Home | History | Annotate | Line # | Download | only in fpe
fpu_emulate.h revision 1.12.88.2
      1  1.12.88.2      snj /*	$NetBSD: fpu_emulate.h,v 1.12.88.2 2009/02/02 00:33:48 snj Exp $	*/
      2        1.1   briggs 
      3        1.1   briggs /*
      4        1.1   briggs  * Copyright (c) 1995 Gordon Ross
      5        1.1   briggs  * Copyright (c) 1995 Ken Nakata
      6        1.1   briggs  * All rights reserved.
      7        1.1   briggs  *
      8        1.1   briggs  * Redistribution and use in source and binary forms, with or without
      9        1.1   briggs  * modification, are permitted provided that the following conditions
     10        1.1   briggs  * are met:
     11        1.1   briggs  * 1. Redistributions of source code must retain the above copyright
     12        1.1   briggs  *    notice, this list of conditions and the following disclaimer.
     13        1.1   briggs  * 2. Redistributions in binary form must reproduce the above copyright
     14        1.1   briggs  *    notice, this list of conditions and the following disclaimer in the
     15        1.1   briggs  *    documentation and/or other materials provided with the distribution.
     16        1.1   briggs  * 3. The name of the author may not be used to endorse or promote products
     17        1.1   briggs  *    derived from this software without specific prior written permission.
     18        1.1   briggs  * 4. All advertising materials mentioning features or use of this software
     19        1.1   briggs  *    must display the following acknowledgement:
     20        1.1   briggs  *      This product includes software developed by Gordon Ross
     21        1.1   briggs  *
     22        1.1   briggs  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23        1.1   briggs  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24        1.1   briggs  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25        1.1   briggs  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26        1.1   briggs  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27        1.1   briggs  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28        1.1   briggs  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29        1.1   briggs  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30        1.1   briggs  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31        1.1   briggs  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32        1.1   briggs  */
     33        1.1   briggs 
     34        1.1   briggs #ifndef _FPU_EMULATE_H_
     35        1.1   briggs #define _FPU_EMULATE_H_
     36        1.1   briggs 
     37        1.1   briggs #include <sys/types.h>
     38       1.10       cl #include <sys/signal.h>
     39       1.11       he #include <sys/time.h>
     40       1.10       cl #include <sys/signalvar.h>
     41       1.10       cl #include <sys/siginfo.h>
     42  1.12.88.2      snj #include <m68k/fpreg.h>
     43        1.1   briggs 
     44        1.1   briggs /*
     45        1.1   briggs  * Floating point emulator (tailored for SPARC/modified for m68k, but
     46        1.1   briggs  * structurally machine-independent).
     47        1.1   briggs  *
     48        1.1   briggs  * Floating point numbers are carried around internally in an `expanded'
     49        1.1   briggs  * or `unpacked' form consisting of:
     50        1.1   briggs  *	- sign
     51        1.1   briggs  *	- unbiased exponent
     52        1.7       is  *	- mantissa (`1.' + 80-bit fraction + guard + round)
     53        1.1   briggs  *	- sticky bit
     54        1.7       is  * Any implied `1' bit is inserted, giving a 81-bit mantissa that is
     55        1.1   briggs  * always nonzero.  Additional low-order `guard' and `round' bits are
     56        1.7       is  * scrunched in, making the entire mantissa 83 bits long.  This is divided
     57        1.6  minoura  * into three 32-bit words, with `spare' bits left over in the upper part
     58        1.1   briggs  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
     59        1.1   briggs  * number is thus kept within the half-open interval [1.0,2.0) (but see
     60        1.1   briggs  * the `number classes' below).  This holds even for denormalized numbers:
     61        1.1   briggs  * when we explode an external denorm, we normalize it, introducing low-order
     62        1.1   briggs  * zero bits, so that the rest of the code always sees normalized values.
     63        1.1   briggs  *
     64        1.1   briggs  * Note that a number of our algorithms use the `spare' bits at the top.
     65        1.1   briggs  * The most demanding algorithm---the one for sqrt---depends on two such
     66        1.1   briggs  * bits, so that it can represent values up to (but not including) 8.0,
     67        1.1   briggs  * and then it needs a carry on top of that, so that we need three `spares'.
     68        1.1   briggs  *
     69        1.1   briggs  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
     70        1.1   briggs  * whole words from the mantissa into it.
     71        1.1   briggs  *
     72        1.1   briggs  * All operations are done in this internal extended precision.  According
     73        1.1   briggs  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
     74        1.1   briggs  * it is OK to do a+b in extended precision and then round the result to
     75        1.1   briggs  * single precision---provided single, double, and extended precisions are
     76        1.1   briggs  * `far enough apart' (they always are), but we will try to avoid any such
     77        1.1   briggs  * extra work where possible.
     78        1.1   briggs  */
     79        1.1   briggs struct fpn {
     80        1.1   briggs 	int	fp_class;		/* see below */
     81        1.1   briggs 	int	fp_sign;		/* 0 => positive, 1 => negative */
     82        1.1   briggs 	int	fp_exp;			/* exponent (unbiased) */
     83        1.1   briggs 	int	fp_sticky;		/* nonzero bits lost at right end */
     84        1.7       is 	u_int	fp_mant[3];		/* 83-bit mantissa */
     85        1.1   briggs };
     86        1.1   briggs 
     87        1.7       is #define	FP_NMANT	83		/* total bits in mantissa (incl g,r) */
     88        1.1   briggs #define	FP_NG		2		/* number of low-order guard bits */
     89        1.1   briggs #define	FP_LG		((FP_NMANT - 1) & 31)	/* log2(1.0) for fp_mant[0] */
     90        1.1   briggs #define	FP_QUIETBIT	(1 << (FP_LG - 1))	/* Quiet bit in NaNs (0.5) */
     91        1.1   briggs #define	FP_1		(1 << FP_LG)		/* 1.0 in fp_mant[0] */
     92        1.1   briggs #define	FP_2		(1 << (FP_LG + 1))	/* 2.0 in fp_mant[0] */
     93        1.1   briggs 
     94        1.1   briggs #define CPYFPN(dst, src)						\
     95        1.1   briggs if ((dst) != (src)) {							\
     96        1.1   briggs     (dst)->fp_class = (src)->fp_class;					\
     97        1.1   briggs     (dst)->fp_sign = (src)->fp_sign;					\
     98        1.1   briggs     (dst)->fp_exp = (src)->fp_exp;					\
     99        1.1   briggs     (dst)->fp_sticky = (src)->fp_sticky;				\
    100        1.1   briggs     (dst)->fp_mant[0] = (src)->fp_mant[0];				\
    101        1.1   briggs     (dst)->fp_mant[1] = (src)->fp_mant[1];				\
    102        1.1   briggs     (dst)->fp_mant[2] = (src)->fp_mant[2];				\
    103        1.1   briggs }
    104        1.1   briggs 
    105        1.1   briggs /*
    106        1.1   briggs  * Number classes.  Since zero, Inf, and NaN cannot be represented using
    107        1.1   briggs  * the above layout, we distinguish these from other numbers via a class.
    108        1.1   briggs  */
    109        1.1   briggs #define	FPC_SNAN	-2		/* signalling NaN (sign irrelevant) */
    110        1.1   briggs #define	FPC_QNAN	-1		/* quiet NaN (sign irrelevant) */
    111        1.1   briggs #define	FPC_ZERO	0		/* zero (sign matters) */
    112        1.1   briggs #define	FPC_NUM		1		/* number (sign matters) */
    113        1.1   briggs #define	FPC_INF		2		/* infinity (sign matters) */
    114        1.1   briggs 
    115        1.1   briggs #define	ISNAN(fp)	((fp)->fp_class < 0)
    116        1.1   briggs #define	ISZERO(fp)	((fp)->fp_class == 0)
    117        1.1   briggs #define	ISINF(fp)	((fp)->fp_class == FPC_INF)
    118        1.1   briggs 
    119        1.1   briggs /*
    120        1.1   briggs  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
    121        1.1   briggs  * to the `more significant' operand for our purposes.  Appendix N says that
    122        1.1   briggs  * the result of a computation involving two numbers are:
    123        1.1   briggs  *
    124        1.1   briggs  *	If both are SNaN: operand 2, converted to Quiet
    125        1.1   briggs  *	If only one is SNaN: the SNaN operand, converted to Quiet
    126        1.1   briggs  *	If both are QNaN: operand 2
    127        1.1   briggs  *	If only one is QNaN: the QNaN operand
    128        1.1   briggs  *
    129        1.1   briggs  * In addition, in operations with an Inf operand, the result is usually
    130        1.1   briggs  * Inf.  The class numbers are carefully arranged so that if
    131        1.1   briggs  *	(unsigned)class(op1) > (unsigned)class(op2)
    132        1.1   briggs  * then op1 is the one we want; otherwise op2 is the one we want.
    133        1.1   briggs  */
    134        1.1   briggs #define	ORDER(x, y) { \
    135        1.1   briggs 	if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
    136        1.1   briggs 		SWAP(x, y); \
    137        1.1   briggs }
    138        1.1   briggs #define	SWAP(x, y) {				\
    139        1.1   briggs 	register struct fpn *swap;		\
    140        1.1   briggs 	swap = (x), (x) = (y), (y) = swap;	\
    141        1.1   briggs }
    142        1.1   briggs 
    143        1.1   briggs /*
    144        1.1   briggs  * Emulator state.
    145        1.1   briggs  */
    146        1.1   briggs struct fpemu {
    147        1.1   briggs     struct	frame *fe_frame; /* integer regs, etc */
    148        1.1   briggs     struct	fpframe *fe_fpframe; /* FP registers, etc */
    149        1.1   briggs     u_int	fe_fpsr;	/* fpsr copy (modified during op) */
    150        1.1   briggs     u_int	fe_fpcr;	/* fpcr copy */
    151        1.1   briggs     struct	fpn fe_f1;	/* operand 1 */
    152        1.1   briggs     struct	fpn fe_f2;	/* operand 2, if required */
    153        1.1   briggs     struct	fpn fe_f3;	/* available storage for result */
    154        1.1   briggs };
    155        1.1   briggs 
    156        1.1   briggs /*****************************************************************************
    157        1.1   briggs  * End of definitions derived from Sparc FPE
    158        1.1   briggs  *****************************************************************************/
    159        1.1   briggs 
    160        1.1   briggs /*
    161        1.1   briggs  * Internal info about a decoded effective address.
    162        1.1   briggs  */
    163        1.1   briggs struct insn_ea {
    164        1.1   briggs     int	ea_regnum;
    165        1.9   toshii     int	ea_ext[3];		/* extension words if any */
    166        1.1   briggs     int	ea_flags;		/* flags == 0 means mode 2: An@ */
    167        1.1   briggs #define	EA_DIRECT	0x001	/* mode [01]: Dn or An */
    168        1.1   briggs #define EA_PREDECR	0x002	/* mode 4: An@- */
    169        1.1   briggs #define	EA_POSTINCR	0x004	/* mode 3: An@+ */
    170        1.1   briggs #define EA_OFFSET	0x008	/* mode 5 or (7,2): APC@(d16) */
    171        1.1   briggs #define	EA_INDEXED	0x010	/* mode 6 or (7,3): APC@(Xn:*:*,d8) etc */
    172        1.1   briggs #define EA_ABS  	0x020	/* mode (7,[01]): abs */
    173        1.1   briggs #define EA_PC_REL	0x040	/* mode (7,[23]): PC@(d16) etc */
    174        1.1   briggs #define	EA_IMMED	0x080	/* mode (7,4): #immed */
    175        1.1   briggs #define EA_MEM_INDIR	0x100	/* mode 6 or (7,3): APC@(Xn:*:*,*)@(*) etc */
    176        1.1   briggs #define EA_BASE_SUPPRSS	0x200	/* mode 6 or (7,3): base register suppressed */
    177        1.5   briggs #define EA_FRAME_EA	0x400	/* MC68LC040 only: precalculated EA from
    178        1.5   briggs 				   format 4 stack frame */
    179        1.5   briggs     int	ea_moffs;		/* offset used for fmoveMulti */
    180        1.1   briggs };
    181        1.1   briggs 
    182        1.1   briggs #define ea_offset	ea_ext[0]	/* mode 5: offset word */
    183        1.1   briggs #define ea_absaddr	ea_ext[0]	/* mode (7,[01]): absolute address */
    184        1.1   briggs #define ea_immed	ea_ext		/* mode (7,4): immediate value */
    185        1.1   briggs #define ea_basedisp	ea_ext[0]	/* mode 6: base displacement */
    186        1.1   briggs #define ea_outerdisp	ea_ext[1]	/* mode 6: outer displacement */
    187        1.1   briggs #define	ea_idxreg	ea_ext[2]	/* mode 6: index register number */
    188        1.5   briggs #define ea_fea		ea_ext[0]	/* MC68LC040 only: frame EA */
    189        1.1   briggs 
    190        1.1   briggs struct instruction {
    191        1.5   briggs     u_int		is_pc;		/* insn's address */
    192        1.5   briggs     u_int		is_nextpc;	/* next PC */
    193        1.5   briggs     int			is_advance;	/* length of instruction */
    194        1.5   briggs     int			is_datasize;	/* size of memory operand */
    195        1.5   briggs     int			is_opcode;	/* opcode word */
    196        1.5   briggs     int			is_word1;	/* second word */
    197        1.5   briggs     struct insn_ea	is_ea;	/* decoded effective address mode */
    198        1.1   briggs };
    199        1.1   briggs 
    200        1.1   briggs /*
    201        1.1   briggs  * FP data types
    202        1.1   briggs  */
    203        1.1   briggs #define FTYPE_LNG 0 /* Long Word Integer */
    204        1.1   briggs #define FTYPE_SNG 1 /* Single Prec */
    205        1.1   briggs #define FTYPE_EXT 2 /* Extended Prec */
    206        1.1   briggs #define FTYPE_BCD 3 /* Packed BCD */
    207        1.1   briggs #define FTYPE_WRD 4 /* Word Integer */
    208        1.1   briggs #define FTYPE_DBL 5 /* Double Prec */
    209        1.1   briggs #define FTYPE_BYT 6 /* Byte Integer */
    210        1.1   briggs 
    211        1.1   briggs /*
    212        1.1   briggs  * Other functions.
    213        1.1   briggs  */
    214        1.1   briggs 
    215        1.1   briggs /* Build a new Quiet NaN (sign=0, frac=all 1's). */
    216        1.1   briggs struct	fpn *fpu_newnan __P((struct fpemu *fe));
    217        1.1   briggs 
    218        1.1   briggs /*
    219        1.1   briggs  * Shift a number right some number of bits, taking care of round/sticky.
    220        1.1   briggs  * Note that the result is probably not a well-formed number (it will lack
    221        1.1   briggs  * the normal 1-bit mant[0]&FP_1).
    222        1.1   briggs  */
    223        1.1   briggs int	fpu_shr __P((struct fpn * fp, int shr));
    224        1.1   briggs /*
    225        1.1   briggs  * Round a number according to the round mode in FPCR
    226        1.1   briggs  */
    227        1.8      chs int	fpu_round __P((register struct fpemu *fe, register struct fpn *fp));
    228        1.1   briggs 
    229        1.1   briggs /* type conversion */
    230        1.1   briggs void	fpu_explode __P((struct fpemu *fe, struct fpn *fp, int t, u_int *src));
    231        1.1   briggs void	fpu_implode __P((struct fpemu *fe, struct fpn *fp, int t, u_int *dst));
    232        1.1   briggs 
    233        1.1   briggs /*
    234        1.1   briggs  * non-static emulation functions
    235        1.1   briggs  */
    236        1.1   briggs /* type 0 */
    237        1.1   briggs int fpu_emul_fmovecr __P((struct fpemu *fe, struct instruction *insn));
    238        1.1   briggs int fpu_emul_fstore __P((struct fpemu *fe, struct instruction *insn));
    239        1.1   briggs int fpu_emul_fscale __P((struct fpemu *fe, struct instruction *insn));
    240        1.1   briggs 
    241        1.1   briggs /*
    242        1.1   briggs  * include function declarations of those which are called by fpu_emul_arith()
    243        1.1   briggs  */
    244        1.1   briggs #include "fpu_arith_proto.h"
    245        1.1   briggs 
    246       1.10       cl int fpu_emulate __P((struct frame *frame, struct fpframe *fpf, ksiginfo_t *ksi));
    247        1.4   briggs 
    248        1.1   briggs /*
    249        1.1   briggs  * "helper" functions
    250        1.1   briggs  */
    251        1.1   briggs /* return values from constant rom */
    252        1.1   briggs struct fpn *fpu_const __P((struct fpn *fp, u_int offset));
    253        1.1   briggs /* update exceptions and FPSR */
    254        1.1   briggs int fpu_upd_excp __P((struct fpemu *fe));
    255        1.1   briggs u_int fpu_upd_fpsr __P((struct fpemu *fe, struct fpn *fp));
    256        1.1   briggs 
    257        1.1   briggs /* address mode decoder, and load/store */
    258        1.1   briggs int fpu_decode_ea __P((struct frame *frame, struct instruction *insn,
    259        1.1   briggs 		   struct insn_ea *ea, int modreg));
    260        1.1   briggs int fpu_load_ea __P((struct frame *frame, struct instruction *insn,
    261        1.1   briggs 		 struct insn_ea *ea, char *dst));
    262        1.1   briggs int fpu_store_ea __P((struct frame *frame, struct instruction *insn,
    263        1.1   briggs 		  struct insn_ea *ea, char *src));
    264        1.4   briggs 
    265        1.4   briggs /* fpu_subr.c */
    266        1.4   briggs void fpu_norm __P((register struct fpn *fp));
    267        1.1   briggs 
    268        1.5   briggs #if !defined(FPE_DEBUG)
    269        1.5   briggs #  define FPE_DEBUG 0
    270        1.5   briggs #endif
    271        1.1   briggs 
    272        1.1   briggs #endif /* _FPU_EMULATE_H_ */
    273