Home | History | Annotate | Line # | Download | only in fpe
fpu_emulate.h revision 1.11
      1  1.11       he /*	$NetBSD: fpu_emulate.h,v 1.11 2005/08/13 05:38:45 he Exp $	*/
      2   1.1   briggs 
      3   1.1   briggs /*
      4   1.1   briggs  * Copyright (c) 1995 Gordon Ross
      5   1.1   briggs  * Copyright (c) 1995 Ken Nakata
      6   1.1   briggs  * All rights reserved.
      7   1.1   briggs  *
      8   1.1   briggs  * Redistribution and use in source and binary forms, with or without
      9   1.1   briggs  * modification, are permitted provided that the following conditions
     10   1.1   briggs  * are met:
     11   1.1   briggs  * 1. Redistributions of source code must retain the above copyright
     12   1.1   briggs  *    notice, this list of conditions and the following disclaimer.
     13   1.1   briggs  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1   briggs  *    notice, this list of conditions and the following disclaimer in the
     15   1.1   briggs  *    documentation and/or other materials provided with the distribution.
     16   1.1   briggs  * 3. The name of the author may not be used to endorse or promote products
     17   1.1   briggs  *    derived from this software without specific prior written permission.
     18   1.1   briggs  * 4. All advertising materials mentioning features or use of this software
     19   1.1   briggs  *    must display the following acknowledgement:
     20   1.1   briggs  *      This product includes software developed by Gordon Ross
     21   1.1   briggs  *
     22   1.1   briggs  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23   1.1   briggs  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24   1.1   briggs  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25   1.1   briggs  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26   1.1   briggs  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27   1.1   briggs  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28   1.1   briggs  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29   1.1   briggs  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30   1.1   briggs  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31   1.1   briggs  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32   1.1   briggs  */
     33   1.1   briggs 
     34   1.1   briggs #ifndef _FPU_EMULATE_H_
     35   1.1   briggs #define _FPU_EMULATE_H_
     36   1.1   briggs 
     37   1.1   briggs #include <sys/types.h>
     38  1.10       cl #include <sys/signal.h>
     39  1.11       he #include <sys/time.h>
     40  1.10       cl #include <sys/signalvar.h>
     41  1.10       cl #include <sys/siginfo.h>
     42   1.1   briggs 
     43   1.1   briggs /*
     44   1.1   briggs  * Floating point emulator (tailored for SPARC/modified for m68k, but
     45   1.1   briggs  * structurally machine-independent).
     46   1.1   briggs  *
     47   1.1   briggs  * Floating point numbers are carried around internally in an `expanded'
     48   1.1   briggs  * or `unpacked' form consisting of:
     49   1.1   briggs  *	- sign
     50   1.1   briggs  *	- unbiased exponent
     51   1.7       is  *	- mantissa (`1.' + 80-bit fraction + guard + round)
     52   1.1   briggs  *	- sticky bit
     53   1.7       is  * Any implied `1' bit is inserted, giving a 81-bit mantissa that is
     54   1.1   briggs  * always nonzero.  Additional low-order `guard' and `round' bits are
     55   1.7       is  * scrunched in, making the entire mantissa 83 bits long.  This is divided
     56   1.6  minoura  * into three 32-bit words, with `spare' bits left over in the upper part
     57   1.1   briggs  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
     58   1.1   briggs  * number is thus kept within the half-open interval [1.0,2.0) (but see
     59   1.1   briggs  * the `number classes' below).  This holds even for denormalized numbers:
     60   1.1   briggs  * when we explode an external denorm, we normalize it, introducing low-order
     61   1.1   briggs  * zero bits, so that the rest of the code always sees normalized values.
     62   1.1   briggs  *
     63   1.1   briggs  * Note that a number of our algorithms use the `spare' bits at the top.
     64   1.1   briggs  * The most demanding algorithm---the one for sqrt---depends on two such
     65   1.1   briggs  * bits, so that it can represent values up to (but not including) 8.0,
     66   1.1   briggs  * and then it needs a carry on top of that, so that we need three `spares'.
     67   1.1   briggs  *
     68   1.1   briggs  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
     69   1.1   briggs  * whole words from the mantissa into it.
     70   1.1   briggs  *
     71   1.1   briggs  * All operations are done in this internal extended precision.  According
     72   1.1   briggs  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
     73   1.1   briggs  * it is OK to do a+b in extended precision and then round the result to
     74   1.1   briggs  * single precision---provided single, double, and extended precisions are
     75   1.1   briggs  * `far enough apart' (they always are), but we will try to avoid any such
     76   1.1   briggs  * extra work where possible.
     77   1.1   briggs  */
     78   1.1   briggs struct fpn {
     79   1.1   briggs 	int	fp_class;		/* see below */
     80   1.1   briggs 	int	fp_sign;		/* 0 => positive, 1 => negative */
     81   1.1   briggs 	int	fp_exp;			/* exponent (unbiased) */
     82   1.1   briggs 	int	fp_sticky;		/* nonzero bits lost at right end */
     83   1.7       is 	u_int	fp_mant[3];		/* 83-bit mantissa */
     84   1.1   briggs };
     85   1.1   briggs 
     86   1.7       is #define	FP_NMANT	83		/* total bits in mantissa (incl g,r) */
     87   1.1   briggs #define	FP_NG		2		/* number of low-order guard bits */
     88   1.1   briggs #define	FP_LG		((FP_NMANT - 1) & 31)	/* log2(1.0) for fp_mant[0] */
     89   1.1   briggs #define	FP_QUIETBIT	(1 << (FP_LG - 1))	/* Quiet bit in NaNs (0.5) */
     90   1.1   briggs #define	FP_1		(1 << FP_LG)		/* 1.0 in fp_mant[0] */
     91   1.1   briggs #define	FP_2		(1 << (FP_LG + 1))	/* 2.0 in fp_mant[0] */
     92   1.1   briggs 
     93   1.1   briggs #define CPYFPN(dst, src)						\
     94   1.1   briggs if ((dst) != (src)) {							\
     95   1.1   briggs     (dst)->fp_class = (src)->fp_class;					\
     96   1.1   briggs     (dst)->fp_sign = (src)->fp_sign;					\
     97   1.1   briggs     (dst)->fp_exp = (src)->fp_exp;					\
     98   1.1   briggs     (dst)->fp_sticky = (src)->fp_sticky;				\
     99   1.1   briggs     (dst)->fp_mant[0] = (src)->fp_mant[0];				\
    100   1.1   briggs     (dst)->fp_mant[1] = (src)->fp_mant[1];				\
    101   1.1   briggs     (dst)->fp_mant[2] = (src)->fp_mant[2];				\
    102   1.1   briggs }
    103   1.1   briggs 
    104   1.1   briggs /*
    105   1.1   briggs  * Number classes.  Since zero, Inf, and NaN cannot be represented using
    106   1.1   briggs  * the above layout, we distinguish these from other numbers via a class.
    107   1.1   briggs  */
    108   1.1   briggs #define	FPC_SNAN	-2		/* signalling NaN (sign irrelevant) */
    109   1.1   briggs #define	FPC_QNAN	-1		/* quiet NaN (sign irrelevant) */
    110   1.1   briggs #define	FPC_ZERO	0		/* zero (sign matters) */
    111   1.1   briggs #define	FPC_NUM		1		/* number (sign matters) */
    112   1.1   briggs #define	FPC_INF		2		/* infinity (sign matters) */
    113   1.1   briggs 
    114   1.1   briggs #define	ISNAN(fp)	((fp)->fp_class < 0)
    115   1.1   briggs #define	ISZERO(fp)	((fp)->fp_class == 0)
    116   1.1   briggs #define	ISINF(fp)	((fp)->fp_class == FPC_INF)
    117   1.1   briggs 
    118   1.1   briggs /*
    119   1.1   briggs  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
    120   1.1   briggs  * to the `more significant' operand for our purposes.  Appendix N says that
    121   1.1   briggs  * the result of a computation involving two numbers are:
    122   1.1   briggs  *
    123   1.1   briggs  *	If both are SNaN: operand 2, converted to Quiet
    124   1.1   briggs  *	If only one is SNaN: the SNaN operand, converted to Quiet
    125   1.1   briggs  *	If both are QNaN: operand 2
    126   1.1   briggs  *	If only one is QNaN: the QNaN operand
    127   1.1   briggs  *
    128   1.1   briggs  * In addition, in operations with an Inf operand, the result is usually
    129   1.1   briggs  * Inf.  The class numbers are carefully arranged so that if
    130   1.1   briggs  *	(unsigned)class(op1) > (unsigned)class(op2)
    131   1.1   briggs  * then op1 is the one we want; otherwise op2 is the one we want.
    132   1.1   briggs  */
    133   1.1   briggs #define	ORDER(x, y) { \
    134   1.1   briggs 	if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
    135   1.1   briggs 		SWAP(x, y); \
    136   1.1   briggs }
    137   1.1   briggs #define	SWAP(x, y) {				\
    138   1.1   briggs 	register struct fpn *swap;		\
    139   1.1   briggs 	swap = (x), (x) = (y), (y) = swap;	\
    140   1.1   briggs }
    141   1.1   briggs 
    142   1.1   briggs /*
    143   1.1   briggs  * Emulator state.
    144   1.1   briggs  */
    145   1.1   briggs struct fpemu {
    146   1.1   briggs     struct	frame *fe_frame; /* integer regs, etc */
    147   1.1   briggs     struct	fpframe *fe_fpframe; /* FP registers, etc */
    148   1.1   briggs     u_int	fe_fpsr;	/* fpsr copy (modified during op) */
    149   1.1   briggs     u_int	fe_fpcr;	/* fpcr copy */
    150   1.1   briggs     struct	fpn fe_f1;	/* operand 1 */
    151   1.1   briggs     struct	fpn fe_f2;	/* operand 2, if required */
    152   1.1   briggs     struct	fpn fe_f3;	/* available storage for result */
    153   1.1   briggs };
    154   1.1   briggs 
    155   1.1   briggs /*****************************************************************************
    156   1.1   briggs  * End of definitions derived from Sparc FPE
    157   1.1   briggs  *****************************************************************************/
    158   1.1   briggs 
    159   1.1   briggs /*
    160   1.1   briggs  * Internal info about a decoded effective address.
    161   1.1   briggs  */
    162   1.1   briggs struct insn_ea {
    163   1.1   briggs     int	ea_regnum;
    164   1.9   toshii     int	ea_ext[3];		/* extension words if any */
    165   1.1   briggs     int	ea_flags;		/* flags == 0 means mode 2: An@ */
    166   1.1   briggs #define	EA_DIRECT	0x001	/* mode [01]: Dn or An */
    167   1.1   briggs #define EA_PREDECR	0x002	/* mode 4: An@- */
    168   1.1   briggs #define	EA_POSTINCR	0x004	/* mode 3: An@+ */
    169   1.1   briggs #define EA_OFFSET	0x008	/* mode 5 or (7,2): APC@(d16) */
    170   1.1   briggs #define	EA_INDEXED	0x010	/* mode 6 or (7,3): APC@(Xn:*:*,d8) etc */
    171   1.1   briggs #define EA_ABS  	0x020	/* mode (7,[01]): abs */
    172   1.1   briggs #define EA_PC_REL	0x040	/* mode (7,[23]): PC@(d16) etc */
    173   1.1   briggs #define	EA_IMMED	0x080	/* mode (7,4): #immed */
    174   1.1   briggs #define EA_MEM_INDIR	0x100	/* mode 6 or (7,3): APC@(Xn:*:*,*)@(*) etc */
    175   1.1   briggs #define EA_BASE_SUPPRSS	0x200	/* mode 6 or (7,3): base register suppressed */
    176   1.5   briggs #define EA_FRAME_EA	0x400	/* MC68LC040 only: precalculated EA from
    177   1.5   briggs 				   format 4 stack frame */
    178   1.5   briggs     int	ea_moffs;		/* offset used for fmoveMulti */
    179   1.1   briggs };
    180   1.1   briggs 
    181   1.1   briggs #define ea_offset	ea_ext[0]	/* mode 5: offset word */
    182   1.1   briggs #define ea_absaddr	ea_ext[0]	/* mode (7,[01]): absolute address */
    183   1.1   briggs #define ea_immed	ea_ext		/* mode (7,4): immediate value */
    184   1.1   briggs #define ea_basedisp	ea_ext[0]	/* mode 6: base displacement */
    185   1.1   briggs #define ea_outerdisp	ea_ext[1]	/* mode 6: outer displacement */
    186   1.1   briggs #define	ea_idxreg	ea_ext[2]	/* mode 6: index register number */
    187   1.5   briggs #define ea_fea		ea_ext[0]	/* MC68LC040 only: frame EA */
    188   1.1   briggs 
    189   1.1   briggs struct instruction {
    190   1.5   briggs     u_int		is_pc;		/* insn's address */
    191   1.5   briggs     u_int		is_nextpc;	/* next PC */
    192   1.5   briggs     int			is_advance;	/* length of instruction */
    193   1.5   briggs     int			is_datasize;	/* size of memory operand */
    194   1.5   briggs     int			is_opcode;	/* opcode word */
    195   1.5   briggs     int			is_word1;	/* second word */
    196   1.5   briggs     struct insn_ea	is_ea;	/* decoded effective address mode */
    197   1.1   briggs };
    198   1.1   briggs 
    199   1.1   briggs /*
    200   1.1   briggs  * FP data types
    201   1.1   briggs  */
    202   1.1   briggs #define FTYPE_LNG 0 /* Long Word Integer */
    203   1.1   briggs #define FTYPE_SNG 1 /* Single Prec */
    204   1.1   briggs #define FTYPE_EXT 2 /* Extended Prec */
    205   1.1   briggs #define FTYPE_BCD 3 /* Packed BCD */
    206   1.1   briggs #define FTYPE_WRD 4 /* Word Integer */
    207   1.1   briggs #define FTYPE_DBL 5 /* Double Prec */
    208   1.1   briggs #define FTYPE_BYT 6 /* Byte Integer */
    209   1.1   briggs 
    210   1.1   briggs /*
    211   1.1   briggs  * MC68881/68882 FPcr bit definitions (should these go to <m68k/reg.h>
    212   1.1   briggs  * or <m68k/fpu.h> or something?)
    213   1.1   briggs  */
    214   1.1   briggs 
    215   1.1   briggs /* fpsr */
    216   1.1   briggs #define FPSR_CCB    0xff000000
    217   1.1   briggs # define FPSR_NEG   0x08000000
    218   1.1   briggs # define FPSR_ZERO  0x04000000
    219   1.1   briggs # define FPSR_INF   0x02000000
    220   1.1   briggs # define FPSR_NAN   0x01000000
    221   1.1   briggs #define FPSR_QTT    0x00ff0000
    222   1.1   briggs # define FPSR_QSG   0x00800000
    223   1.1   briggs # define FPSR_QUO   0x007f0000
    224   1.1   briggs #define FPSR_EXCP   0x0000ff00
    225   1.1   briggs # define FPSR_BSUN  0x00008000
    226   1.1   briggs # define FPSR_SNAN  0x00004000
    227   1.1   briggs # define FPSR_OPERR 0x00002000
    228   1.1   briggs # define FPSR_OVFL  0x00001000
    229   1.1   briggs # define FPSR_UNFL  0x00000800
    230   1.1   briggs # define FPSR_DZ    0x00000400
    231   1.1   briggs # define FPSR_INEX2 0x00000200
    232   1.1   briggs # define FPSR_INEX1 0x00000100
    233   1.1   briggs #define FPSR_AEX    0x000000ff
    234   1.1   briggs # define FPSR_AIOP  0x00000080
    235   1.1   briggs # define FPSR_AOVFL 0x00000040
    236   1.1   briggs # define FPSR_AUNFL 0x00000020
    237   1.1   briggs # define FPSR_ADZ   0x00000010
    238   1.1   briggs # define FPSR_AINEX 0x00000008
    239   1.1   briggs 
    240   1.1   briggs /* fpcr */
    241   1.1   briggs #define FPCR_EXCP   FPSR_EXCP
    242   1.1   briggs # define FPCR_BSUN  FPSR_BSUN
    243   1.1   briggs # define FPCR_SNAN  FPSR_SNAN
    244   1.1   briggs # define FPCR_OPERR FPSR_OPERR
    245   1.1   briggs # define FPCR_OVFL  FPSR_OVFL
    246   1.1   briggs # define FPCR_UNFL  FPSR_UNFL
    247   1.1   briggs # define FPCR_DZ    FPSR_DZ
    248   1.1   briggs # define FPCR_INEX2 FPSR_INEX2
    249   1.1   briggs # define FPCR_INEX1 FPSR_INEX1
    250   1.1   briggs #define FPCR_MODE   0x000000ff
    251   1.1   briggs # define FPCR_PREC  0x000000c0
    252   1.1   briggs #  define FPCR_EXTD 0x00000000
    253   1.1   briggs #  define FPCR_SNGL 0x00000040
    254   1.1   briggs #  define FPCR_DBL  0x00000080
    255   1.1   briggs # define FPCR_ROUND 0x00000030
    256   1.1   briggs #  define FPCR_NEAR 0x00000000
    257   1.1   briggs #  define FPCR_ZERO 0x00000010
    258   1.1   briggs #  define FPCR_MINF 0x00000020
    259   1.1   briggs #  define FPCR_PINF 0x00000030
    260   1.1   briggs 
    261   1.1   briggs /*
    262   1.1   briggs  * Other functions.
    263   1.1   briggs  */
    264   1.1   briggs 
    265   1.1   briggs /* Build a new Quiet NaN (sign=0, frac=all 1's). */
    266   1.1   briggs struct	fpn *fpu_newnan __P((struct fpemu *fe));
    267   1.1   briggs 
    268   1.1   briggs /*
    269   1.1   briggs  * Shift a number right some number of bits, taking care of round/sticky.
    270   1.1   briggs  * Note that the result is probably not a well-formed number (it will lack
    271   1.1   briggs  * the normal 1-bit mant[0]&FP_1).
    272   1.1   briggs  */
    273   1.1   briggs int	fpu_shr __P((struct fpn * fp, int shr));
    274   1.1   briggs /*
    275   1.1   briggs  * Round a number according to the round mode in FPCR
    276   1.1   briggs  */
    277   1.8      chs int	fpu_round __P((register struct fpemu *fe, register struct fpn *fp));
    278   1.1   briggs 
    279   1.1   briggs /* type conversion */
    280   1.1   briggs void	fpu_explode __P((struct fpemu *fe, struct fpn *fp, int t, u_int *src));
    281   1.1   briggs void	fpu_implode __P((struct fpemu *fe, struct fpn *fp, int t, u_int *dst));
    282   1.1   briggs 
    283   1.1   briggs /*
    284   1.1   briggs  * non-static emulation functions
    285   1.1   briggs  */
    286   1.1   briggs /* type 0 */
    287   1.1   briggs int fpu_emul_fmovecr __P((struct fpemu *fe, struct instruction *insn));
    288   1.1   briggs int fpu_emul_fstore __P((struct fpemu *fe, struct instruction *insn));
    289   1.1   briggs int fpu_emul_fscale __P((struct fpemu *fe, struct instruction *insn));
    290   1.1   briggs 
    291   1.1   briggs /*
    292   1.1   briggs  * include function declarations of those which are called by fpu_emul_arith()
    293   1.1   briggs  */
    294   1.1   briggs #include "fpu_arith_proto.h"
    295   1.1   briggs 
    296  1.10       cl int fpu_emulate __P((struct frame *frame, struct fpframe *fpf, ksiginfo_t *ksi));
    297   1.4   briggs 
    298   1.1   briggs /*
    299   1.1   briggs  * "helper" functions
    300   1.1   briggs  */
    301   1.1   briggs /* return values from constant rom */
    302   1.1   briggs struct fpn *fpu_const __P((struct fpn *fp, u_int offset));
    303   1.1   briggs /* update exceptions and FPSR */
    304   1.1   briggs int fpu_upd_excp __P((struct fpemu *fe));
    305   1.1   briggs u_int fpu_upd_fpsr __P((struct fpemu *fe, struct fpn *fp));
    306   1.1   briggs 
    307   1.1   briggs /* address mode decoder, and load/store */
    308   1.1   briggs int fpu_decode_ea __P((struct frame *frame, struct instruction *insn,
    309   1.1   briggs 		   struct insn_ea *ea, int modreg));
    310   1.1   briggs int fpu_load_ea __P((struct frame *frame, struct instruction *insn,
    311   1.1   briggs 		 struct insn_ea *ea, char *dst));
    312   1.1   briggs int fpu_store_ea __P((struct frame *frame, struct instruction *insn,
    313   1.1   briggs 		  struct insn_ea *ea, char *src));
    314   1.4   briggs 
    315   1.4   briggs /* fpu_subr.c */
    316   1.4   briggs void fpu_norm __P((register struct fpn *fp));
    317   1.1   briggs 
    318   1.5   briggs #if !defined(FPE_DEBUG)
    319   1.5   briggs #  define FPE_DEBUG 0
    320   1.5   briggs #endif
    321   1.1   briggs 
    322   1.1   briggs #endif /* _FPU_EMULATE_H_ */
    323