA_ABS) {
659 printf("0x%08x\n", insn->is_ea.ea_absaddr);
660 } else if (flags & EA_IMMED) {
661 printf("#0x%08x,%08x,%08x\n",
662 insn->is_ea.ea_immed[0],
663 insn->is_ea.ea_immed[1],
664 insn->is_ea.ea_immed[2]);
665 } else {
666 printf("%c%d@\n", regname, insn->is_ea.ea_regnum & 7);
667 }
668 #endif /* DEBUG_FPE */
669
670 fpu_load_ea(frame, insn, &insn->is_ea, (char*)buf);
671 if (format == FTYPE_WRD) {
672 /* sign-extend */
673 buf[0] &= 0xffff;
674 if (buf[0] & 0x8000)
675 buf[0] |= 0xffff0000;
676 format = FTYPE_LNG;
677 } else if (format == FTYPE_BYT) {
678 /* sign-extend */
679 buf[0] &= 0xff;
680 if (buf[0] & 0x80)
681 buf[0] |= 0xffffff00;
682 format = FTYPE_LNG;
683 }
684 DPRINTF(("%s: src = %08x %08x %08x, siz = %d\n", __func__,
685 buf[0], buf[1], buf[2], insn->is_datasize));
686 fpu_explode(fe, &fe->fe_f2, format, buf);
687 }
688
689 DUMP_INSN(insn);
690
691 /*
692 * An arithmetic instruction emulate function has a prototype of
693 * struct fpn *fpu_op(struct fpemu *);
694 *
695 * 1) If the instruction is monadic, then fpu_op() must use
696 * fe->fe_f2 as its operand, and return a pointer to the
697 * result.
698 *
699 * 2) If the instruction is diadic, then fpu_op() must use
700 * fe->fe_f1 and fe->fe_f2 as its two operands, and return a
701 * pointer to the result.
702 *
703 */
704 res = NULL;
705 switch (word1 & 0x7f) {
706 case 0x00: /* fmove */
707 res = &fe->fe_f2;
708 break;
709
710 case 0x01: /* fint */
711 res = fpu_int(fe);
712 break;
713
714 case 0x02: /* fsinh */
715 res = fpu_sinh(fe);
716 break;
717
718 case 0x03: /* fintrz */
719 res = fpu_intrz(fe);
720 break;
721
722 case 0x04: /* fsqrt */
723 res = fpu_sqrt(fe);
724 break;
725
726 case 0x06: /* flognp1 */
727 res = fpu_lognp1(fe);
728 break;
729
730 case 0x08: /* fetoxm1 */
731 res = fpu_etoxm1(fe);
732 break;
733
734 case 0x09: /* ftanh */
735 res = fpu_tanh(fe);
736 break;
737
738 case 0x0A: /* fatan */
739 res = fpu_atan(fe);
740 break;
741
742 case 0x0C: /* fasin */
743 res = fpu_asin(fe);
744 break;
745
746 case 0x0D: /* fatanh */
747 res = fpu_atanh(fe);
748 break;
749
750 case 0x0E: /* fsin */
751 res = fpu_sin(fe);
752 break;
753
754 case 0x0F: /* ftan */
755 res = fpu_tan(fe);
756 break;
757
758 case 0x10: /* fetox */
759 res = fpu_etox(fe);
760 break;
761
762 case 0x11: /* ftwotox */
763 res = fpu_twotox(fe);
764 break;
765
766 case 0x12: /* ftentox */
767 res = fpu_tentox(fe);
768 break;
769
770 case 0x14: /* flogn */
771 res = fpu_logn(fe);
772 break;
773
774 case 0x15: /* flog10 */
775 res = fpu_log10(fe);
776 break;
777
778 case 0x16: /* flog2 */
779 res = fpu_log2(fe);
780 break;
781
782 case 0x18: /* fabs */
783 fe->fe_f2.fp_sign = 0;
784 res = &fe->fe_f2;
785 break;
786
787 case 0x19: /* fcosh */
788 res = fpu_cosh(fe);
789 break;
790
791 case 0x1A: /* fneg */
792 fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign;
793 res = &fe->fe_f2;
794 break;
795
796 case 0x1C: /* facos */
797 res = fpu_acos(fe);
798 break;
799
800 case 0x1D: /* fcos */
801 res = fpu_cos(fe);
802 break;
803
804 case 0x1E: /* fgetexp */
805 res = fpu_getexp(fe);
806 break;
807
808 case 0x1F: /* fgetman */
809 res = fpu_getman(fe);
810 break;
811
812 case 0x20: /* fdiv */
813 case 0x24: /* fsgldiv: cheating - better than nothing */
814 res = fpu_div(fe);
815 break;
816
817 case 0x21: /* fmod */
818 res = fpu_mod(fe);
819 break;
820
821 case 0x28: /* fsub */
822 fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign; /* f2 = -f2 */
823 /* FALLTHROUGH */
824 case 0x22: /* fadd */
825 res = fpu_add(fe);
826 break;
827
828 case 0x23: /* fmul */
829 case 0x27: /* fsglmul: cheating - better than nothing */
830 res = fpu_mul(fe);
831 break;
832
833 case 0x25: /* frem */
834 res = fpu_rem(fe);
835 break;
836
837 case 0x26:
838 /* fscale is handled by a separate function */
839 break;
840
841 case 0x30:
842 case 0x31:
843 case 0x32:
844 case 0x33:
845 case 0x34:
846 case 0x35:
847 case 0x36:
848 case 0x37: /* fsincos */
849 res = fpu_sincos(fe, word1 & 7);
850 break;
851
852 case 0x38: /* fcmp */
853 res = fpu_cmp(fe);
854 discard_result = 1;
855 break;
856
857 case 0x3A: /* ftst */
858 res = &fe->fe_f2;
859 discard_result = 1;
860 break;
861
862 default: /* possibly 040/060 instructions */
863 DPRINTF(("%s: bad opcode=0x%x, word1=0x%x\n", __func__,
864 insn->is_opcode, insn->is_word1));
865 sig = SIGILL;
866 }
867
868 /* for sanity */
869 if (res == NULL)
870 sig = SIGILL;
871
872 if (sig == 0) {
873 if (!discard_result)
874 fpu_implode(fe, res, FTYPE_EXT, &fpregs[regnum * 3]);
875
876 /* update fpsr according to the result of operation */
877 fpu_upd_fpsr(fe, res);
878 #ifdef DEBUG_FPE
879 if (!discard_result) {
880 printf("%s: %08x,%08x,%08x stored in FP%d\n", __func__,
881 fpregs[regnum * 3],
882 fpregs[regnum * 3 + 1],
883 fpregs[regnum * 3 + 2],
884 regnum);
885 } else {
886 static const char *class_name[] =
887 { "SNAN", "QNAN", "ZERO", "NUM", "INF" };
888 printf("%s: result(%s,%c,%d,%08x,%08x,%08x) "
889 "discarded\n", __func__,
890 class_name[res->fp_class + 2],
891 res->fp_sign ? '-' : '+', res->fp_exp,
892 res->fp_mant[0], res->fp_mant[1],
893 res->fp_mant[2]);
894 }
895 #endif
896 } else {
897 DPRINTF(("%s: received signal %d\n", __func__, sig));
898 }
899
900 DPRINTF(("%s: FPSR = %08x, FPCR = %08x\n", __func__,
901 fe->fe_fpsr, fe->fe_fpcr));
902
903 DUMP_INSN(insn);
904
905 return sig;
906 }
907
908 /*
909 * test condition code according to the predicate in the opcode.
910 * returns -1 when the predicate evaluates to true, 0 when false.
911 * signal numbers are returned when an error is detected.
912 */
913 static int
914 test_cc(struct fpemu *fe, int pred)
915 {
916 int result, sig_bsun, invert;
917 int fpsr;
918
919 fpsr = fe->fe_fpsr;
920 invert = 0;
921 fpsr &= ~FPSR_EXCP; /* clear all exceptions */
922 DPRINTF(("%s: fpsr=0x%08x\n", __func__, fpsr));
923 pred &= 0x3f; /* lowest 6 bits */
924
925 DPRINTF(("%s: ", __func__));
926
927 if (pred >= 0x20) {
928 DPRINTF(("Illegal condition code\n"));
929 return SIGILL;
930 } else if (pred & 0x10) {
931 /* IEEE nonaware tests */
932 sig_bsun = 1;
933 pred &= 0x0f; /* lower 4 bits */
934 } else {
935 /* IEEE aware tests */
936 DPRINTF(("IEEE "));
937 sig_bsun = 0;
938 }
939
940 if (pred & 0x08) {
941 DPRINTF(("Not "));
942 /* predicate is "NOT ..." */
943 pred ^= 0xf; /* invert */
944 invert = -1;
945 }
946 switch (pred) {
947 case 0: /* (Signaling) False */
948 DPRINTF(("False"));
949 result = 0;
950 break;
951 case 1: /* (Signaling) Equal */
952 DPRINTF(("Equal"));
953 result = -((fpsr & FPSR_ZERO) == FPSR_ZERO);
954 break;
955 case 2: /* Greater Than */
956 DPRINTF(("GT"));
957 result = -((fpsr & (FPSR_NAN|FPSR_ZERO|FPSR_NEG)) == 0);
958 break;
959 case 3: /* Greater or Equal */
960 DPRINTF(("GE"));
961 result = -((fpsr & FPSR_ZERO) ||
962 (fpsr & (FPSR_NAN|FPSR_NEG)) == 0);
963 break;
964 case 4: /* Less Than */
965 DPRINTF(("LT"));
966 result = -((fpsr & (FPSR_NAN|FPSR_ZERO|FPSR_NEG)) == FPSR_NEG);
967 break;
968 case 5: /* Less or Equal */
969 DPRINTF(("LE"));
970 result = -((fpsr & FPSR_ZERO) ||
971 ((fpsr & (FPSR_NAN|FPSR_NEG)) == FPSR_NEG));
972 break;
973 case 6: /* Greater or Less than */
974 DPRINTF(("GLT"));
975 result = -((fpsr & (FPSR_NAN|FPSR_ZERO)) == 0);
976 break;
977 case 7: /* Greater, Less or Equal */
978 DPRINTF(("GLE"));
979 result = -((fpsr & FPSR_NAN) == 0);
980 break;
981 default:
982 /* invalid predicate */
983 DPRINTF(("Invalid predicate\n"));
984 return SIGILL;
985 }
986 /* if the predicate is "NOT ...", then invert the result */
987 result ^= invert;
988 DPRINTF(("=> %s (%d)\n", result ? "true" : "false", result));
989 /* if it's an IEEE unaware test and NAN is set, BSUN is set */
990 if (sig_bsun && (fpsr & FPSR_NAN)) {
991 fpsr |= FPSR_BSUN;
992 }
993
994 /* put fpsr back */
995 fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
996
997 return result;
998 }
999
1000 /*
1001 * type 1: fdbcc, fscc, ftrapcc
1002 * In this function, we know:
1003 * (opcode & 0x01C0) == 0x0040
1004 */
1005 static int
1006 fpu_emul_type1(struct fpemu *fe, struct instruction *insn)
1007 {
1008 struct frame *frame = fe->fe_frame;
1009 int advance, sig, branch, displ;
1010 unsigned short sval;
1011
1012 branch = test_cc(fe, insn->is_word1);
1013 fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
1014
1015 insn->is_advance = 4;
1016 sig = 0;
1017
1018 switch (insn->is_opcode & 070) {
1019 case 010: /* fdbcc */
1020 if (branch == -1) {
1021 /* advance */
1022 insn->is_advance = 6;
1023 } else if (!branch) {
1024 /* decrement Dn and if (Dn != -1) branch */
1025 uint16_t count = frame->f_regs[insn->is_opcode & 7];
1026
1027 if (count-- != 0) {
1028 if (ufetch_short((void *)(insn->is_pc +
1029 insn->is_advance),
1030 &sval)) {
1031 DPRINTF(("%s: fault reading "
1032 "displacement\n", __func__));
1033 return SIGSEGV;
1034 }
1035 displ = sval;
1036 /* sign-extend the displacement */
1037 displ &= 0xffff;
1038 if (displ & 0x8000) {
1039 displ |= 0xffff0000;
1040 }
1041 insn->is_advance += displ;
1042 #if 0 /* XXX */
1043 insn->is_nextpc = insn->is_pc +
1044 insn->is_advance;
1045 #endif
1046 } else {
1047 insn->is_advance = 6;
1048 }
1049 /* write it back */
1050 frame->f_regs[insn->is_opcode & 7] &= 0xffff0000;
1051 frame->f_regs[insn->is_opcode & 7] |= (uint32_t)count;
1052 } else { /* got a signal */
1053 sig = SIGFPE;
1054 }
1055 break;
1056
1057 case 070: /* ftrapcc or fscc */
1058 advance = 4;
1059 if ((insn->is_opcode & 07) >= 2) {
1060 switch (insn->is_opcode & 07) {
1061 case 3: /* long opr */
1062 advance += 2;
1063 case 2: /* word opr */
1064 advance += 2;
1065 case 4: /* no opr */
1066 break;
1067 default:
1068 return SIGILL;
1069 break;
1070 }
1071
1072 if (branch == 0) {
1073 /* no trap */
1074 insn->is_advance = advance;
1075 sig = 0;
1076 } else {
1077 /* trap */
1078 sig = SIGFPE;
1079 }
1080 break;
1081 }
1082
1083 /* FALLTHROUGH */
1084 default: /* fscc */
1085 insn->is_advance = 4;
1086 insn->is_datasize = 1; /* always byte */
1087 sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
1088 if (sig) {
1089 break;
1090 }
1091 if (branch == -1 || branch == 0) {
1092 /* set result */
1093 sig = fpu_store_ea(frame, insn, &insn->is_ea,
1094 (char *)&branch);
1095 } else {
1096 /* got an exception */
1097 sig = branch;
1098 }
1099 break;
1100 }
1101 return sig;
1102 }
1103
1104 /*
1105 * Type 2 or 3: fbcc (also fnop)
1106 * In this function, we know:
1107 * (opcode & 0x0180) == 0x0080
1108 */
1109 static int
1110 fpu_emul_brcc(struct fpemu *fe, struct instruction *insn)
1111 {
1112 int displ, word2;
1113 int sig;
1114 unsigned short sval;
1115
1116 /*
1117 * Get branch displacement.
1118 */
1119 insn->is_advance = 4;
1120 displ = insn->is_word1;
1121
1122 if (insn->is_opcode & 0x40) {
1123 if (ufetch_short((void *)(insn->is_pc + insn->is_advance),
1124 &sval)) {
1125 DPRINTF(("%s: fault reading word2\n", __func__));
1126 return SIGSEGV;
1127 }
1128 word2 = sval;
1129 displ <<= 16;
1130 displ |= word2;
1131 insn->is_advance += 2;
1132 } else {
1133 /* displacement is word sized */
1134 if (displ & 0x8000)
1135 displ |= 0xFFFF0000;
1136 }
1137
1138 /* XXX: If CC, insn->is_pc += displ */
1139 sig = test_cc(fe, insn->is_opcode);
1140 fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
1141
1142 if (fe->fe_fpsr & fe->fe_fpcr & FPSR_EXCP) {
1143 return SIGFPE; /* caught an exception */
1144 }
1145 if (sig == -1) {
1146 /*
1147 * branch does take place; 2 is the offset to the 1st disp word
1148 */
1149 insn->is_advance = displ + 2;
1150 #if 0 /* XXX */
1151 insn->is_nextpc = insn->is_pc + insn->is_advance;
1152 #endif
1153 } else if (sig)
1154 return SIGILL; /* got a signal */
1155 DPRINTF(("%s: %s insn @ %x (%x+%x) (disp=%x)\n", __func__,
1156 (sig == -1) ? "BRANCH to" : "NEXT",
1157 insn->is_pc + insn->is_advance, insn->is_pc, insn->is_advance,
1158 displ));
1159 return 0;
1160 }
1161