Home | History | Annotate | Line # | Download | only in fpe
fpu_emulate.h revision 1.14.2.1
      1  1.14.2.1      jym /*	$NetBSD: fpu_emulate.h,v 1.14.2.1 2009/05/13 17:17:59 jym Exp $	*/
      2       1.1   briggs 
      3       1.1   briggs /*
      4       1.1   briggs  * Copyright (c) 1995 Gordon Ross
      5       1.1   briggs  * Copyright (c) 1995 Ken Nakata
      6       1.1   briggs  * All rights reserved.
      7       1.1   briggs  *
      8       1.1   briggs  * Redistribution and use in source and binary forms, with or without
      9       1.1   briggs  * modification, are permitted provided that the following conditions
     10       1.1   briggs  * are met:
     11       1.1   briggs  * 1. Redistributions of source code must retain the above copyright
     12       1.1   briggs  *    notice, this list of conditions and the following disclaimer.
     13       1.1   briggs  * 2. Redistributions in binary form must reproduce the above copyright
     14       1.1   briggs  *    notice, this list of conditions and the following disclaimer in the
     15       1.1   briggs  *    documentation and/or other materials provided with the distribution.
     16       1.1   briggs  * 3. The name of the author may not be used to endorse or promote products
     17       1.1   briggs  *    derived from this software without specific prior written permission.
     18       1.1   briggs  * 4. All advertising materials mentioning features or use of this software
     19       1.1   briggs  *    must display the following acknowledgement:
     20       1.1   briggs  *      This product includes software developed by Gordon Ross
     21       1.1   briggs  *
     22       1.1   briggs  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23       1.1   briggs  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24       1.1   briggs  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25       1.1   briggs  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26       1.1   briggs  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27       1.1   briggs  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28       1.1   briggs  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29       1.1   briggs  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30       1.1   briggs  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31       1.1   briggs  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32       1.1   briggs  */
     33       1.1   briggs 
     34       1.1   briggs #ifndef _FPU_EMULATE_H_
     35       1.1   briggs #define _FPU_EMULATE_H_
     36       1.1   briggs 
     37       1.1   briggs #include <sys/types.h>
     38      1.10       cl #include <sys/signal.h>
     39      1.11       he #include <sys/time.h>
     40      1.10       cl #include <sys/signalvar.h>
     41      1.10       cl #include <sys/siginfo.h>
     42      1.14   martin #include <m68k/fpreg.h>
     43       1.1   briggs 
     44       1.1   briggs /*
     45       1.1   briggs  * Floating point emulator (tailored for SPARC/modified for m68k, but
     46       1.1   briggs  * structurally machine-independent).
     47       1.1   briggs  *
     48       1.1   briggs  * Floating point numbers are carried around internally in an `expanded'
     49       1.1   briggs  * or `unpacked' form consisting of:
     50       1.1   briggs  *	- sign
     51       1.1   briggs  *	- unbiased exponent
     52       1.7       is  *	- mantissa (`1.' + 80-bit fraction + guard + round)
     53       1.1   briggs  *	- sticky bit
     54       1.7       is  * Any implied `1' bit is inserted, giving a 81-bit mantissa that is
     55       1.1   briggs  * always nonzero.  Additional low-order `guard' and `round' bits are
     56       1.7       is  * scrunched in, making the entire mantissa 83 bits long.  This is divided
     57       1.6  minoura  * into three 32-bit words, with `spare' bits left over in the upper part
     58       1.1   briggs  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
     59       1.1   briggs  * number is thus kept within the half-open interval [1.0,2.0) (but see
     60       1.1   briggs  * the `number classes' below).  This holds even for denormalized numbers:
     61       1.1   briggs  * when we explode an external denorm, we normalize it, introducing low-order
     62       1.1   briggs  * zero bits, so that the rest of the code always sees normalized values.
     63       1.1   briggs  *
     64       1.1   briggs  * Note that a number of our algorithms use the `spare' bits at the top.
     65       1.1   briggs  * The most demanding algorithm---the one for sqrt---depends on two such
     66       1.1   briggs  * bits, so that it can represent values up to (but not including) 8.0,
     67       1.1   briggs  * and then it needs a carry on top of that, so that we need three `spares'.
     68       1.1   briggs  *
     69       1.1   briggs  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
     70       1.1   briggs  * whole words from the mantissa into it.
     71       1.1   briggs  *
     72       1.1   briggs  * All operations are done in this internal extended precision.  According
     73       1.1   briggs  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
     74       1.1   briggs  * it is OK to do a+b in extended precision and then round the result to
     75       1.1   briggs  * single precision---provided single, double, and extended precisions are
     76       1.1   briggs  * `far enough apart' (they always are), but we will try to avoid any such
     77       1.1   briggs  * extra work where possible.
     78       1.1   briggs  */
     79       1.1   briggs struct fpn {
     80       1.1   briggs 	int	fp_class;		/* see below */
     81       1.1   briggs 	int	fp_sign;		/* 0 => positive, 1 => negative */
     82       1.1   briggs 	int	fp_exp;			/* exponent (unbiased) */
     83       1.1   briggs 	int	fp_sticky;		/* nonzero bits lost at right end */
     84       1.7       is 	u_int	fp_mant[3];		/* 83-bit mantissa */
     85       1.1   briggs };
     86       1.1   briggs 
     87       1.7       is #define	FP_NMANT	83		/* total bits in mantissa (incl g,r) */
     88       1.1   briggs #define	FP_NG		2		/* number of low-order guard bits */
     89       1.1   briggs #define	FP_LG		((FP_NMANT - 1) & 31)	/* log2(1.0) for fp_mant[0] */
     90       1.1   briggs #define	FP_QUIETBIT	(1 << (FP_LG - 1))	/* Quiet bit in NaNs (0.5) */
     91       1.1   briggs #define	FP_1		(1 << FP_LG)		/* 1.0 in fp_mant[0] */
     92       1.1   briggs #define	FP_2		(1 << (FP_LG + 1))	/* 2.0 in fp_mant[0] */
     93       1.1   briggs 
     94       1.1   briggs #define CPYFPN(dst, src)						\
     95       1.1   briggs if ((dst) != (src)) {							\
     96       1.1   briggs     (dst)->fp_class = (src)->fp_class;					\
     97       1.1   briggs     (dst)->fp_sign = (src)->fp_sign;					\
     98       1.1   briggs     (dst)->fp_exp = (src)->fp_exp;					\
     99       1.1   briggs     (dst)->fp_sticky = (src)->fp_sticky;				\
    100       1.1   briggs     (dst)->fp_mant[0] = (src)->fp_mant[0];				\
    101       1.1   briggs     (dst)->fp_mant[1] = (src)->fp_mant[1];				\
    102       1.1   briggs     (dst)->fp_mant[2] = (src)->fp_mant[2];				\
    103       1.1   briggs }
    104       1.1   briggs 
    105       1.1   briggs /*
    106       1.1   briggs  * Number classes.  Since zero, Inf, and NaN cannot be represented using
    107       1.1   briggs  * the above layout, we distinguish these from other numbers via a class.
    108       1.1   briggs  */
    109       1.1   briggs #define	FPC_SNAN	-2		/* signalling NaN (sign irrelevant) */
    110       1.1   briggs #define	FPC_QNAN	-1		/* quiet NaN (sign irrelevant) */
    111       1.1   briggs #define	FPC_ZERO	0		/* zero (sign matters) */
    112       1.1   briggs #define	FPC_NUM		1		/* number (sign matters) */
    113       1.1   briggs #define	FPC_INF		2		/* infinity (sign matters) */
    114       1.1   briggs 
    115       1.1   briggs #define	ISNAN(fp)	((fp)->fp_class < 0)
    116       1.1   briggs #define	ISZERO(fp)	((fp)->fp_class == 0)
    117       1.1   briggs #define	ISINF(fp)	((fp)->fp_class == FPC_INF)
    118       1.1   briggs 
    119       1.1   briggs /*
    120       1.1   briggs  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
    121       1.1   briggs  * to the `more significant' operand for our purposes.  Appendix N says that
    122       1.1   briggs  * the result of a computation involving two numbers are:
    123       1.1   briggs  *
    124       1.1   briggs  *	If both are SNaN: operand 2, converted to Quiet
    125       1.1   briggs  *	If only one is SNaN: the SNaN operand, converted to Quiet
    126       1.1   briggs  *	If both are QNaN: operand 2
    127       1.1   briggs  *	If only one is QNaN: the QNaN operand
    128       1.1   briggs  *
    129       1.1   briggs  * In addition, in operations with an Inf operand, the result is usually
    130       1.1   briggs  * Inf.  The class numbers are carefully arranged so that if
    131       1.1   briggs  *	(unsigned)class(op1) > (unsigned)class(op2)
    132       1.1   briggs  * then op1 is the one we want; otherwise op2 is the one we want.
    133       1.1   briggs  */
    134       1.1   briggs #define	ORDER(x, y) { \
    135       1.1   briggs 	if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
    136       1.1   briggs 		SWAP(x, y); \
    137       1.1   briggs }
    138       1.1   briggs #define	SWAP(x, y) {				\
    139       1.1   briggs 	register struct fpn *swap;		\
    140       1.1   briggs 	swap = (x), (x) = (y), (y) = swap;	\
    141       1.1   briggs }
    142       1.1   briggs 
    143       1.1   briggs /*
    144       1.1   briggs  * Emulator state.
    145       1.1   briggs  */
    146       1.1   briggs struct fpemu {
    147       1.1   briggs     struct	frame *fe_frame; /* integer regs, etc */
    148       1.1   briggs     struct	fpframe *fe_fpframe; /* FP registers, etc */
    149       1.1   briggs     u_int	fe_fpsr;	/* fpsr copy (modified during op) */
    150       1.1   briggs     u_int	fe_fpcr;	/* fpcr copy */
    151       1.1   briggs     struct	fpn fe_f1;	/* operand 1 */
    152       1.1   briggs     struct	fpn fe_f2;	/* operand 2, if required */
    153       1.1   briggs     struct	fpn fe_f3;	/* available storage for result */
    154       1.1   briggs };
    155       1.1   briggs 
    156       1.1   briggs /*****************************************************************************
    157       1.1   briggs  * End of definitions derived from Sparc FPE
    158       1.1   briggs  *****************************************************************************/
    159       1.1   briggs 
    160       1.1   briggs /*
    161       1.1   briggs  * Internal info about a decoded effective address.
    162       1.1   briggs  */
    163       1.1   briggs struct insn_ea {
    164       1.1   briggs     int	ea_regnum;
    165       1.9   toshii     int	ea_ext[3];		/* extension words if any */
    166       1.1   briggs     int	ea_flags;		/* flags == 0 means mode 2: An@ */
    167       1.1   briggs #define	EA_DIRECT	0x001	/* mode [01]: Dn or An */
    168       1.1   briggs #define EA_PREDECR	0x002	/* mode 4: An@- */
    169       1.1   briggs #define	EA_POSTINCR	0x004	/* mode 3: An@+ */
    170       1.1   briggs #define EA_OFFSET	0x008	/* mode 5 or (7,2): APC@(d16) */
    171       1.1   briggs #define	EA_INDEXED	0x010	/* mode 6 or (7,3): APC@(Xn:*:*,d8) etc */
    172       1.1   briggs #define EA_ABS  	0x020	/* mode (7,[01]): abs */
    173       1.1   briggs #define EA_PC_REL	0x040	/* mode (7,[23]): PC@(d16) etc */
    174       1.1   briggs #define	EA_IMMED	0x080	/* mode (7,4): #immed */
    175       1.1   briggs #define EA_MEM_INDIR	0x100	/* mode 6 or (7,3): APC@(Xn:*:*,*)@(*) etc */
    176       1.1   briggs #define EA_BASE_SUPPRSS	0x200	/* mode 6 or (7,3): base register suppressed */
    177       1.5   briggs #define EA_FRAME_EA	0x400	/* MC68LC040 only: precalculated EA from
    178       1.5   briggs 				   format 4 stack frame */
    179       1.5   briggs     int	ea_moffs;		/* offset used for fmoveMulti */
    180       1.1   briggs };
    181       1.1   briggs 
    182       1.1   briggs #define ea_offset	ea_ext[0]	/* mode 5: offset word */
    183       1.1   briggs #define ea_absaddr	ea_ext[0]	/* mode (7,[01]): absolute address */
    184       1.1   briggs #define ea_immed	ea_ext		/* mode (7,4): immediate value */
    185       1.1   briggs #define ea_basedisp	ea_ext[0]	/* mode 6: base displacement */
    186       1.1   briggs #define ea_outerdisp	ea_ext[1]	/* mode 6: outer displacement */
    187       1.1   briggs #define	ea_idxreg	ea_ext[2]	/* mode 6: index register number */
    188       1.5   briggs #define ea_fea		ea_ext[0]	/* MC68LC040 only: frame EA */
    189       1.1   briggs 
    190       1.1   briggs struct instruction {
    191       1.5   briggs     u_int		is_pc;		/* insn's address */
    192       1.5   briggs     u_int		is_nextpc;	/* next PC */
    193       1.5   briggs     int			is_advance;	/* length of instruction */
    194       1.5   briggs     int			is_datasize;	/* size of memory operand */
    195       1.5   briggs     int			is_opcode;	/* opcode word */
    196       1.5   briggs     int			is_word1;	/* second word */
    197       1.5   briggs     struct insn_ea	is_ea;	/* decoded effective address mode */
    198       1.1   briggs };
    199       1.1   briggs 
    200       1.1   briggs /*
    201       1.1   briggs  * FP data types
    202       1.1   briggs  */
    203       1.1   briggs #define FTYPE_LNG 0 /* Long Word Integer */
    204       1.1   briggs #define FTYPE_SNG 1 /* Single Prec */
    205       1.1   briggs #define FTYPE_EXT 2 /* Extended Prec */
    206       1.1   briggs #define FTYPE_BCD 3 /* Packed BCD */
    207       1.1   briggs #define FTYPE_WRD 4 /* Word Integer */
    208       1.1   briggs #define FTYPE_DBL 5 /* Double Prec */
    209       1.1   briggs #define FTYPE_BYT 6 /* Byte Integer */
    210       1.1   briggs 
    211       1.1   briggs /*
    212       1.1   briggs  * Other functions.
    213       1.1   briggs  */
    214       1.1   briggs 
    215       1.1   briggs /* Build a new Quiet NaN (sign=0, frac=all 1's). */
    216  1.14.2.1      jym struct	fpn *fpu_newnan(struct fpemu *fe);
    217       1.1   briggs 
    218       1.1   briggs /*
    219       1.1   briggs  * Shift a number right some number of bits, taking care of round/sticky.
    220       1.1   briggs  * Note that the result is probably not a well-formed number (it will lack
    221       1.1   briggs  * the normal 1-bit mant[0]&FP_1).
    222       1.1   briggs  */
    223  1.14.2.1      jym int	fpu_shr(struct fpn * fp, int shr);
    224       1.1   briggs /*
    225       1.1   briggs  * Round a number according to the round mode in FPCR
    226       1.1   briggs  */
    227  1.14.2.1      jym int	fpu_round(register struct fpemu *fe, register struct fpn *fp);
    228       1.1   briggs 
    229       1.1   briggs /* type conversion */
    230  1.14.2.1      jym void	fpu_explode(struct fpemu *fe, struct fpn *fp, int t, u_int *src);
    231  1.14.2.1      jym void	fpu_implode(struct fpemu *fe, struct fpn *fp, int t, u_int *dst);
    232       1.1   briggs 
    233       1.1   briggs /*
    234       1.1   briggs  * non-static emulation functions
    235       1.1   briggs  */
    236       1.1   briggs /* type 0 */
    237  1.14.2.1      jym int fpu_emul_fmovecr(struct fpemu *fe, struct instruction *insn);
    238  1.14.2.1      jym int fpu_emul_fstore(struct fpemu *fe, struct instruction *insn);
    239  1.14.2.1      jym int fpu_emul_fscale(struct fpemu *fe, struct instruction *insn);
    240       1.1   briggs 
    241       1.1   briggs /*
    242       1.1   briggs  * include function declarations of those which are called by fpu_emul_arith()
    243       1.1   briggs  */
    244       1.1   briggs #include "fpu_arith_proto.h"
    245       1.1   briggs 
    246  1.14.2.1      jym int fpu_emulate(struct frame *frame, struct fpframe *fpf, ksiginfo_t *ksi);
    247       1.4   briggs 
    248       1.1   briggs /*
    249       1.1   briggs  * "helper" functions
    250       1.1   briggs  */
    251       1.1   briggs /* return values from constant rom */
    252  1.14.2.1      jym struct fpn *fpu_const(struct fpn *fp, u_int offset);
    253       1.1   briggs /* update exceptions and FPSR */
    254  1.14.2.1      jym int fpu_upd_excp(struct fpemu *fe);
    255  1.14.2.1      jym u_int fpu_upd_fpsr(struct fpemu *fe, struct fpn *fp);
    256       1.1   briggs 
    257       1.1   briggs /* address mode decoder, and load/store */
    258  1.14.2.1      jym int fpu_decode_ea(struct frame *frame, struct instruction *insn,
    259  1.14.2.1      jym 		   struct insn_ea *ea, int modreg);
    260  1.14.2.1      jym int fpu_load_ea(struct frame *frame, struct instruction *insn,
    261  1.14.2.1      jym 		 struct insn_ea *ea, char *dst);
    262  1.14.2.1      jym int fpu_store_ea(struct frame *frame, struct instruction *insn,
    263  1.14.2.1      jym 		  struct insn_ea *ea, char *src);
    264       1.4   briggs 
    265       1.4   briggs /* fpu_subr.c */
    266  1.14.2.1      jym void fpu_norm(register struct fpn *fp);
    267       1.1   briggs 
    268       1.5   briggs #if !defined(FPE_DEBUG)
    269       1.5   briggs #  define FPE_DEBUG 0
    270       1.5   briggs #endif
    271       1.1   briggs 
    272       1.1   briggs #endif /* _FPU_EMULATE_H_ */
    273