Home | History | Annotate | Line # | Download | only in fpe
fpu_emulate.c revision 1.47
      1 /*	$NetBSD: fpu_emulate.c,v 1.47 2024/12/28 12:15:27 isaki Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Gordon W. Ross
      5  * some portion Copyright (c) 1995 Ken Nakata
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. The name of the author may not be used to endorse or promote products
     17  *    derived from this software without specific prior written permission.
     18  * 4. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *      This product includes software developed by Gordon Ross
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * mc68881 emulator
     36  * XXX - Just a start at it for now...
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: fpu_emulate.c,v 1.47 2024/12/28 12:15:27 isaki Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/types.h>
     44 #include <sys/signal.h>
     45 #include <sys/systm.h>
     46 #include <machine/frame.h>
     47 
     48 #if defined(DDB) && defined(DEBUG_FPE)
     49 # include <m68k/db_machdep.h>
     50 #endif
     51 
     52 #include "fpu_emulate.h"
     53 
     54 #define	fpe_abort(tfp, ksi, signo, code)			\
     55 	do {							\
     56 		(ksi)->ksi_signo = (signo);			\
     57 		(ksi)->ksi_code = (code);			\
     58 		(ksi)->ksi_addr = (void *)(frame)->f_pc;	\
     59 		return -1;					\
     60 	} while (/* CONSTCOND */ 0)
     61 
     62 static int fpu_emul_fmovmcr(struct fpemu *, struct instruction *);
     63 static int fpu_emul_fmovm(struct fpemu *, struct instruction *);
     64 static int fpu_emul_arith(struct fpemu *, struct instruction *);
     65 static int fpu_emul_type1(struct fpemu *, struct instruction *);
     66 static int fpu_emul_brcc(struct fpemu *, struct instruction *);
     67 static int test_cc(struct fpemu *, int);
     68 
     69 #ifdef DEBUG_FPE
     70 #define DUMP_INSN(insn)							\
     71 	printf("%s: insn={adv=%d,siz=%d,op=%04x,w1=%04x}\n",		\
     72 	    __func__,							\
     73 	    (insn)->is_advance, (insn)->is_datasize,			\
     74 	    (insn)->is_opcode, (insn)->is_word1)
     75 #define DPRINTF(x)	printf x
     76 #else
     77 #define DUMP_INSN(insn)	do {} while (/* CONSTCOND */ 0)
     78 #define DPRINTF(x)	do {} while (/* CONSTCOND */ 0)
     79 #endif
     80 
     81 /*
     82  * Emulate a floating-point instruction.
     83  * Return zero for success, else signal number.
     84  * (Typically: zero, SIGFPE, SIGILL, SIGSEGV)
     85  */
     86 int
     87 fpu_emulate(struct frame *frame, struct fpframe *fpf, ksiginfo_t *ksi)
     88 {
     89 	static struct instruction insn;
     90 	static struct fpemu fe;
     91 	int optype, sig;
     92 	unsigned short sval;
     93 
     94 	/* initialize insn.is_datasize to tell it is *not* initialized */
     95 	insn.is_datasize = -1;
     96 
     97 	fe.fe_frame = frame;
     98 	fe.fe_fpframe = fpf;
     99 	fe.fe_fpsr = fpf->fpf_fpsr;
    100 	fe.fe_fpcr = fpf->fpf_fpcr;
    101 
    102 	DPRINTF(("%s: ENTERING: FPSR=%08x, FPCR=%08x\n",
    103 	    __func__, fe.fe_fpsr, fe.fe_fpcr));
    104 
    105 	/* always set this (to avoid a warning) */
    106 	insn.is_pc = frame->f_pc;
    107 	insn.is_nextpc = 0;
    108 	if (frame->f_format == 4) {
    109 		/*
    110 		 * A format 4 is generated by the 68{EC,LC}040.  The PC is
    111 		 * already set to the instruction following the faulting
    112 		 * instruction.  We need to calculate that, anyway.  The
    113 		 * fslw is the PC of the faulted instruction, which is what
    114 		 * we expect to be in f_pc.
    115 		 *
    116 		 * XXX - This is a hack; it assumes we at least know the
    117 		 * sizes of all instructions we run across.
    118 		 * XXX TODO: This may not be true, so we might want to save
    119 		 * the PC in order to restore it later.
    120 		 */
    121 #if 0
    122 		insn.is_nextpc = frame->f_pc;
    123 #endif
    124 		insn.is_pc = frame->f_fmt4.f_fslw;
    125 		frame->f_pc = insn.is_pc;
    126 	}
    127 
    128 	if (ufetch_short((void *)(insn.is_pc), &sval)) {
    129 		DPRINTF(("%s: fault reading opcode\n", __func__));
    130 		fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
    131 	}
    132 
    133 	if ((sval & 0xf000) != 0xf000) {
    134 		DPRINTF(("%s: not coproc. insn.: opcode=0x%x\n",
    135 		    __func__, sval));
    136 		fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
    137 	}
    138 
    139 	if ((sval & 0x0E00) != 0x0200) {
    140 		DPRINTF(("%s: bad coproc. id: opcode=0x%x\n", __func__, sval));
    141 		fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
    142 	}
    143 
    144 	insn.is_opcode = sval;
    145 	optype = (sval & 0x01C0);
    146 
    147 	if (ufetch_short((void *)(insn.is_pc + 2), &sval)) {
    148 		DPRINTF(("%s: fault reading word1\n", __func__));
    149 		fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
    150 	}
    151 	insn.is_word1 = sval;
    152 	/* all FPU instructions are at least 4-byte long */
    153 	insn.is_advance = 4;
    154 
    155 	DUMP_INSN(&insn);
    156 
    157 	/*
    158 	 * Which family (or type) of opcode is it?
    159 	 * Tests ordered by likelihood (hopefully).
    160 	 * Certainly, type 0 is the most common.
    161 	 */
    162 	if (optype == 0x0000) {
    163 		/* type=0: generic */
    164 		if ((sval & 0x8000)) {
    165 			if ((sval & 0x4000)) {
    166 				DPRINTF(("%s: fmovm FPr\n", __func__));
    167 				sig = fpu_emul_fmovm(&fe, &insn);
    168 			} else {
    169 				DPRINTF(("%s: fmovm FPcr\n", __func__));
    170 				sig = fpu_emul_fmovmcr(&fe, &insn);
    171 			}
    172 		} else {
    173 			if ((sval & 0xe000) == 0x6000) {
    174 				/* fstore = fmove FPn,mem */
    175 				DPRINTF(("%s: fmove to mem\n", __func__));
    176 				sig = fpu_emul_fstore(&fe, &insn);
    177 			} else if ((sval & 0xfc00) == 0x5c00) {
    178 				/* fmovecr */
    179 				DPRINTF(("%s: fmovecr\n", __func__));
    180 				sig = fpu_emul_fmovecr(&fe, &insn);
    181 			} else if ((sval & 0xa07f) == 0x26) {
    182 				/* fscale */
    183 				DPRINTF(("%s: fscale\n", __func__));
    184 				sig = fpu_emul_fscale(&fe, &insn);
    185 			} else {
    186 				DPRINTF(("%s: other type0\n", __func__));
    187 				/* all other type0 insns are arithmetic */
    188 				sig = fpu_emul_arith(&fe, &insn);
    189 			}
    190 			if (sig == 0) {
    191 				DPRINTF(("%s: type 0 returned 0\n", __func__));
    192 				sig = fpu_upd_excp(&fe);
    193 			}
    194 		}
    195 	} else if (optype == 0x0080 || optype == 0x00C0) {
    196 		/* type=2 or 3: fbcc, short or long disp. */
    197 		DPRINTF(("%s: fbcc %s\n", __func__,
    198 		    (optype & 0x40) ? "long" : "short"));
    199 		sig = fpu_emul_brcc(&fe, &insn);
    200 	} else if (optype == 0x0040) {
    201 		/* type=1: fdbcc, fscc, ftrapcc */
    202 		DPRINTF(("%s: type1\n", __func__));
    203 		sig = fpu_emul_type1(&fe, &insn);
    204 		/* real FTRAPcc raises T_TRAPVINST if the condition is met. */
    205 		if (sig == SIGFPE) {
    206 			ksi->ksi_trap = T_TRAPVINST;
    207 		}
    208 	} else {
    209 		/* type=4: fsave    (privileged) */
    210 		/* type=5: frestore (privileged) */
    211 		/* type=6: reserved */
    212 		/* type=7: reserved */
    213 		DPRINTF(("%s: bad opcode type: opcode=0x%x\n", __func__,
    214 		    insn.is_opcode));
    215 		sig = SIGILL;
    216 	}
    217 
    218 	DUMP_INSN(&insn);
    219 
    220 	/*
    221 	 * XXX it is not clear to me, if we should progress the PC always,
    222 	 * for SIGFPE || 0, or only for 0; however, without SIGFPE, we
    223 	 * don't pass the signalling regression  tests.	-is
    224 	 */
    225 	if ((sig == 0) || (sig == SIGFPE))
    226 		frame->f_pc += insn.is_advance;
    227 #if defined(DDB) && defined(DEBUG_FPE)
    228 	else {
    229 		printf("%s: sig=%d, opcode=%x, word1=%x\n", __func__,
    230 		    sig, insn.is_opcode, insn.is_word1);
    231 		kdb_trap(-1, (db_regs_t *)&frame);
    232 	}
    233 #endif
    234 #if 0 /* XXX something is wrong */
    235 	if (frame->f_format == 4) {
    236 		/* XXX Restore PC -- 68{EC,LC}040 only */
    237 		if (insn.is_nextpc)
    238 			frame->f_pc = insn.is_nextpc;
    239 	}
    240 #endif
    241 
    242 	DPRINTF(("%s: EXITING: w/FPSR=%08x, FPCR=%08x\n", __func__,
    243 	    fe.fe_fpsr, fe.fe_fpcr));
    244 
    245 	if (sig)
    246 		fpe_abort(frame, ksi, sig, 0);
    247 	return sig;
    248 }
    249 
    250 /* update accrued exception bits and see if there's an FP exception */
    251 int
    252 fpu_upd_excp(struct fpemu *fe)
    253 {
    254 	uint32_t fpsr;
    255 	uint32_t fpcr;
    256 
    257 	fpsr = fe->fe_fpsr;
    258 	fpcr = fe->fe_fpcr;
    259 	/*
    260 	 * update fpsr accrued exception bits; each insn doesn't have to
    261 	 * update this
    262 	 */
    263 	if (fpsr & (FPSR_BSUN | FPSR_SNAN | FPSR_OPERR)) {
    264 		fpsr |= FPSR_AIOP;
    265 	}
    266 	if (fpsr & FPSR_OVFL) {
    267 		fpsr |= FPSR_AOVFL;
    268 	}
    269 	if ((fpsr & FPSR_UNFL) && (fpsr & FPSR_INEX2)) {
    270 		fpsr |= FPSR_AUNFL;
    271 	}
    272 	if (fpsr & FPSR_DZ) {
    273 		fpsr |= FPSR_ADZ;
    274 	}
    275 	if (fpsr & (FPSR_INEX1 | FPSR_INEX2 | FPSR_OVFL)) {
    276 		fpsr |= FPSR_AINEX;
    277 	}
    278 
    279 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
    280 
    281 	return (fpsr & fpcr & FPSR_EXCP) ? SIGFPE : 0;
    282 }
    283 
    284 /* update fpsr according to fp (= result of an fp op) */
    285 uint32_t
    286 fpu_upd_fpsr(struct fpemu *fe, struct fpn *fp)
    287 {
    288 	uint32_t fpsr;
    289 
    290 	DPRINTF(("%s: previous fpsr=%08x\n", __func__, fe->fe_fpsr));
    291 	/* clear all condition code */
    292 	fpsr = fe->fe_fpsr & ~FPSR_CCB;
    293 
    294 	DPRINTF(("%s: result is a ", __func__));
    295 	if (fp->fp_sign) {
    296 		DPRINTF(("negative "));
    297 		fpsr |= FPSR_NEG;
    298 	} else {
    299 		DPRINTF(("positive "));
    300 	}
    301 
    302 	switch (fp->fp_class) {
    303 	case FPC_SNAN:
    304 		DPRINTF(("signaling NAN\n"));
    305 		fpsr |= (FPSR_NAN | FPSR_SNAN);
    306 		break;
    307 	case FPC_QNAN:
    308 		DPRINTF(("quiet NAN\n"));
    309 		fpsr |= FPSR_NAN;
    310 		break;
    311 	case FPC_ZERO:
    312 		DPRINTF(("Zero\n"));
    313 		fpsr |= FPSR_ZERO;
    314 		break;
    315 	case FPC_INF:
    316 		DPRINTF(("Inf\n"));
    317 		fpsr |= FPSR_INF;
    318 		break;
    319 	default:
    320 		DPRINTF(("Number\n"));
    321 		/* anything else is treated as if it is a number */
    322 		break;
    323 	}
    324 
    325 	fe->fe_fpsr = fe->fe_fpframe->fpf_fpsr = fpsr;
    326 
    327 	DPRINTF(("%s: new fpsr=%08x\n", __func__, fe->fe_fpframe->fpf_fpsr));
    328 
    329 	return fpsr;
    330 }
    331 
    332 static int
    333 fpu_emul_fmovmcr(struct fpemu *fe, struct instruction *insn)
    334 {
    335 	struct frame *frame = fe->fe_frame;
    336 	struct fpframe *fpf = fe->fe_fpframe;
    337 	int sig;
    338 	int reglist;
    339 	int regcount;
    340 	int fpu_to_mem;
    341 	uint32_t tmp[3];
    342 
    343 	/* move to/from control registers */
    344 	reglist = (insn->is_word1 & 0x1c00) >> 10;
    345 	/*
    346 	 * If reglist is 0b000, treat it as FPIAR.  This is not specification
    347 	 * but the behavior described in the 6888x user's manual.
    348 	 */
    349 	if (reglist == 0)
    350 		reglist = 1;
    351 
    352 	if (reglist == 7) {
    353 		regcount = 3;
    354 	} else if (reglist == 3 || reglist == 5 || reglist == 6) {
    355 		regcount = 2;
    356 	} else {
    357 		regcount = 1;
    358 	}
    359 	insn->is_datasize = regcount * 4;
    360 	insn->is_advance = 4;
    361 	sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
    362 	if (sig)
    363 		return sig;
    364 
    365 	/*
    366 	 * For data register, only single register can be transferred.
    367 	 * For addr register, only FPIAR can be transferred.
    368 	 */
    369 	if ((insn->is_ea.ea_flags & EA_DIRECT)) {
    370 		if (insn->is_ea.ea_regnum < 8) {
    371 			if (regcount != 1) {
    372 				return SIGILL;
    373 			}
    374 		} else {
    375 			if (reglist != 1) {
    376 				return SIGILL;
    377 			}
    378 		}
    379 	}
    380 
    381 	/* Bit 13 selects direction (FPU to/from Mem) */
    382 	fpu_to_mem = insn->is_word1 & 0x2000;
    383 	if (fpu_to_mem) {
    384 		uint32_t *s = &tmp[0];
    385 
    386 		if ((reglist & 4)) {
    387 			*s++ = fpf->fpf_fpcr;
    388 		}
    389 		if ((reglist & 2)) {
    390 			*s++ = fpf->fpf_fpsr;
    391 		}
    392 		if ((reglist & 1)) {
    393 			*s++ = fpf->fpf_fpiar;
    394 		}
    395 
    396 		sig = fpu_store_ea(frame, insn, &insn->is_ea, (char *)tmp);
    397 	} else {
    398 		const uint32_t *d = &tmp[0];
    399 
    400 		sig = fpu_load_ea(frame, insn, &insn->is_ea, (char *)tmp);
    401 		if (sig)
    402 			return sig;
    403 
    404 		if ((reglist & 4)) {
    405 			fpf->fpf_fpcr = *d++;
    406 			fpf->fpf_fpcr &= 0x0000fff0;
    407 		}
    408 		if ((reglist & 2)) {
    409 			fpf->fpf_fpsr = *d++;
    410 			fpf->fpf_fpsr &= 0x0ffffff8;
    411 		}
    412 		if ((reglist & 1)) {
    413 			fpf->fpf_fpiar = *d++;
    414 		}
    415 	}
    416 	return sig;
    417 }
    418 
    419 /*
    420  * type 0: fmovem
    421  * Separated out of fpu_emul_type0 for efficiency.
    422  * In this function, we know:
    423  *   (opcode & 0x01C0) == 0
    424  *   (word1 & 0x8000) == 0x8000
    425  *
    426  * No conversion or rounding is done by this instruction,
    427  * and the FPSR is not affected.
    428  */
    429 static int
    430 fpu_emul_fmovm(struct fpemu *fe, struct instruction *insn)
    431 {
    432 	struct frame *frame = fe->fe_frame;
    433 	struct fpframe *fpf = fe->fe_fpframe;
    434 	int word1, sig;
    435 	int reglist, regmask, regnum;
    436 	int fpu_to_mem, order;
    437 	/* int w1_post_incr; */
    438 	int *fpregs;
    439 
    440 	insn->is_advance = 4;
    441 	insn->is_datasize = 12;
    442 	word1 = insn->is_word1;
    443 
    444 	/* Bit 13 selects direction (FPU to/from Mem) */
    445 	fpu_to_mem = word1 & 0x2000;
    446 
    447 	/*
    448 	 * Bits 12,11 select register list mode:
    449 	 * 0,0: Static  reg list, pre-decr.
    450 	 * 0,1: Dynamic reg list, pre-decr.
    451 	 * 1,0: Static  reg list, post-incr.
    452 	 * 1,1: Dynamic reg list, post-incr
    453 	 */
    454 	/* w1_post_incr = word1 & 0x1000; */
    455 	if (word1 & 0x0800) {
    456 		/* dynamic reg list */
    457 		reglist = frame->f_regs[(word1 & 0x70) >> 4];
    458 	} else {
    459 		reglist = word1;
    460 	}
    461 	reglist &= 0xFF;
    462 
    463 	/* Get effective address. (modreg=opcode&077) */
    464 	sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
    465 	if (sig)
    466 		return sig;
    467 
    468 	/* Get address of soft coprocessor regs. */
    469 	fpregs = &fpf->fpf_regs[0];
    470 
    471 	if (insn->is_ea.ea_flags & EA_PREDECR) {
    472 		regnum = 7;
    473 		order = -1;
    474 	} else {
    475 		regnum = 0;
    476 		order = 1;
    477 	}
    478 
    479 	regmask = 0x80;
    480 	while ((0 <= regnum) && (regnum < 8)) {
    481 		if (regmask & reglist) {
    482 			if (fpu_to_mem) {
    483 				sig = fpu_store_ea(frame, insn, &insn->is_ea,
    484 				    (char *)&fpregs[regnum * 3]);
    485 				DPRINTF(("%s: FP%d (%08x,%08x,%08x) saved\n",
    486 				    __func__, regnum,
    487 				    fpregs[regnum * 3],
    488 				    fpregs[regnum * 3 + 1],
    489 				    fpregs[regnum * 3 + 2]));
    490 			} else {		/* mem to fpu */
    491 				sig = fpu_load_ea(frame, insn, &insn->is_ea,
    492 				    (char *)&fpregs[regnum * 3]);
    493 				DPRINTF(("%s: FP%d (%08x,%08x,%08x) loaded\n",
    494 				    __func__, regnum,
    495 				    fpregs[regnum * 3],
    496 				    fpregs[regnum * 3 + 1],
    497 				    fpregs[regnum * 3 + 2]));
    498 			}
    499 			if (sig)
    500 				break;
    501 		}
    502 		regnum += order;
    503 		regmask >>= 1;
    504 	}
    505 
    506 	return sig;
    507 }
    508 
    509 struct fpn *
    510 fpu_cmp(struct fpemu *fe)
    511 {
    512 	struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
    513 
    514 	/* take care of special cases */
    515 	if (x->fp_class < 0 || y->fp_class < 0) {
    516 		/* if either of two is a SNAN, result is SNAN */
    517 		x->fp_class =
    518 		    (y->fp_class < x->fp_class) ? y->fp_class : x->fp_class;
    519 	} else if (x->fp_class == FPC_INF) {
    520 		if (y->fp_class == FPC_INF) {
    521 			/* both infinities */
    522 			if (x->fp_sign == y->fp_sign) {
    523 				/* return a signed zero */
    524 				x->fp_class = FPC_ZERO;
    525 			} else {
    526 				/* return a faked number w/x's sign */
    527 				x->fp_class = FPC_NUM;
    528 				x->fp_exp = 16383;
    529 				x->fp_mant[0] = FP_1;
    530 			}
    531 		} else {
    532 			/* y is a number */
    533 			/* return a forged number w/x's sign */
    534 			x->fp_class = FPC_NUM;
    535 			x->fp_exp = 16383;
    536 			x->fp_mant[0] = FP_1;
    537 		}
    538 	} else if (y->fp_class == FPC_INF) {
    539 		/* x is a Num but y is an Inf */
    540 		/* return a forged number w/y's sign inverted */
    541 		x->fp_class = FPC_NUM;
    542 		x->fp_sign = !y->fp_sign;
    543 		x->fp_exp = 16383;
    544 		x->fp_mant[0] = FP_1;
    545 	} else {
    546 		/*
    547 		 * x and y are both numbers or zeros,
    548 		 * or pair of a number and a zero
    549 		 */
    550 		y->fp_sign = !y->fp_sign;
    551 		x = fpu_add(fe);	/* (x - y) */
    552 		/*
    553 		 * FCMP does not set Inf bit in CC, so return a forged number
    554 		 * (value doesn't matter) if Inf is the result of fsub.
    555 		 */
    556 		if (x->fp_class == FPC_INF) {
    557 			x->fp_class = FPC_NUM;
    558 			x->fp_exp = 16383;
    559 			x->fp_mant[0] = FP_1;
    560 		}
    561 	}
    562 	return x;
    563 }
    564 
    565 /*
    566  * arithmetic operations
    567  */
    568 static int
    569 fpu_emul_arith(struct fpemu *fe, struct instruction *insn)
    570 {
    571 	struct frame *frame = fe->fe_frame;
    572 	uint32_t *fpregs = &(fe->fe_fpframe->fpf_regs[0]);
    573 	struct fpn *res;
    574 	int word1, sig = 0;
    575 	int regnum, format;
    576 	int discard_result = 0;
    577 	uint32_t buf[3];
    578 #ifdef DEBUG_FPE
    579 	int flags;
    580 	char regname;
    581 #endif
    582 
    583 	fe->fe_fpsr &= ~FPSR_EXCP;
    584 
    585 	DUMP_INSN(insn);
    586 
    587 	DPRINTF(("%s: FPSR = %08x, FPCR = %08x\n", __func__,
    588 	    fe->fe_fpsr, fe->fe_fpcr));
    589 
    590 	word1 = insn->is_word1;
    591 	format = (word1 >> 10) & 7;
    592 	regnum = (word1 >> 7) & 7;
    593 
    594 	/* fetch a source operand : may not be used */
    595 	DPRINTF(("%s: dst/src FP%d=%08x,%08x,%08x\n", __func__,
    596 	    regnum, fpregs[regnum * 3], fpregs[regnum * 3 + 1],
    597 	    fpregs[regnum * 3 + 2]));
    598 
    599 	fpu_explode(fe, &fe->fe_f1, FTYPE_EXT, &fpregs[regnum * 3]);
    600 
    601 	DUMP_INSN(insn);
    602 
    603 	/* get the other operand which is always the source */
    604 	if ((word1 & 0x4000) == 0) {
    605 		DPRINTF(("%s: FP%d op FP%d => FP%d\n", __func__,
    606 		    format, regnum, regnum));
    607 		DPRINTF(("%s: src opr FP%d=%08x,%08x,%08x\n", __func__,
    608 		    format, fpregs[format * 3], fpregs[format * 3 + 1],
    609 		    fpregs[format * 3 + 2]));
    610 		fpu_explode(fe, &fe->fe_f2, FTYPE_EXT, &fpregs[format * 3]);
    611 	} else {
    612 		/* the operand is in memory */
    613 		if (format == FTYPE_DBL) {
    614 			insn->is_datasize = 8;
    615 		} else if (format == FTYPE_SNG || format == FTYPE_LNG) {
    616 			insn->is_datasize = 4;
    617 		} else if (format == FTYPE_WRD) {
    618 			insn->is_datasize = 2;
    619 		} else if (format == FTYPE_BYT) {
    620 			insn->is_datasize = 1;
    621 		} else if (format == FTYPE_EXT) {
    622 			insn->is_datasize = 12;
    623 		} else {
    624 			/* invalid or unsupported operand format */
    625 			sig = SIGFPE;
    626 			return sig;
    627 		}
    628 
    629 		/* Get effective address. (modreg=opcode&077) */
    630 		sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
    631 		if (sig) {
    632 			DPRINTF(("%s: error in fpu_decode_ea\n", __func__));
    633 			return sig;
    634 		}
    635 
    636 		DUMP_INSN(insn);
    637 
    638 #ifdef DEBUG_FPE
    639 		printf("%s: addr mode = ", __func__);
    640 		flags = insn->is_ea.ea_flags;
    641 		regname = (insn->is_ea.ea_regnum & 8) ? 'a' : 'd';
    642 
    643 		if (flags & EA_DIRECT) {
    644 			printf("%c%d\n", regname, insn->is_ea.ea_regnum & 7);
    645 		} else if (flags & EA_PC_REL) {
    646 			if (flags & EA_OFFSET) {
    647 				printf("pc@(%d)\n", insn->is_ea.ea_offset);
    648 			} else if (flags & EA_INDEXED) {
    649 				printf("pc@(...)\n");
    650 			}
    651 		} else if (flags & EA_PREDECR) {
    652 			printf("%c%d@-\n", regname, insn->is_ea.ea_regnum & 7);
    653 		} else if (flags & EA_POSTINCR) {
    654 			printf("%c%d@+\n", regname, insn->is_ea.ea_regnum & 7);
    655 		} else if (flags & EA_OFFSET) {
    656 			printf("%c%d@(%d)\n", regname,
    657 			    insn->is_ea.ea_regnum & 7,
    658 			    insn->is_ea.ea_offset);
    659 		} else if (flags & EA_INDEXED) {
    660 			printf("%c%d@(...)\n", regname,
    661 			    insn->is_ea.ea_regnum & 7);
    662 		} else if (flags & EA_ABS) {
    663 			printf("0x%08x\n", insn->is_ea.ea_absaddr);
    664 		} else if (flags & EA_IMMED) {
    665 			printf("#0x%08x,%08x,%08x\n",
    666 			    insn->is_ea.ea_immed[0],
    667 			    insn->is_ea.ea_immed[1],
    668 			    insn->is_ea.ea_immed[2]);
    669 		} else {
    670 			printf("%c%d@\n", regname, insn->is_ea.ea_regnum & 7);
    671 		}
    672 #endif /* DEBUG_FPE */
    673 
    674 		fpu_load_ea(frame, insn, &insn->is_ea, (char*)buf);
    675 		if (format == FTYPE_WRD) {
    676 			/* sign-extend */
    677 			buf[0] &= 0xffff;
    678 			if (buf[0] & 0x8000)
    679 				buf[0] |= 0xffff0000;
    680 			format = FTYPE_LNG;
    681 		} else if (format == FTYPE_BYT) {
    682 			/* sign-extend */
    683 			buf[0] &= 0xff;
    684 			if (buf[0] & 0x80)
    685 				buf[0] |= 0xffffff00;
    686 			format = FTYPE_LNG;
    687 		}
    688 		DPRINTF(("%s: src = %08x %08x %08x, siz = %d\n", __func__,
    689 		    buf[0], buf[1], buf[2], insn->is_datasize));
    690 		fpu_explode(fe, &fe->fe_f2, format, buf);
    691 	}
    692 
    693 	DUMP_INSN(insn);
    694 
    695 	/*
    696 	 * An arithmetic instruction emulate function has a prototype of
    697 	 * struct fpn *fpu_op(struct fpemu *);
    698 	 *
    699 	 * 1) If the instruction is monadic, then fpu_op() must use
    700 	 *    fe->fe_f2 as its operand, and return a pointer to the
    701 	 *    result.
    702 	 *
    703 	 * 2) If the instruction is diadic, then fpu_op() must use
    704 	 *    fe->fe_f1 and fe->fe_f2 as its two operands, and return a
    705 	 *    pointer to the result.
    706 	 *
    707 	 */
    708 	res = NULL;
    709 	switch (word1 & 0x7f) {
    710 	case 0x00:		/* fmove */
    711 		res = &fe->fe_f2;
    712 		break;
    713 
    714 	case 0x01:		/* fint */
    715 		res = fpu_int(fe);
    716 		break;
    717 
    718 	case 0x02:		/* fsinh */
    719 		res = fpu_sinh(fe);
    720 		break;
    721 
    722 	case 0x03:		/* fintrz */
    723 		res = fpu_intrz(fe);
    724 		break;
    725 
    726 	case 0x04:		/* fsqrt */
    727 		res = fpu_sqrt(fe);
    728 		break;
    729 
    730 	case 0x06:		/* flognp1 */
    731 		res = fpu_lognp1(fe);
    732 		break;
    733 
    734 	case 0x08:		/* fetoxm1 */
    735 		res = fpu_etoxm1(fe);
    736 		break;
    737 
    738 	case 0x09:		/* ftanh */
    739 		res = fpu_tanh(fe);
    740 		break;
    741 
    742 	case 0x0A:		/* fatan */
    743 		res = fpu_atan(fe);
    744 		break;
    745 
    746 	case 0x0C:		/* fasin */
    747 		res = fpu_asin(fe);
    748 		break;
    749 
    750 	case 0x0D:		/* fatanh */
    751 		res = fpu_atanh(fe);
    752 		break;
    753 
    754 	case 0x0E:		/* fsin */
    755 		res = fpu_sin(fe);
    756 		break;
    757 
    758 	case 0x0F:		/* ftan */
    759 		res = fpu_tan(fe);
    760 		break;
    761 
    762 	case 0x10:		/* fetox */
    763 		res = fpu_etox(fe);
    764 		break;
    765 
    766 	case 0x11:		/* ftwotox */
    767 		res = fpu_twotox(fe);
    768 		break;
    769 
    770 	case 0x12:		/* ftentox */
    771 		res = fpu_tentox(fe);
    772 		break;
    773 
    774 	case 0x14:		/* flogn */
    775 		res = fpu_logn(fe);
    776 		break;
    777 
    778 	case 0x15:		/* flog10 */
    779 		res = fpu_log10(fe);
    780 		break;
    781 
    782 	case 0x16:		/* flog2 */
    783 		res = fpu_log2(fe);
    784 		break;
    785 
    786 	case 0x18:		/* fabs */
    787 		fe->fe_f2.fp_sign = 0;
    788 		res = &fe->fe_f2;
    789 		break;
    790 
    791 	case 0x19:		/* fcosh */
    792 		res = fpu_cosh(fe);
    793 		break;
    794 
    795 	case 0x1A:		/* fneg */
    796 		fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign;
    797 		res = &fe->fe_f2;
    798 		break;
    799 
    800 	case 0x1C:		/* facos */
    801 		res = fpu_acos(fe);
    802 		break;
    803 
    804 	case 0x1D:		/* fcos */
    805 		res = fpu_cos(fe);
    806 		break;
    807 
    808 	case 0x1E:		/* fgetexp */
    809 		res = fpu_getexp(fe);
    810 		break;
    811 
    812 	case 0x1F:		/* fgetman */
    813 		res = fpu_getman(fe);
    814 		break;
    815 
    816 	case 0x20:		/* fdiv */
    817 	case 0x24:		/* fsgldiv: cheating - better than nothing */
    818 		res = fpu_div(fe);
    819 		break;
    820 
    821 	case 0x21:		/* fmod */
    822 		res = fpu_mod(fe);
    823 		break;
    824 
    825 	case 0x28:		/* fsub */
    826 		fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign; /* f2 = -f2 */
    827 		/* FALLTHROUGH */
    828 	case 0x22:		/* fadd */
    829 		res = fpu_add(fe);
    830 		break;
    831 
    832 	case 0x23:		/* fmul */
    833 	case 0x27:		/* fsglmul: cheating - better than nothing */
    834 		res = fpu_mul(fe);
    835 		break;
    836 
    837 	case 0x25:		/* frem */
    838 		res = fpu_rem(fe);
    839 		break;
    840 
    841 	case 0x26:
    842 		/* fscale is handled by a separate function */
    843 		break;
    844 
    845 	case 0x30:
    846 	case 0x31:
    847 	case 0x32:
    848 	case 0x33:
    849 	case 0x34:
    850 	case 0x35:
    851 	case 0x36:
    852 	case 0x37:		/* fsincos */
    853 		res = fpu_sincos(fe, word1 & 7);
    854 		break;
    855 
    856 	case 0x38:		/* fcmp */
    857 		res = fpu_cmp(fe);
    858 		discard_result = 1;
    859 		break;
    860 
    861 	case 0x3A:		/* ftst */
    862 		res = &fe->fe_f2;
    863 		discard_result = 1;
    864 		break;
    865 
    866 	default:		/* possibly 040/060 instructions */
    867 		DPRINTF(("%s: bad opcode=0x%x, word1=0x%x\n", __func__,
    868 		    insn->is_opcode, insn->is_word1));
    869 		sig = SIGILL;
    870 	}
    871 
    872 	/* for sanity */
    873 	if (res == NULL)
    874 		sig = SIGILL;
    875 
    876 	if (sig == 0) {
    877 		if (!discard_result)
    878 			fpu_implode(fe, res, FTYPE_EXT, &fpregs[regnum * 3]);
    879 
    880 		/* update fpsr according to the result of operation */
    881 		fpu_upd_fpsr(fe, res);
    882 #ifdef DEBUG_FPE
    883 		if (!discard_result) {
    884 			printf("%s: %08x,%08x,%08x stored in FP%d\n", __func__,
    885 			    fpregs[regnum * 3],
    886 			    fpregs[regnum * 3 + 1],
    887 			    fpregs[regnum * 3 + 2],
    888 			    regnum);
    889 		} else {
    890 			static const char *class_name[] =
    891 			    { "SNAN", "QNAN", "ZERO", "NUM", "INF" };
    892 			printf("%s: result(%s,%c,%d,%08x,%08x,%08x) "
    893 			    "discarded\n", __func__,
    894 			    class_name[res->fp_class + 2],
    895 			    res->fp_sign ? '-' : '+', res->fp_exp,
    896 			    res->fp_mant[0], res->fp_mant[1],
    897 			    res->fp_mant[2]);
    898 		}
    899 #endif
    900 	} else {
    901 		DPRINTF(("%s: received signal %d\n", __func__, sig));
    902 	}
    903 
    904 	DPRINTF(("%s: FPSR = %08x, FPCR = %08x\n", __func__,
    905 	    fe->fe_fpsr, fe->fe_fpcr));
    906 
    907 	DUMP_INSN(insn);
    908 
    909 	return sig;
    910 }
    911 
    912 /*
    913  * test condition code according to the predicate in the opcode.
    914  * returns -1 when the predicate evaluates to true, 0 when false.
    915  * signal numbers are returned when an error is detected.
    916  */
    917 static int
    918 test_cc(struct fpemu *fe, int pred)
    919 {
    920 	int result, sig_bsun;
    921 	int fpsr;
    922 
    923 	fpsr = fe->fe_fpsr;
    924 	DPRINTF(("%s: fpsr=0x%08x\n", __func__, fpsr));
    925 	pred &= 0x3f;		/* lowest 6 bits */
    926 
    927 	DPRINTF(("%s: ", __func__));
    928 
    929 	if (pred >= 0x20) {
    930 		DPRINTF(("Illegal condition code\n"));
    931 		return SIGILL;
    932 	} else if (pred & 0x10) {
    933 		/* IEEE nonaware tests */
    934 		sig_bsun = 1;
    935 		pred &= 0x0f;		/* lower 4 bits */
    936 	} else {
    937 		/* IEEE aware tests */
    938 		DPRINTF(("IEEE "));
    939 		sig_bsun = 0;
    940 	}
    941 
    942 	/*
    943 	 *           condition   real 68882
    944 	 * mnemonic  in manual   condition
    945 	 * --------  ----------  ----------
    946 	 * 0000 F    0           <-         = ~NAN &  0 & ~Z | 0
    947 	 * 0001 EQ   Z           <-         = ~NAN &  0 |  Z | 0
    948 	 * 0010 OGT  ~(NAN|Z|N)  <-         = ~NAN & ~N & ~Z | 0
    949 	 * 0011 OGE  Z|~(NAN|N)  <-         = ~NAN & ~N |  Z | 0
    950 	 * 0100 OLT  N&~(NAN|Z)  <-         = ~NAN &  N & ~Z | 0
    951 	 * 0101 OLE  Z|(N&~NAN)  <-         = ~NAN &  N |  Z | 0
    952 	 * 0110 OGL  ~(NAN|Z)    <-         = ~NAN &  1 & ~Z | 0
    953 	 * 0111 OR   ~NAN        Z|~NAN     = ~NAN &  1 |  Z | 0
    954 	 *
    955 	 * 1000 UN   NAN         <-         =  1   &  0 & ~Z | NAN
    956 	 * 1001 UEQ  NAN|Z       <-         =  1   &  0 |  Z | NAN
    957 	 * 1010 UGT  NAN|~(N|Z)  <-         =  1   & ~N & ~Z | NAN
    958 	 * 1011 UGE  NAN|(Z|~N)  <-         =  1   & ~N |  Z | NAN
    959 	 * 1100 ULT  NAN|(N&~Z)  <-         =  1   &  N & ~Z | NAN
    960 	 * 1101 ULE  NAN|(Z|N)   <-         =  1   &  N |  Z | NAN
    961 	 * 1110 NE   ~Z          NAN|(~Z)   =  1   &  1 & ~Z | NAN
    962 	 * 1111 T    1           <-         =  1   &  1 |  Z | NAN
    963 	 */
    964 	if ((pred & 0x08) == 0) {
    965 		result = ((fpsr & FPSR_NAN) == 0);
    966 	} else {
    967 		result = 1;
    968 	}
    969 	switch (pred & 0x06) {
    970 	case 0x00:	/* AND 0 */
    971 		result &= 0;
    972 		break;
    973 	case 0x02:	/* AND ~N */
    974 		result &= ((fpsr & FPSR_NEG) == 0);
    975 		break;
    976 	case 0x04:	/* AND N */
    977 		result &= ((fpsr & FPSR_NEG) != 0);
    978 		break;
    979 	case 0x06:	/* AND 1 */
    980 		result &= 1;
    981 		break;
    982 	}
    983 	if ((pred & 0x01) == 0) {
    984 		result &= ((fpsr & FPSR_ZERO) == 0);
    985 	} else {
    986 		result |= ((fpsr & FPSR_ZERO) != 0);
    987 	}
    988 	if ((pred & 0x08) != 0) {
    989 		result |= ((fpsr & FPSR_NAN) != 0);
    990 	}
    991 
    992 	DPRINTF(("=> %s (%d)\n", result ? "true" : "false", result));
    993 	/* if it's an IEEE unaware test and NAN is set, BSUN is set */
    994 	if (sig_bsun && (fpsr & FPSR_NAN)) {
    995 		fpsr |= FPSR_BSUN;
    996 	}
    997 	/* if BSUN is set, IOP is set too */
    998 	if ((fpsr & FPSR_BSUN)) {
    999 		fpsr |= FPSR_AIOP;
   1000 	}
   1001 
   1002 	/* put fpsr back */
   1003 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
   1004 
   1005 	return -result;
   1006 }
   1007 
   1008 /*
   1009  * type 1: fdbcc, fscc, ftrapcc
   1010  * In this function, we know:
   1011  *   (opcode & 0x01C0) == 0x0040
   1012  * return SIGILL for an illegal instruction.
   1013  * return SIGFPE if FTRAPcc's condition is met.
   1014  */
   1015 static int
   1016 fpu_emul_type1(struct fpemu *fe, struct instruction *insn)
   1017 {
   1018 	struct frame *frame = fe->fe_frame;
   1019 	int advance, sig, branch, displ;
   1020 	unsigned short sval;
   1021 
   1022 	branch = test_cc(fe, insn->is_word1);
   1023 	if (branch > 0)
   1024 		return branch;
   1025 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
   1026 
   1027 	insn->is_advance = 4;
   1028 	sig = 0;
   1029 
   1030 	switch (insn->is_opcode & 070) {
   1031 	case 010:			/* fdbcc */
   1032 		if (branch) {
   1033 			/* advance */
   1034 			insn->is_advance = 6;
   1035 		} else {
   1036 			/* decrement Dn and if (Dn != -1) branch */
   1037 			uint16_t count = frame->f_regs[insn->is_opcode & 7];
   1038 
   1039 			if (count-- != 0) {
   1040 				if (ufetch_short((void *)(insn->is_pc +
   1041 							   insn->is_advance),
   1042 						  &sval)) {
   1043 					DPRINTF(("%s: fault reading "
   1044 					    "displacement\n", __func__));
   1045 					return SIGSEGV;
   1046 				}
   1047 				displ = sval;
   1048 				/* sign-extend the displacement */
   1049 				displ &= 0xffff;
   1050 				if (displ & 0x8000) {
   1051 					displ |= 0xffff0000;
   1052 				}
   1053 				insn->is_advance += displ;
   1054 #if 0				/* XXX */
   1055 				insn->is_nextpc = insn->is_pc +
   1056 				    insn->is_advance;
   1057 #endif
   1058 			} else {
   1059 				insn->is_advance = 6;
   1060 			}
   1061 			/* write it back */
   1062 			frame->f_regs[insn->is_opcode & 7] &= 0xffff0000;
   1063 			frame->f_regs[insn->is_opcode & 7] |= (uint32_t)count;
   1064 		}
   1065 		break;
   1066 
   1067 	case 070:			/* ftrapcc or fscc */
   1068 		advance = 4;
   1069 		if ((insn->is_opcode & 07) >= 2) {
   1070 			switch (insn->is_opcode & 07) {
   1071 			case 3:		/* long opr */
   1072 				advance += 2;
   1073 			case 2:		/* word opr */
   1074 				advance += 2;
   1075 			case 4:		/* no opr */
   1076 				break;
   1077 			default:
   1078 				return SIGILL;
   1079 				break;
   1080 			}
   1081 			insn->is_advance = advance;
   1082 
   1083 			if (branch) {
   1084 				/* trap */
   1085 				sig = SIGFPE;
   1086 			}
   1087 			break;
   1088 		}
   1089 
   1090 		/* FALLTHROUGH */
   1091 	default:			/* fscc */
   1092 		insn->is_advance = 4;
   1093 		insn->is_datasize = 1;	/* always byte */
   1094 		sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
   1095 		if (sig) {
   1096 			break;
   1097 		}
   1098 		/* set result */
   1099 		sig = fpu_store_ea(frame, insn, &insn->is_ea, (char *)&branch);
   1100 		break;
   1101 	}
   1102 	return sig;
   1103 }
   1104 
   1105 /*
   1106  * Type 2 or 3: fbcc (also fnop)
   1107  * In this function, we know:
   1108  *   (opcode & 0x0180) == 0x0080
   1109  */
   1110 static int
   1111 fpu_emul_brcc(struct fpemu *fe, struct instruction *insn)
   1112 {
   1113 	int displ, word2;
   1114 	int sig;
   1115 	unsigned short sval;
   1116 
   1117 	/*
   1118 	 * Get branch displacement.
   1119 	 */
   1120 	insn->is_advance = 4;
   1121 	displ = insn->is_word1;
   1122 
   1123 	if (insn->is_opcode & 0x40) {
   1124 		if (ufetch_short((void *)(insn->is_pc + insn->is_advance),
   1125 				  &sval)) {
   1126 			DPRINTF(("%s: fault reading word2\n", __func__));
   1127 			return SIGSEGV;
   1128 		}
   1129 		word2 = sval;
   1130 		displ <<= 16;
   1131 		displ |= word2;
   1132 		insn->is_advance += 2;
   1133 	} else {
   1134 		/* displacement is word sized */
   1135 		if (displ & 0x8000)
   1136 			displ |= 0xFFFF0000;
   1137 	}
   1138 
   1139 	/* XXX: If CC, insn->is_pc += displ */
   1140 	sig = test_cc(fe, insn->is_opcode);
   1141 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
   1142 
   1143 	if (fe->fe_fpsr & fe->fe_fpcr & FPSR_EXCP) {
   1144 		return SIGFPE;		/* caught an exception */
   1145 	}
   1146 	if (sig == -1) {
   1147 		/*
   1148 		 * branch does take place; 2 is the offset to the 1st disp word
   1149 		 */
   1150 		insn->is_advance = displ + 2;
   1151 #if 0		/* XXX */
   1152 		insn->is_nextpc = insn->is_pc + insn->is_advance;
   1153 #endif
   1154 	} else if (sig)
   1155 		return SIGILL;		/* got a signal */
   1156 	DPRINTF(("%s: %s insn @ %x (%x+%x) (disp=%x)\n", __func__,
   1157 	    (sig == -1) ? "BRANCH to" : "NEXT",
   1158 	    insn->is_pc + insn->is_advance, insn->is_pc, insn->is_advance,
   1159 	    displ));
   1160 	return 0;
   1161 }
   1162