Home | History | Annotate | Line # | Download | only in fpe
      1  1.26    isaki /*	$NetBSD: fpu_emulate.h,v 1.26 2016/12/06 05:58:19 isaki Exp $	*/
      2   1.1   briggs 
      3   1.1   briggs /*
      4   1.1   briggs  * Copyright (c) 1995 Gordon Ross
      5   1.1   briggs  * Copyright (c) 1995 Ken Nakata
      6   1.1   briggs  * All rights reserved.
      7   1.1   briggs  *
      8   1.1   briggs  * Redistribution and use in source and binary forms, with or without
      9   1.1   briggs  * modification, are permitted provided that the following conditions
     10   1.1   briggs  * are met:
     11   1.1   briggs  * 1. Redistributions of source code must retain the above copyright
     12   1.1   briggs  *    notice, this list of conditions and the following disclaimer.
     13   1.1   briggs  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1   briggs  *    notice, this list of conditions and the following disclaimer in the
     15   1.1   briggs  *    documentation and/or other materials provided with the distribution.
     16   1.1   briggs  * 3. The name of the author may not be used to endorse or promote products
     17   1.1   briggs  *    derived from this software without specific prior written permission.
     18   1.1   briggs  * 4. All advertising materials mentioning features or use of this software
     19   1.1   briggs  *    must display the following acknowledgement:
     20   1.1   briggs  *      This product includes software developed by Gordon Ross
     21   1.1   briggs  *
     22   1.1   briggs  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23   1.1   briggs  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24   1.1   briggs  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25   1.1   briggs  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26   1.1   briggs  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27   1.1   briggs  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28   1.1   briggs  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29   1.1   briggs  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30   1.1   briggs  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31   1.1   briggs  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32   1.1   briggs  */
     33   1.1   briggs 
     34   1.1   briggs #ifndef _FPU_EMULATE_H_
     35   1.1   briggs #define _FPU_EMULATE_H_
     36   1.1   briggs 
     37   1.1   briggs #include <sys/types.h>
     38  1.10       cl #include <sys/signal.h>
     39  1.11       he #include <sys/time.h>
     40  1.10       cl #include <sys/signalvar.h>
     41  1.10       cl #include <sys/siginfo.h>
     42  1.14   martin #include <m68k/fpreg.h>
     43   1.1   briggs 
     44   1.1   briggs /*
     45   1.1   briggs  * Floating point emulator (tailored for SPARC/modified for m68k, but
     46   1.1   briggs  * structurally machine-independent).
     47   1.1   briggs  *
     48   1.1   briggs  * Floating point numbers are carried around internally in an `expanded'
     49   1.1   briggs  * or `unpacked' form consisting of:
     50   1.1   briggs  *	- sign
     51   1.1   briggs  *	- unbiased exponent
     52   1.7       is  *	- mantissa (`1.' + 80-bit fraction + guard + round)
     53   1.1   briggs  *	- sticky bit
     54   1.7       is  * Any implied `1' bit is inserted, giving a 81-bit mantissa that is
     55   1.1   briggs  * always nonzero.  Additional low-order `guard' and `round' bits are
     56   1.7       is  * scrunched in, making the entire mantissa 83 bits long.  This is divided
     57   1.6  minoura  * into three 32-bit words, with `spare' bits left over in the upper part
     58   1.1   briggs  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
     59   1.1   briggs  * number is thus kept within the half-open interval [1.0,2.0) (but see
     60   1.1   briggs  * the `number classes' below).  This holds even for denormalized numbers:
     61   1.1   briggs  * when we explode an external denorm, we normalize it, introducing low-order
     62   1.1   briggs  * zero bits, so that the rest of the code always sees normalized values.
     63   1.1   briggs  *
     64   1.1   briggs  * Note that a number of our algorithms use the `spare' bits at the top.
     65   1.1   briggs  * The most demanding algorithm---the one for sqrt---depends on two such
     66   1.1   briggs  * bits, so that it can represent values up to (but not including) 8.0,
     67   1.1   briggs  * and then it needs a carry on top of that, so that we need three `spares'.
     68   1.1   briggs  *
     69   1.1   briggs  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
     70   1.1   briggs  * whole words from the mantissa into it.
     71   1.1   briggs  *
     72   1.1   briggs  * All operations are done in this internal extended precision.  According
     73   1.1   briggs  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
     74   1.1   briggs  * it is OK to do a+b in extended precision and then round the result to
     75   1.1   briggs  * single precision---provided single, double, and extended precisions are
     76   1.1   briggs  * `far enough apart' (they always are), but we will try to avoid any such
     77   1.1   briggs  * extra work where possible.
     78   1.1   briggs  */
     79   1.1   briggs struct fpn {
     80   1.1   briggs 	int	fp_class;		/* see below */
     81   1.1   briggs 	int	fp_sign;		/* 0 => positive, 1 => negative */
     82   1.1   briggs 	int	fp_exp;			/* exponent (unbiased) */
     83   1.1   briggs 	int	fp_sticky;		/* nonzero bits lost at right end */
     84  1.22    isaki 	uint32_t fp_mant[3];		/* 83-bit mantissa */
     85   1.1   briggs };
     86   1.1   briggs 
     87   1.7       is #define	FP_NMANT	83		/* total bits in mantissa (incl g,r) */
     88   1.1   briggs #define	FP_NG		2		/* number of low-order guard bits */
     89   1.1   briggs #define	FP_LG		((FP_NMANT - 1) & 31)	/* log2(1.0) for fp_mant[0] */
     90   1.1   briggs #define	FP_QUIETBIT	(1 << (FP_LG - 1))	/* Quiet bit in NaNs (0.5) */
     91   1.1   briggs #define	FP_1		(1 << FP_LG)		/* 1.0 in fp_mant[0] */
     92   1.1   briggs #define	FP_2		(1 << (FP_LG + 1))	/* 2.0 in fp_mant[0] */
     93   1.1   briggs 
     94  1.19  tsutsui static inline void CPYFPN(struct fpn *, const struct fpn *);
     95  1.17  tsutsui 
     96  1.17  tsutsui static inline void
     97  1.19  tsutsui CPYFPN(struct fpn *dst, const struct fpn *src)
     98  1.17  tsutsui {
     99  1.17  tsutsui 
    100  1.17  tsutsui 	if (dst != src) {
    101  1.17  tsutsui 		*dst = *src;
    102  1.17  tsutsui 	}
    103   1.1   briggs }
    104   1.1   briggs 
    105   1.1   briggs /*
    106   1.1   briggs  * Number classes.  Since zero, Inf, and NaN cannot be represented using
    107   1.1   briggs  * the above layout, we distinguish these from other numbers via a class.
    108   1.1   briggs  */
    109   1.1   briggs #define	FPC_SNAN	-2		/* signalling NaN (sign irrelevant) */
    110   1.1   briggs #define	FPC_QNAN	-1		/* quiet NaN (sign irrelevant) */
    111   1.1   briggs #define	FPC_ZERO	0		/* zero (sign matters) */
    112   1.1   briggs #define	FPC_NUM		1		/* number (sign matters) */
    113   1.1   briggs #define	FPC_INF		2		/* infinity (sign matters) */
    114   1.1   briggs 
    115   1.1   briggs #define	ISNAN(fp)	((fp)->fp_class < 0)
    116   1.1   briggs #define	ISZERO(fp)	((fp)->fp_class == 0)
    117   1.1   briggs #define	ISINF(fp)	((fp)->fp_class == FPC_INF)
    118   1.1   briggs 
    119   1.1   briggs /*
    120   1.1   briggs  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
    121   1.1   briggs  * to the `more significant' operand for our purposes.  Appendix N says that
    122   1.1   briggs  * the result of a computation involving two numbers are:
    123   1.1   briggs  *
    124   1.1   briggs  *	If both are SNaN: operand 2, converted to Quiet
    125   1.1   briggs  *	If only one is SNaN: the SNaN operand, converted to Quiet
    126   1.1   briggs  *	If both are QNaN: operand 2
    127   1.1   briggs  *	If only one is QNaN: the QNaN operand
    128   1.1   briggs  *
    129   1.1   briggs  * In addition, in operations with an Inf operand, the result is usually
    130   1.1   briggs  * Inf.  The class numbers are carefully arranged so that if
    131   1.1   briggs  *	(unsigned)class(op1) > (unsigned)class(op2)
    132   1.1   briggs  * then op1 is the one we want; otherwise op2 is the one we want.
    133   1.1   briggs  */
    134   1.1   briggs #define	ORDER(x, y) { \
    135  1.22    isaki 	if ((uint32_t)(x)->fp_class > (uint32_t)(y)->fp_class) \
    136   1.1   briggs 		SWAP(x, y); \
    137   1.1   briggs }
    138   1.1   briggs #define	SWAP(x, y) {				\
    139  1.20    isaki 	struct fpn *swap;			\
    140   1.1   briggs 	swap = (x), (x) = (y), (y) = swap;	\
    141   1.1   briggs }
    142   1.1   briggs 
    143   1.1   briggs /*
    144   1.1   briggs  * Emulator state.
    145   1.1   briggs  */
    146   1.1   briggs struct fpemu {
    147  1.16    isaki 	struct frame *fe_frame; /* integer regs, etc */
    148  1.16    isaki 	struct fpframe *fe_fpframe; /* FP registers, etc */
    149  1.22    isaki 	uint32_t fe_fpsr;	/* fpsr copy (modified during op) */
    150  1.22    isaki 	uint32_t fe_fpcr;	/* fpcr copy */
    151  1.16    isaki 	struct fpn fe_f1;	/* operand 1 */
    152  1.16    isaki 	struct fpn fe_f2;	/* operand 2, if required */
    153  1.16    isaki 	struct fpn fe_f3;	/* available storage for result */
    154   1.1   briggs };
    155   1.1   briggs 
    156   1.1   briggs /*****************************************************************************
    157   1.1   briggs  * End of definitions derived from Sparc FPE
    158   1.1   briggs  *****************************************************************************/
    159   1.1   briggs 
    160   1.1   briggs /*
    161   1.1   briggs  * Internal info about a decoded effective address.
    162   1.1   briggs  */
    163   1.1   briggs struct insn_ea {
    164  1.16    isaki 	int	ea_regnum;
    165  1.16    isaki 	int	ea_ext[3];	/* extension words if any */
    166  1.16    isaki 	int	ea_flags;	/* flags == 0 means mode 2: An@ */
    167   1.1   briggs #define	EA_DIRECT	0x001	/* mode [01]: Dn or An */
    168   1.1   briggs #define EA_PREDECR	0x002	/* mode 4: An@- */
    169   1.1   briggs #define	EA_POSTINCR	0x004	/* mode 3: An@+ */
    170   1.1   briggs #define EA_OFFSET	0x008	/* mode 5 or (7,2): APC@(d16) */
    171   1.1   briggs #define	EA_INDEXED	0x010	/* mode 6 or (7,3): APC@(Xn:*:*,d8) etc */
    172   1.1   briggs #define EA_ABS  	0x020	/* mode (7,[01]): abs */
    173   1.1   briggs #define EA_PC_REL	0x040	/* mode (7,[23]): PC@(d16) etc */
    174   1.1   briggs #define	EA_IMMED	0x080	/* mode (7,4): #immed */
    175   1.1   briggs #define EA_MEM_INDIR	0x100	/* mode 6 or (7,3): APC@(Xn:*:*,*)@(*) etc */
    176   1.1   briggs #define EA_BASE_SUPPRSS	0x200	/* mode 6 or (7,3): base register suppressed */
    177   1.5   briggs #define EA_FRAME_EA	0x400	/* MC68LC040 only: precalculated EA from
    178   1.5   briggs 				   format 4 stack frame */
    179  1.16    isaki 	int	ea_moffs;	/* offset used for fmoveMulti */
    180   1.1   briggs };
    181   1.1   briggs 
    182   1.1   briggs #define ea_offset	ea_ext[0]	/* mode 5: offset word */
    183   1.1   briggs #define ea_absaddr	ea_ext[0]	/* mode (7,[01]): absolute address */
    184   1.1   briggs #define ea_immed	ea_ext		/* mode (7,4): immediate value */
    185   1.1   briggs #define ea_basedisp	ea_ext[0]	/* mode 6: base displacement */
    186   1.1   briggs #define ea_outerdisp	ea_ext[1]	/* mode 6: outer displacement */
    187   1.1   briggs #define	ea_idxreg	ea_ext[2]	/* mode 6: index register number */
    188   1.5   briggs #define ea_fea		ea_ext[0]	/* MC68LC040 only: frame EA */
    189   1.1   briggs 
    190   1.1   briggs struct instruction {
    191  1.22    isaki 	uint32_t is_pc;		/* insn's address */
    192  1.22    isaki 	uint32_t is_nextpc;	/* next PC */
    193  1.16    isaki 	int	is_advance;	/* length of instruction */
    194  1.16    isaki 	int	is_datasize;	/* size of memory operand */
    195  1.16    isaki 	int	is_opcode;	/* opcode word */
    196  1.16    isaki 	int	is_word1;	/* second word */
    197  1.16    isaki 	struct insn_ea	is_ea;	/* decoded effective address mode */
    198   1.1   briggs };
    199   1.1   briggs 
    200   1.1   briggs /*
    201   1.1   briggs  * FP data types
    202   1.1   briggs  */
    203   1.1   briggs #define FTYPE_LNG 0 /* Long Word Integer */
    204   1.1   briggs #define FTYPE_SNG 1 /* Single Prec */
    205   1.1   briggs #define FTYPE_EXT 2 /* Extended Prec */
    206   1.1   briggs #define FTYPE_BCD 3 /* Packed BCD */
    207   1.1   briggs #define FTYPE_WRD 4 /* Word Integer */
    208   1.1   briggs #define FTYPE_DBL 5 /* Double Prec */
    209   1.1   briggs #define FTYPE_BYT 6 /* Byte Integer */
    210   1.1   briggs 
    211   1.1   briggs /*
    212   1.1   briggs  * Other functions.
    213   1.1   briggs  */
    214   1.1   briggs 
    215   1.1   briggs /* Build a new Quiet NaN (sign=0, frac=all 1's). */
    216  1.19  tsutsui struct	fpn *fpu_newnan(struct fpemu *);
    217   1.1   briggs 
    218   1.1   briggs /*
    219   1.1   briggs  * Shift a number right some number of bits, taking care of round/sticky.
    220   1.1   briggs  * Note that the result is probably not a well-formed number (it will lack
    221   1.1   briggs  * the normal 1-bit mant[0]&FP_1).
    222   1.1   briggs  */
    223  1.19  tsutsui int	fpu_shr(struct fpn *, int);
    224   1.1   briggs /*
    225   1.1   briggs  * Round a number according to the round mode in FPCR
    226   1.1   briggs  */
    227  1.20    isaki int	fpu_round(struct fpemu *, struct fpn *);
    228   1.1   briggs 
    229   1.1   briggs /* type conversion */
    230  1.22    isaki void	fpu_explode(struct fpemu *, struct fpn *, int t, const uint32_t *);
    231  1.22    isaki void	fpu_implode(struct fpemu *, struct fpn *, int t, uint32_t *);
    232   1.1   briggs 
    233   1.1   briggs /*
    234   1.1   briggs  * non-static emulation functions
    235   1.1   briggs  */
    236   1.1   briggs /* type 0 */
    237  1.19  tsutsui int fpu_emul_fmovecr(struct fpemu *, struct instruction *);
    238  1.19  tsutsui int fpu_emul_fstore(struct fpemu *, struct instruction *);
    239  1.19  tsutsui int fpu_emul_fscale(struct fpemu *, struct instruction *);
    240   1.1   briggs 
    241   1.1   briggs /*
    242   1.1   briggs  * include function declarations of those which are called by fpu_emul_arith()
    243   1.1   briggs  */
    244   1.1   briggs #include "fpu_arith_proto.h"
    245   1.1   briggs 
    246  1.19  tsutsui int fpu_emulate(struct frame *, struct fpframe *, ksiginfo_t *);
    247  1.18  tsutsui struct fpn *fpu_cmp(struct fpemu *);
    248  1.18  tsutsui 
    249  1.24    isaki /* fpu_cordic.c */
    250  1.24    isaki extern const struct fpn fpu_cordic_inv_gain1;
    251  1.24    isaki void fpu_cordit1(struct fpemu *,
    252  1.24    isaki 	struct fpn *, struct fpn *, struct fpn *, const struct fpn *);
    253   1.4   briggs 
    254   1.1   briggs /*
    255   1.1   briggs  * "helper" functions
    256   1.1   briggs  */
    257   1.1   briggs /* return values from constant rom */
    258  1.22    isaki struct fpn *fpu_const(struct fpn *, uint32_t);
    259  1.23    isaki #define FPU_CONST_PI	(0x00)	/* pi */
    260  1.24    isaki #define FPU_CONST_0 	(0x0f)	/* 0.0 */
    261  1.23    isaki #define FPU_CONST_LN_2	(0x30)	/* ln(2) */
    262  1.23    isaki #define FPU_CONST_LN_10	(0x31)	/* ln(10) */
    263  1.23    isaki #define FPU_CONST_1 	(0x32)	/* 1.0 */
    264  1.23    isaki 
    265   1.1   briggs /* update exceptions and FPSR */
    266  1.19  tsutsui int fpu_upd_excp(struct fpemu *);
    267  1.22    isaki uint32_t fpu_upd_fpsr(struct fpemu *, struct fpn *);
    268   1.1   briggs 
    269   1.1   briggs /* address mode decoder, and load/store */
    270  1.19  tsutsui int fpu_decode_ea(struct frame *, struct instruction *,
    271  1.19  tsutsui 		   struct insn_ea *, int);
    272  1.19  tsutsui int fpu_load_ea(struct frame *, struct instruction *,
    273  1.19  tsutsui 		 struct insn_ea *, char *);
    274  1.19  tsutsui int fpu_store_ea(struct frame *, struct instruction *,
    275  1.19  tsutsui 		  struct insn_ea *, char *);
    276   1.4   briggs 
    277   1.4   briggs /* fpu_subr.c */
    278  1.20    isaki void fpu_norm(struct fpn *);
    279   1.1   briggs 
    280   1.5   briggs #if !defined(FPE_DEBUG)
    281   1.5   briggs #  define FPE_DEBUG 0
    282   1.5   briggs #endif
    283   1.1   briggs 
    284   1.1   briggs #endif /* _FPU_EMULATE_H_ */
    285