fpu_emulate.c revision 1.48 1 /* $NetBSD: fpu_emulate.c,v 1.48 2024/12/28 12:23:51 isaki Exp $ */
2
3 /*
4 * Copyright (c) 1995 Gordon W. Ross
5 * some portion Copyright (c) 1995 Ken Nakata
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 * 4. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Gordon Ross
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * mc68881 emulator
36 * XXX - Just a start at it for now...
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: fpu_emulate.c,v 1.48 2024/12/28 12:23:51 isaki Exp $");
41
42 #include <sys/param.h>
43 #include <sys/types.h>
44 #include <sys/signal.h>
45 #include <sys/systm.h>
46 #include <machine/frame.h>
47
48 #if defined(DDB) && defined(DEBUG_FPE)
49 # include <m68k/db_machdep.h>
50 #endif
51
52 #include "fpu_emulate.h"
53
54 #define fpe_abort(tfp, ksi, signo, code) \
55 do { \
56 (ksi)->ksi_signo = (signo); \
57 (ksi)->ksi_code = (code); \
58 (ksi)->ksi_addr = (void *)(frame)->f_pc; \
59 return -1; \
60 } while (/* CONSTCOND */ 0)
61
62 static int fpu_emul_fmovmcr(struct fpemu *, struct instruction *);
63 static int fpu_emul_fmovm(struct fpemu *, struct instruction *);
64 static int fpu_emul_arith(struct fpemu *, struct instruction *);
65 static int fpu_emul_type1(struct fpemu *, struct instruction *);
66 static int fpu_emul_brcc(struct fpemu *, struct instruction *);
67 static int test_cc(struct fpemu *, int);
68
69 #ifdef DEBUG_FPE
70 #define DUMP_INSN(insn) \
71 printf("%s: insn={adv=%d,siz=%d,op=%04x,w1=%04x}\n", \
72 __func__, \
73 (insn)->is_advance, (insn)->is_datasize, \
74 (insn)->is_opcode, (insn)->is_word1)
75 #define DPRINTF(x) printf x
76 #else
77 #define DUMP_INSN(insn) do {} while (/* CONSTCOND */ 0)
78 #define DPRINTF(x) do {} while (/* CONSTCOND */ 0)
79 #endif
80
81 /*
82 * Emulate a floating-point instruction.
83 * Return zero for success, else signal number.
84 * (Typically: zero, SIGFPE, SIGILL, SIGSEGV)
85 */
86 int
87 fpu_emulate(struct frame *frame, struct fpframe *fpf, ksiginfo_t *ksi)
88 {
89 static struct instruction insn;
90 static struct fpemu fe;
91 int optype, sig;
92 unsigned short sval;
93
94 /* initialize insn.is_datasize to tell it is *not* initialized */
95 insn.is_datasize = -1;
96
97 fe.fe_frame = frame;
98 fe.fe_fpframe = fpf;
99 fe.fe_fpsr = fpf->fpf_fpsr;
100 fe.fe_fpcr = fpf->fpf_fpcr;
101
102 DPRINTF(("%s: ENTERING: FPSR=%08x, FPCR=%08x\n",
103 __func__, fe.fe_fpsr, fe.fe_fpcr));
104
105 /* always set this (to avoid a warning) */
106 insn.is_pc = frame->f_pc;
107 insn.is_nextpc = 0;
108 if (frame->f_format == 4) {
109 /*
110 * A format 4 is generated by the 68{EC,LC}040. The PC is
111 * already set to the instruction following the faulting
112 * instruction. We need to calculate that, anyway. The
113 * fslw is the PC of the faulted instruction, which is what
114 * we expect to be in f_pc.
115 *
116 * XXX - This is a hack; it assumes we at least know the
117 * sizes of all instructions we run across.
118 * XXX TODO: This may not be true, so we might want to save
119 * the PC in order to restore it later.
120 */
121 #if 0
122 insn.is_nextpc = frame->f_pc;
123 #endif
124 insn.is_pc = frame->f_fmt4.f_fslw;
125 frame->f_pc = insn.is_pc;
126 }
127
128 if (ufetch_short((void *)(insn.is_pc), &sval)) {
129 DPRINTF(("%s: fault reading opcode\n", __func__));
130 fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
131 }
132
133 if ((sval & 0xf000) != 0xf000) {
134 DPRINTF(("%s: not coproc. insn.: opcode=0x%x\n",
135 __func__, sval));
136 fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
137 }
138
139 if ((sval & 0x0E00) != 0x0200) {
140 DPRINTF(("%s: bad coproc. id: opcode=0x%x\n", __func__, sval));
141 fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
142 }
143
144 insn.is_opcode = sval;
145 optype = (sval & 0x01C0);
146
147 if (ufetch_short((void *)(insn.is_pc + 2), &sval)) {
148 DPRINTF(("%s: fault reading word1\n", __func__));
149 fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
150 }
151 insn.is_word1 = sval;
152 /* all FPU instructions are at least 4-byte long */
153 insn.is_advance = 4;
154
155 DUMP_INSN(&insn);
156
157 /*
158 * Which family (or type) of opcode is it?
159 * Tests ordered by likelihood (hopefully).
160 * Certainly, type 0 is the most common.
161 */
162 if (optype == 0x0000) {
163 /* type=0: generic */
164 if ((sval & 0x8000)) {
165 if ((sval & 0x4000)) {
166 DPRINTF(("%s: fmovm FPr\n", __func__));
167 sig = fpu_emul_fmovm(&fe, &insn);
168 } else {
169 DPRINTF(("%s: fmovm FPcr\n", __func__));
170 sig = fpu_emul_fmovmcr(&fe, &insn);
171 }
172 } else {
173 if ((sval & 0xe000) == 0x6000) {
174 /* fstore = fmove FPn,mem */
175 DPRINTF(("%s: fmove to mem\n", __func__));
176 sig = fpu_emul_fstore(&fe, &insn);
177 } else if ((sval & 0xfc00) == 0x5c00) {
178 /* fmovecr */
179 DPRINTF(("%s: fmovecr\n", __func__));
180 sig = fpu_emul_fmovecr(&fe, &insn);
181 } else if ((sval & 0xa07f) == 0x26) {
182 /* fscale */
183 DPRINTF(("%s: fscale\n", __func__));
184 sig = fpu_emul_fscale(&fe, &insn);
185 } else {
186 DPRINTF(("%s: other type0\n", __func__));
187 /* all other type0 insns are arithmetic */
188 sig = fpu_emul_arith(&fe, &insn);
189 }
190 if (sig == 0) {
191 DPRINTF(("%s: type 0 returned 0\n", __func__));
192 sig = fpu_upd_excp(&fe);
193 }
194 }
195 } else if (optype == 0x0080 || optype == 0x00C0) {
196 /* type=2 or 3: fbcc, short or long disp. */
197 DPRINTF(("%s: fbcc %s\n", __func__,
198 (optype & 0x40) ? "long" : "short"));
199 sig = fpu_emul_brcc(&fe, &insn);
200 } else if (optype == 0x0040) {
201 /* type=1: fdbcc, fscc, ftrapcc */
202 DPRINTF(("%s: type1\n", __func__));
203 sig = fpu_emul_type1(&fe, &insn);
204 /* real FTRAPcc raises T_TRAPVINST if the condition is met. */
205 if (sig == SIGFPE) {
206 ksi->ksi_trap = T_TRAPVINST;
207 }
208 } else {
209 /* type=4: fsave (privileged) */
210 /* type=5: frestore (privileged) */
211 /* type=6: reserved */
212 /* type=7: reserved */
213 DPRINTF(("%s: bad opcode type: opcode=0x%x\n", __func__,
214 insn.is_opcode));
215 sig = SIGILL;
216 }
217
218 DUMP_INSN(&insn);
219
220 /*
221 * XXX it is not clear to me, if we should progress the PC always,
222 * for SIGFPE || 0, or only for 0; however, without SIGFPE, we
223 * don't pass the signalling regression tests. -is
224 */
225 if ((sig == 0) || (sig == SIGFPE))
226 frame->f_pc += insn.is_advance;
227 #if defined(DDB) && defined(DEBUG_FPE)
228 else {
229 printf("%s: sig=%d, opcode=%x, word1=%x\n", __func__,
230 sig, insn.is_opcode, insn.is_word1);
231 kdb_trap(-1, (db_regs_t *)&frame);
232 }
233 #endif
234 #if 0 /* XXX something is wrong */
235 if (frame->f_format == 4) {
236 /* XXX Restore PC -- 68{EC,LC}040 only */
237 if (insn.is_nextpc)
238 frame->f_pc = insn.is_nextpc;
239 }
240 #endif
241
242 DPRINTF(("%s: EXITING: w/FPSR=%08x, FPCR=%08x\n", __func__,
243 fe.fe_fpsr, fe.fe_fpcr));
244
245 if (sig)
246 fpe_abort(frame, ksi, sig, 0);
247 return sig;
248 }
249
250 /* update accrued exception bits and see if there's an FP exception */
251 int
252 fpu_upd_excp(struct fpemu *fe)
253 {
254 uint32_t fpsr;
255 uint32_t fpcr;
256
257 fpsr = fe->fe_fpsr;
258 fpcr = fe->fe_fpcr;
259 /*
260 * update fpsr accrued exception bits; each insn doesn't have to
261 * update this
262 */
263 if (fpsr & (FPSR_BSUN | FPSR_SNAN | FPSR_OPERR)) {
264 fpsr |= FPSR_AIOP;
265 }
266 if (fpsr & FPSR_OVFL) {
267 fpsr |= FPSR_AOVFL;
268 }
269 if ((fpsr & FPSR_UNFL) && (fpsr & FPSR_INEX2)) {
270 fpsr |= FPSR_AUNFL;
271 }
272 if (fpsr & FPSR_DZ) {
273 fpsr |= FPSR_ADZ;
274 }
275 if (fpsr & (FPSR_INEX1 | FPSR_INEX2 | FPSR_OVFL)) {
276 fpsr |= FPSR_AINEX;
277 }
278
279 fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
280
281 return (fpsr & fpcr & FPSR_EXCP) ? SIGFPE : 0;
282 }
283
284 /* update fpsr according to fp (= result of an fp op) */
285 uint32_t
286 fpu_upd_fpsr(struct fpemu *fe, struct fpn *fp)
287 {
288 uint32_t fpsr;
289
290 DPRINTF(("%s: previous fpsr=%08x\n", __func__, fe->fe_fpsr));
291 /* clear all condition code */
292 fpsr = fe->fe_fpsr & ~FPSR_CCB;
293
294 DPRINTF(("%s: result is a ", __func__));
295 if (fp->fp_sign) {
296 DPRINTF(("negative "));
297 fpsr |= FPSR_NEG;
298 } else {
299 DPRINTF(("positive "));
300 }
301
302 switch (fp->fp_class) {
303 case FPC_SNAN:
304 DPRINTF(("signaling NAN\n"));
305 fpsr |= (FPSR_NAN | FPSR_SNAN);
306 break;
307 case FPC_QNAN:
308 DPRINTF(("quiet NAN\n"));
309 fpsr |= FPSR_NAN;
310 break;
311 case FPC_ZERO:
312 DPRINTF(("Zero\n"));
313 fpsr |= FPSR_ZERO;
314 break;
315 case FPC_INF:
316 DPRINTF(("Inf\n"));
317 fpsr |= FPSR_INF;
318 break;
319 default:
320 DPRINTF(("Number\n"));
321 /* anything else is treated as if it is a number */
322 break;
323 }
324
325 fe->fe_fpsr = fe->fe_fpframe->fpf_fpsr = fpsr;
326
327 DPRINTF(("%s: new fpsr=%08x\n", __func__, fe->fe_fpframe->fpf_fpsr));
328
329 return fpsr;
330 }
331
332 static int
333 fpu_emul_fmovmcr(struct fpemu *fe, struct instruction *insn)
334 {
335 struct frame *frame = fe->fe_frame;
336 struct fpframe *fpf = fe->fe_fpframe;
337 int sig;
338 int reglist;
339 int regcount;
340 int fpu_to_mem;
341 uint32_t tmp[3];
342
343 /* move to/from control registers */
344 reglist = (insn->is_word1 & 0x1c00) >> 10;
345 /*
346 * If reglist is 0b000, treat it as FPIAR. This is not specification
347 * but the behavior described in the 6888x user's manual.
348 */
349 if (reglist == 0)
350 reglist = 1;
351
352 if (reglist == 7) {
353 regcount = 3;
354 } else if (reglist == 3 || reglist == 5 || reglist == 6) {
355 regcount = 2;
356 } else {
357 regcount = 1;
358 }
359 insn->is_datasize = regcount * 4;
360 sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
361 if (sig)
362 return sig;
363
364 /*
365 * For data register, only single register can be transferred.
366 * For addr register, only FPIAR can be transferred.
367 */
368 if ((insn->is_ea.ea_flags & EA_DIRECT)) {
369 if (insn->is_ea.ea_regnum < 8) {
370 if (regcount != 1) {
371 return SIGILL;
372 }
373 } else {
374 if (reglist != 1) {
375 return SIGILL;
376 }
377 }
378 }
379
380 /* Bit 13 selects direction (FPU to/from Mem) */
381 fpu_to_mem = insn->is_word1 & 0x2000;
382 if (fpu_to_mem) {
383 uint32_t *s = &tmp[0];
384
385 if ((reglist & 4)) {
386 *s++ = fpf->fpf_fpcr;
387 }
388 if ((reglist & 2)) {
389 *s++ = fpf->fpf_fpsr;
390 }
391 if ((reglist & 1)) {
392 *s++ = fpf->fpf_fpiar;
393 }
394
395 sig = fpu_store_ea(frame, insn, &insn->is_ea, (char *)tmp);
396 } else {
397 const uint32_t *d = &tmp[0];
398
399 sig = fpu_load_ea(frame, insn, &insn->is_ea, (char *)tmp);
400 if (sig)
401 return sig;
402
403 if ((reglist & 4)) {
404 fpf->fpf_fpcr = *d++;
405 fpf->fpf_fpcr &= 0x0000fff0;
406 }
407 if ((reglist & 2)) {
408 fpf->fpf_fpsr = *d++;
409 fpf->fpf_fpsr &= 0x0ffffff8;
410 }
411 if ((reglist & 1)) {
412 fpf->fpf_fpiar = *d++;
413 }
414 }
415 return sig;
416 }
417
418 /*
419 * type 0: fmovem
420 * Separated out of fpu_emul_type0 for efficiency.
421 * In this function, we know:
422 * (opcode & 0x01C0) == 0
423 * (word1 & 0x8000) == 0x8000
424 *
425 * No conversion or rounding is done by this instruction,
426 * and the FPSR is not affected.
427 */
428 static int
429 fpu_emul_fmovm(struct fpemu *fe, struct instruction *insn)
430 {
431 struct frame *frame = fe->fe_frame;
432 struct fpframe *fpf = fe->fe_fpframe;
433 int word1, sig;
434 int reglist, regmask, regnum;
435 int fpu_to_mem, order;
436 /* int w1_post_incr; */
437 int *fpregs;
438
439 insn->is_datasize = 12;
440 word1 = insn->is_word1;
441
442 /* Bit 13 selects direction (FPU to/from Mem) */
443 fpu_to_mem = word1 & 0x2000;
444
445 /*
446 * Bits 12,11 select register list mode:
447 * 0,0: Static reg list, pre-decr.
448 * 0,1: Dynamic reg list, pre-decr.
449 * 1,0: Static reg list, post-incr.
450 * 1,1: Dynamic reg list, post-incr
451 */
452 /* w1_post_incr = word1 & 0x1000; */
453 if (word1 & 0x0800) {
454 /* dynamic reg list */
455 reglist = frame->f_regs[(word1 & 0x70) >> 4];
456 } else {
457 reglist = word1;
458 }
459 reglist &= 0xFF;
460
461 /* Get effective address. (modreg=opcode&077) */
462 sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
463 if (sig)
464 return sig;
465
466 /* Get address of soft coprocessor regs. */
467 fpregs = &fpf->fpf_regs[0];
468
469 if (insn->is_ea.ea_flags & EA_PREDECR) {
470 regnum = 7;
471 order = -1;
472 } else {
473 regnum = 0;
474 order = 1;
475 }
476
477 regmask = 0x80;
478 while ((0 <= regnum) && (regnum < 8)) {
479 if (regmask & reglist) {
480 if (fpu_to_mem) {
481 sig = fpu_store_ea(frame, insn, &insn->is_ea,
482 (char *)&fpregs[regnum * 3]);
483 DPRINTF(("%s: FP%d (%08x,%08x,%08x) saved\n",
484 __func__, regnum,
485 fpregs[regnum * 3],
486 fpregs[regnum * 3 + 1],
487 fpregs[regnum * 3 + 2]));
488 } else { /* mem to fpu */
489 sig = fpu_load_ea(frame, insn, &insn->is_ea,
490 (char *)&fpregs[regnum * 3]);
491 DPRINTF(("%s: FP%d (%08x,%08x,%08x) loaded\n",
492 __func__, regnum,
493 fpregs[regnum * 3],
494 fpregs[regnum * 3 + 1],
495 fpregs[regnum * 3 + 2]));
496 }
497 if (sig)
498 break;
499 }
500 regnum += order;
501 regmask >>= 1;
502 }
503
504 return sig;
505 }
506
507 struct fpn *
508 fpu_cmp(struct fpemu *fe)
509 {
510 struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
511
512 /* take care of special cases */
513 if (x->fp_class < 0 || y->fp_class < 0) {
514 /* if either of two is a SNAN, result is SNAN */
515 x->fp_class =
516 (y->fp_class < x->fp_class) ? y->fp_class : x->fp_class;
517 } else if (x->fp_class == FPC_INF) {
518 if (y->fp_class == FPC_INF) {
519 /* both infinities */
520 if (x->fp_sign == y->fp_sign) {
521 /* return a signed zero */
522 x->fp_class = FPC_ZERO;
523 } else {
524 /* return a faked number w/x's sign */
525 x->fp_class = FPC_NUM;
526 x->fp_exp = 16383;
527 x->fp_mant[0] = FP_1;
528 }
529 } else {
530 /* y is a number */
531 /* return a forged number w/x's sign */
532 x->fp_class = FPC_NUM;
533 x->fp_exp = 16383;
534 x->fp_mant[0] = FP_1;
535 }
536 } else if (y->fp_class == FPC_INF) {
537 /* x is a Num but y is an Inf */
538 /* return a forged number w/y's sign inverted */
539 x->fp_class = FPC_NUM;
540 x->fp_sign = !y->fp_sign;
541 x->fp_exp = 16383;
542 x->fp_mant[0] = FP_1;
543 } else {
544 /*
545 * x and y are both numbers or zeros,
546 * or pair of a number and a zero
547 */
548 y->fp_sign = !y->fp_sign;
549 x = fpu_add(fe); /* (x - y) */
550 /*
551 * FCMP does not set Inf bit in CC, so return a forged number
552 * (value doesn't matter) if Inf is the result of fsub.
553 */
554 if (x->fp_class == FPC_INF) {
555 x->fp_class = FPC_NUM;
556 x->fp_exp = 16383;
557 x->fp_mant[0] = FP_1;
558 }
559 }
560 return x;
561 }
562
563 /*
564 * arithmetic operations
565 */
566 static int
567 fpu_emul_arith(struct fpemu *fe, struct instruction *insn)
568 {
569 struct frame *frame = fe->fe_frame;
570 uint32_t *fpregs = &(fe->fe_fpframe->fpf_regs[0]);
571 struct fpn *res;
572 int word1, sig = 0;
573 int regnum, format;
574 int discard_result = 0;
575 uint32_t buf[3];
576 #ifdef DEBUG_FPE
577 int flags;
578 char regname;
579 #endif
580
581 fe->fe_fpsr &= ~FPSR_EXCP;
582
583 DUMP_INSN(insn);
584
585 DPRINTF(("%s: FPSR = %08x, FPCR = %08x\n", __func__,
586 fe->fe_fpsr, fe->fe_fpcr));
587
588 word1 = insn->is_word1;
589 format = (word1 >> 10) & 7;
590 regnum = (word1 >> 7) & 7;
591
592 /* fetch a source operand : may not be used */
593 DPRINTF(("%s: dst/src FP%d=%08x,%08x,%08x\n", __func__,
594 regnum, fpregs[regnum * 3], fpregs[regnum * 3 + 1],
595 fpregs[regnum * 3 + 2]));
596
597 fpu_explode(fe, &fe->fe_f1, FTYPE_EXT, &fpregs[regnum * 3]);
598
599 DUMP_INSN(insn);
600
601 /* get the other operand which is always the source */
602 if ((word1 & 0x4000) == 0) {
603 DPRINTF(("%s: FP%d op FP%d => FP%d\n", __func__,
604 format, regnum, regnum));
605 DPRINTF(("%s: src opr FP%d=%08x,%08x,%08x\n", __func__,
606 format, fpregs[format * 3], fpregs[format * 3 + 1],
607 fpregs[format * 3 + 2]));
608 fpu_explode(fe, &fe->fe_f2, FTYPE_EXT, &fpregs[format * 3]);
609 } else {
610 /* the operand is in memory */
611 if (format == FTYPE_DBL) {
612 insn->is_datasize = 8;
613 } else if (format == FTYPE_SNG || format == FTYPE_LNG) {
614 insn->is_datasize = 4;
615 } else if (format == FTYPE_WRD) {
616 insn->is_datasize = 2;
617 } else if (format == FTYPE_BYT) {
618 insn->is_datasize = 1;
619 } else if (format == FTYPE_EXT) {
620 insn->is_datasize = 12;
621 } else {
622 /* invalid or unsupported operand format */
623 sig = SIGFPE;
624 return sig;
625 }
626
627 /* Get effective address. (modreg=opcode&077) */
628 sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
629 if (sig) {
630 DPRINTF(("%s: error in fpu_decode_ea\n", __func__));
631 return sig;
632 }
633
634 DUMP_INSN(insn);
635
636 #ifdef DEBUG_FPE
637 printf("%s: addr mode = ", __func__);
638 flags = insn->is_ea.ea_flags;
639 regname = (insn->is_ea.ea_regnum & 8) ? 'a' : 'd';
640
641 if (flags & EA_DIRECT) {
642 printf("%c%d\n", regname, insn->is_ea.ea_regnum & 7);
643 } else if (flags & EA_PC_REL) {
644 if (flags & EA_OFFSET) {
645 printf("pc@(%d)\n", insn->is_ea.ea_offset);
646 } else if (flags & EA_INDEXED) {
647 printf("pc@(...)\n");
648 }
649 } else if (flags & EA_PREDECR) {
650 printf("%c%d@-\n", regname, insn->is_ea.ea_regnum & 7);
651 } else if (flags & EA_POSTINCR) {
652 printf("%c%d@+\n", regname, insn->is_ea.ea_regnum & 7);
653 } else if (flags & EA_OFFSET) {
654 printf("%c%d@(%d)\n", regname,
655 insn->is_ea.ea_regnum & 7,
656 insn->is_ea.ea_offset);
657 } else if (flags & EA_INDEXED) {
658 printf("%c%d@(...)\n", regname,
659 insn->is_ea.ea_regnum & 7);
660 } else if (flags & EA_ABS) {
661 printf("0x%08x\n", insn->is_ea.ea_absaddr);
662 } else if (flags & EA_IMMED) {
663 printf("#0x%08x,%08x,%08x\n",
664 insn->is_ea.ea_immed[0],
665 insn->is_ea.ea_immed[1],
666 insn->is_ea.ea_immed[2]);
667 } else {
668 printf("%c%d@\n", regname, insn->is_ea.ea_regnum & 7);
669 }
670 #endif /* DEBUG_FPE */
671
672 fpu_load_ea(frame, insn, &insn->is_ea, (char*)buf);
673 if (format == FTYPE_WRD) {
674 /* sign-extend */
675 buf[0] &= 0xffff;
676 if (buf[0] & 0x8000)
677 buf[0] |= 0xffff0000;
678 format = FTYPE_LNG;
679 } else if (format == FTYPE_BYT) {
680 /* sign-extend */
681 buf[0] &= 0xff;
682 if (buf[0] & 0x80)
683 buf[0] |= 0xffffff00;
684 format = FTYPE_LNG;
685 }
686 DPRINTF(("%s: src = %08x %08x %08x, siz = %d\n", __func__,
687 buf[0], buf[1], buf[2], insn->is_datasize));
688 fpu_explode(fe, &fe->fe_f2, format, buf);
689 }
690
691 DUMP_INSN(insn);
692
693 /*
694 * An arithmetic instruction emulate function has a prototype of
695 * struct fpn *fpu_op(struct fpemu *);
696 *
697 * 1) If the instruction is monadic, then fpu_op() must use
698 * fe->fe_f2 as its operand, and return a pointer to the
699 * result.
700 *
701 * 2) If the instruction is diadic, then fpu_op() must use
702 * fe->fe_f1 and fe->fe_f2 as its two operands, and return a
703 * pointer to the result.
704 *
705 */
706 res = NULL;
707 switch (word1 & 0x7f) {
708 case 0x00: /* fmove */
709 res = &fe->fe_f2;
710 break;
711
712 case 0x01: /* fint */
713 res = fpu_int(fe);
714 break;
715
716 case 0x02: /* fsinh */
717 res = fpu_sinh(fe);
718 break;
719
720 case 0x03: /* fintrz */
721 res = fpu_intrz(fe);
722 break;
723
724 case 0x04: /* fsqrt */
725 res = fpu_sqrt(fe);
726 break;
727
728 case 0x06: /* flognp1 */
729 res = fpu_lognp1(fe);
730 break;
731
732 case 0x08: /* fetoxm1 */
733 res = fpu_etoxm1(fe);
734 break;
735
736 case 0x09: /* ftanh */
737 res = fpu_tanh(fe);
738 break;
739
740 case 0x0A: /* fatan */
741 res = fpu_atan(fe);
742 break;
743
744 case 0x0C: /* fasin */
745 res = fpu_asin(fe);
746 break;
747
748 case 0x0D: /* fatanh */
749 res = fpu_atanh(fe);
750 break;
751
752 case 0x0E: /* fsin */
753 res = fpu_sin(fe);
754 break;
755
756 case 0x0F: /* ftan */
757 res = fpu_tan(fe);
758 break;
759
760 case 0x10: /* fetox */
761 res = fpu_etox(fe);
762 break;
763
764 case 0x11: /* ftwotox */
765 res = fpu_twotox(fe);
766 break;
767
768 case 0x12: /* ftentox */
769 res = fpu_tentox(fe);
770 break;
771
772 case 0x14: /* flogn */
773 res = fpu_logn(fe);
774 break;
775
776 case 0x15: /* flog10 */
777 res = fpu_log10(fe);
778 break;
779
780 case 0x16: /* flog2 */
781 res = fpu_log2(fe);
782 break;
783
784 case 0x18: /* fabs */
785 fe->fe_f2.fp_sign = 0;
786 res = &fe->fe_f2;
787 break;
788
789 case 0x19: /* fcosh */
790 res = fpu_cosh(fe);
791 break;
792
793 case 0x1A: /* fneg */
794 fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign;
795 res = &fe->fe_f2;
796 break;
797
798 case 0x1C: /* facos */
799 res = fpu_acos(fe);
800 break;
801
802 case 0x1D: /* fcos */
803 res = fpu_cos(fe);
804 break;
805
806 case 0x1E: /* fgetexp */
807 res = fpu_getexp(fe);
808 break;
809
810 case 0x1F: /* fgetman */
811 res = fpu_getman(fe);
812 break;
813
814 case 0x20: /* fdiv */
815 case 0x24: /* fsgldiv: cheating - better than nothing */
816 res = fpu_div(fe);
817 break;
818
819 case 0x21: /* fmod */
820 res = fpu_mod(fe);
821 break;
822
823 case 0x28: /* fsub */
824 fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign; /* f2 = -f2 */
825 /* FALLTHROUGH */
826 case 0x22: /* fadd */
827 res = fpu_add(fe);
828 break;
829
830 case 0x23: /* fmul */
831 case 0x27: /* fsglmul: cheating - better than nothing */
832 res = fpu_mul(fe);
833 break;
834
835 case 0x25: /* frem */
836 res = fpu_rem(fe);
837 break;
838
839 case 0x26:
840 /* fscale is handled by a separate function */
841 break;
842
843 case 0x30:
844 case 0x31:
845 case 0x32:
846 case 0x33:
847 case 0x34:
848 case 0x35:
849 case 0x36:
850 case 0x37: /* fsincos */
851 res = fpu_sincos(fe, word1 & 7);
852 break;
853
854 case 0x38: /* fcmp */
855 res = fpu_cmp(fe);
856 discard_result = 1;
857 break;
858
859 case 0x3A: /* ftst */
860 res = &fe->fe_f2;
861 discard_result = 1;
862 break;
863
864 default: /* possibly 040/060 instructions */
865 DPRINTF(("%s: bad opcode=0x%x, word1=0x%x\n", __func__,
866 insn->is_opcode, insn->is_word1));
867 sig = SIGILL;
868 }
869
870 /* for sanity */
871 if (res == NULL)
872 sig = SIGILL;
873
874 if (sig == 0) {
875 if (!discard_result)
876 fpu_implode(fe, res, FTYPE_EXT, &fpregs[regnum * 3]);
877
878 /* update fpsr according to the result of operation */
879 fpu_upd_fpsr(fe, res);
880 #ifdef DEBUG_FPE
881 if (!discard_result) {
882 printf("%s: %08x,%08x,%08x stored in FP%d\n", __func__,
883 fpregs[regnum * 3],
884 fpregs[regnum * 3 + 1],
885 fpregs[regnum * 3 + 2],
886 regnum);
887 } else {
888 static const char *class_name[] =
889 { "SNAN", "QNAN", "ZERO", "NUM", "INF" };
890 printf("%s: result(%s,%c,%d,%08x,%08x,%08x) "
891 "discarded\n", __func__,
892 class_name[res->fp_class + 2],
893 res->fp_sign ? '-' : '+', res->fp_exp,
894 res->fp_mant[0], res->fp_mant[1],
895 res->fp_mant[2]);
896 }
897 #endif
898 } else {
899 DPRINTF(("%s: received signal %d\n", __func__, sig));
900 }
901
902 DPRINTF(("%s: FPSR = %08x, FPCR = %08x\n", __func__,
903 fe->fe_fpsr, fe->fe_fpcr));
904
905 DUMP_INSN(insn);
906
907 return sig;
908 }
909
910 /*
911 * test condition code according to the predicate in the opcode.
912 * returns -1 when the predicate evaluates to true, 0 when false.
913 * signal numbers are returned when an error is detected.
914 */
915 static int
916 test_cc(struct fpemu *fe, int pred)
917 {
918 int result, sig_bsun;
919 int fpsr;
920
921 fpsr = fe->fe_fpsr;
922 DPRINTF(("%s: fpsr=0x%08x\n", __func__, fpsr));
923 pred &= 0x3f; /* lowest 6 bits */
924
925 DPRINTF(("%s: ", __func__));
926
927 if (pred >= 0x20) {
928 DPRINTF(("Illegal condition code\n"));
929 return SIGILL;
930 } else if (pred & 0x10) {
931 /* IEEE nonaware tests */
932 sig_bsun = 1;
933 pred &= 0x0f; /* lower 4 bits */
934 } else {
935 /* IEEE aware tests */
936 DPRINTF(("IEEE "));
937 sig_bsun = 0;
938 }
939
940 /*
941 * condition real 68882
942 * mnemonic in manual condition
943 * -------- ---------- ----------
944 * 0000 F 0 <- = ~NAN & 0 & ~Z | 0
945 * 0001 EQ Z <- = ~NAN & 0 | Z | 0
946 * 0010 OGT ~(NAN|Z|N) <- = ~NAN & ~N & ~Z | 0
947 * 0011 OGE Z|~(NAN|N) <- = ~NAN & ~N | Z | 0
948 * 0100 OLT N&~(NAN|Z) <- = ~NAN & N & ~Z | 0
949 * 0101 OLE Z|(N&~NAN) <- = ~NAN & N | Z | 0
950 * 0110 OGL ~(NAN|Z) <- = ~NAN & 1 & ~Z | 0
951 * 0111 OR ~NAN Z|~NAN = ~NAN & 1 | Z | 0
952 *
953 * 1000 UN NAN <- = 1 & 0 & ~Z | NAN
954 * 1001 UEQ NAN|Z <- = 1 & 0 | Z | NAN
955 * 1010 UGT NAN|~(N|Z) <- = 1 & ~N & ~Z | NAN
956 * 1011 UGE NAN|(Z|~N) <- = 1 & ~N | Z | NAN
957 * 1100 ULT NAN|(N&~Z) <- = 1 & N & ~Z | NAN
958 * 1101 ULE NAN|(Z|N) <- = 1 & N | Z | NAN
959 * 1110 NE ~Z NAN|(~Z) = 1 & 1 & ~Z | NAN
960 * 1111 T 1 <- = 1 & 1 | Z | NAN
961 */
962 if ((pred & 0x08) == 0) {
963 result = ((fpsr & FPSR_NAN) == 0);
964 } else {
965 result = 1;
966 }
967 switch (pred & 0x06) {
968 case 0x00: /* AND 0 */
969 result &= 0;
970 break;
971 case 0x02: /* AND ~N */
972 result &= ((fpsr & FPSR_NEG) == 0);
973 break;
974 case 0x04: /* AND N */
975 result &= ((fpsr & FPSR_NEG) != 0);
976 break;
977 case 0x06: /* AND 1 */
978 result &= 1;
979 break;
980 }
981 if ((pred & 0x01) == 0) {
982 result &= ((fpsr & FPSR_ZERO) == 0);
983 } else {
984 result |= ((fpsr & FPSR_ZERO) != 0);
985 }
986 if ((pred & 0x08) != 0) {
987 result |= ((fpsr & FPSR_NAN) != 0);
988 }
989
990 DPRINTF(("=> %s (%d)\n", result ? "true" : "false", result));
991 /* if it's an IEEE unaware test and NAN is set, BSUN is set */
992 if (sig_bsun && (fpsr & FPSR_NAN)) {
993 fpsr |= FPSR_BSUN;
994 }
995 /* if BSUN is set, IOP is set too */
996 if ((fpsr & FPSR_BSUN)) {
997 fpsr |= FPSR_AIOP;
998 }
999
1000 /* put fpsr back */
1001 fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
1002
1003 return -result;
1004 }
1005
1006 /*
1007 * type 1: fdbcc, fscc, ftrapcc
1008 * In this function, we know:
1009 * (opcode & 0x01C0) == 0x0040
1010 * return SIGILL for an illegal instruction.
1011 * return SIGFPE if FTRAPcc's condition is met.
1012 */
1013 static int
1014 fpu_emul_type1(struct fpemu *fe, struct instruction *insn)
1015 {
1016 struct frame *frame = fe->fe_frame;
1017 int advance, sig, branch, displ;
1018 unsigned short sval;
1019
1020 branch = test_cc(fe, insn->is_word1);
1021 if (branch > 0)
1022 return branch;
1023 fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
1024
1025 sig = 0;
1026 switch (insn->is_opcode & 070) {
1027 case 010: /* fdbcc */
1028 if (branch) {
1029 /* advance */
1030 insn->is_advance = 6;
1031 } else {
1032 /* decrement Dn and if (Dn != -1) branch */
1033 uint16_t count = frame->f_regs[insn->is_opcode & 7];
1034
1035 if (count-- != 0) {
1036 if (ufetch_short((void *)(insn->is_pc +
1037 insn->is_advance),
1038 &sval)) {
1039 DPRINTF(("%s: fault reading "
1040 "displacement\n", __func__));
1041 return SIGSEGV;
1042 }
1043 displ = sval;
1044 /* sign-extend the displacement */
1045 displ &= 0xffff;
1046 if (displ & 0x8000) {
1047 displ |= 0xffff0000;
1048 }
1049 insn->is_advance += displ;
1050 #if 0 /* XXX */
1051 insn->is_nextpc = insn->is_pc +
1052 insn->is_advance;
1053 #endif
1054 } else {
1055 insn->is_advance = 6;
1056 }
1057 /* write it back */
1058 frame->f_regs[insn->is_opcode & 7] &= 0xffff0000;
1059 frame->f_regs[insn->is_opcode & 7] |= (uint32_t)count;
1060 }
1061 break;
1062
1063 case 070: /* ftrapcc or fscc */
1064 advance = 4;
1065 if ((insn->is_opcode & 07) >= 2) {
1066 switch (insn->is_opcode & 07) {
1067 case 3: /* long opr */
1068 advance += 2;
1069 case 2: /* word opr */
1070 advance += 2;
1071 case 4: /* no opr */
1072 break;
1073 default:
1074 return SIGILL;
1075 break;
1076 }
1077 insn->is_advance = advance;
1078
1079 if (branch) {
1080 /* trap */
1081 sig = SIGFPE;
1082 }
1083 break;
1084 }
1085
1086 /* FALLTHROUGH */
1087 default: /* fscc */
1088 insn->is_datasize = 1; /* always byte */
1089 sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
1090 if (sig) {
1091 break;
1092 }
1093 /* set result */
1094 sig = fpu_store_ea(frame, insn, &insn->is_ea, (char *)&branch);
1095 break;
1096 }
1097 return sig;
1098 }
1099
1100 /*
1101 * Type 2 or 3: fbcc (also fnop)
1102 * In this function, we know:
1103 * (opcode & 0x0180) == 0x0080
1104 */
1105 static int
1106 fpu_emul_brcc(struct fpemu *fe, struct instruction *insn)
1107 {
1108 int displ, word2;
1109 int sig;
1110 unsigned short sval;
1111
1112 /*
1113 * Get branch displacement.
1114 */
1115 displ = insn->is_word1;
1116
1117 if (insn->is_opcode & 0x40) {
1118 if (ufetch_short((void *)(insn->is_pc + insn->is_advance),
1119 &sval)) {
1120 DPRINTF(("%s: fault reading word2\n", __func__));
1121 return SIGSEGV;
1122 }
1123 word2 = sval;
1124 displ <<= 16;
1125 displ |= word2;
1126 insn->is_advance += 2;
1127 } else {
1128 /* displacement is word sized */
1129 if (displ & 0x8000)
1130 displ |= 0xFFFF0000;
1131 }
1132
1133 /* XXX: If CC, insn->is_pc += displ */
1134 sig = test_cc(fe, insn->is_opcode);
1135 fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
1136
1137 if (fe->fe_fpsr & fe->fe_fpcr & FPSR_EXCP) {
1138 return SIGFPE; /* caught an exception */
1139 }
1140 if (sig == -1) {
1141 /*
1142 * branch does take place; 2 is the offset to the 1st disp word
1143 */
1144 insn->is_advance = displ + 2;
1145 #if 0 /* XXX */
1146 insn->is_nextpc = insn->is_pc + insn->is_advance;
1147 #endif
1148 } else if (sig)
1149 return SIGILL; /* got a signal */
1150 DPRINTF(("%s: %s insn @ %x (%x+%x) (disp=%x)\n", __func__,
1151 (sig == -1) ? "BRANCH to" : "NEXT",
1152 insn->is_pc + insn->is_advance, insn->is_pc, insn->is_advance,
1153 displ));
1154 return 0;
1155 }
1156