fpu_emulate.h revision 1.23 1 1.23 isaki /* $NetBSD: fpu_emulate.h,v 1.23 2013/04/11 13:27:11 isaki Exp $ */
2 1.1 briggs
3 1.1 briggs /*
4 1.1 briggs * Copyright (c) 1995 Gordon Ross
5 1.1 briggs * Copyright (c) 1995 Ken Nakata
6 1.1 briggs * All rights reserved.
7 1.1 briggs *
8 1.1 briggs * Redistribution and use in source and binary forms, with or without
9 1.1 briggs * modification, are permitted provided that the following conditions
10 1.1 briggs * are met:
11 1.1 briggs * 1. Redistributions of source code must retain the above copyright
12 1.1 briggs * notice, this list of conditions and the following disclaimer.
13 1.1 briggs * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 briggs * notice, this list of conditions and the following disclaimer in the
15 1.1 briggs * documentation and/or other materials provided with the distribution.
16 1.1 briggs * 3. The name of the author may not be used to endorse or promote products
17 1.1 briggs * derived from this software without specific prior written permission.
18 1.1 briggs * 4. All advertising materials mentioning features or use of this software
19 1.1 briggs * must display the following acknowledgement:
20 1.1 briggs * This product includes software developed by Gordon Ross
21 1.1 briggs *
22 1.1 briggs * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 1.1 briggs * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 1.1 briggs * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 1.1 briggs * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 1.1 briggs * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 1.1 briggs * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 1.1 briggs * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 1.1 briggs * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 1.1 briggs * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 1.1 briggs * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 1.1 briggs */
33 1.1 briggs
34 1.1 briggs #ifndef _FPU_EMULATE_H_
35 1.1 briggs #define _FPU_EMULATE_H_
36 1.1 briggs
37 1.1 briggs #include <sys/types.h>
38 1.10 cl #include <sys/signal.h>
39 1.11 he #include <sys/time.h>
40 1.10 cl #include <sys/signalvar.h>
41 1.10 cl #include <sys/siginfo.h>
42 1.14 martin #include <m68k/fpreg.h>
43 1.1 briggs
44 1.1 briggs /*
45 1.1 briggs * Floating point emulator (tailored for SPARC/modified for m68k, but
46 1.1 briggs * structurally machine-independent).
47 1.1 briggs *
48 1.1 briggs * Floating point numbers are carried around internally in an `expanded'
49 1.1 briggs * or `unpacked' form consisting of:
50 1.1 briggs * - sign
51 1.1 briggs * - unbiased exponent
52 1.7 is * - mantissa (`1.' + 80-bit fraction + guard + round)
53 1.1 briggs * - sticky bit
54 1.7 is * Any implied `1' bit is inserted, giving a 81-bit mantissa that is
55 1.1 briggs * always nonzero. Additional low-order `guard' and `round' bits are
56 1.7 is * scrunched in, making the entire mantissa 83 bits long. This is divided
57 1.6 minoura * into three 32-bit words, with `spare' bits left over in the upper part
58 1.1 briggs * of the top word (the high bits of fp_mant[0]). An internal `exploded'
59 1.1 briggs * number is thus kept within the half-open interval [1.0,2.0) (but see
60 1.1 briggs * the `number classes' below). This holds even for denormalized numbers:
61 1.1 briggs * when we explode an external denorm, we normalize it, introducing low-order
62 1.1 briggs * zero bits, so that the rest of the code always sees normalized values.
63 1.1 briggs *
64 1.1 briggs * Note that a number of our algorithms use the `spare' bits at the top.
65 1.1 briggs * The most demanding algorithm---the one for sqrt---depends on two such
66 1.1 briggs * bits, so that it can represent values up to (but not including) 8.0,
67 1.1 briggs * and then it needs a carry on top of that, so that we need three `spares'.
68 1.1 briggs *
69 1.1 briggs * The sticky-word is 32 bits so that we can use `OR' operators to goosh
70 1.1 briggs * whole words from the mantissa into it.
71 1.1 briggs *
72 1.1 briggs * All operations are done in this internal extended precision. According
73 1.1 briggs * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
74 1.1 briggs * it is OK to do a+b in extended precision and then round the result to
75 1.1 briggs * single precision---provided single, double, and extended precisions are
76 1.1 briggs * `far enough apart' (they always are), but we will try to avoid any such
77 1.1 briggs * extra work where possible.
78 1.1 briggs */
79 1.1 briggs struct fpn {
80 1.1 briggs int fp_class; /* see below */
81 1.1 briggs int fp_sign; /* 0 => positive, 1 => negative */
82 1.1 briggs int fp_exp; /* exponent (unbiased) */
83 1.1 briggs int fp_sticky; /* nonzero bits lost at right end */
84 1.22 isaki uint32_t fp_mant[3]; /* 83-bit mantissa */
85 1.1 briggs };
86 1.1 briggs
87 1.7 is #define FP_NMANT 83 /* total bits in mantissa (incl g,r) */
88 1.1 briggs #define FP_NG 2 /* number of low-order guard bits */
89 1.1 briggs #define FP_LG ((FP_NMANT - 1) & 31) /* log2(1.0) for fp_mant[0] */
90 1.1 briggs #define FP_QUIETBIT (1 << (FP_LG - 1)) /* Quiet bit in NaNs (0.5) */
91 1.1 briggs #define FP_1 (1 << FP_LG) /* 1.0 in fp_mant[0] */
92 1.1 briggs #define FP_2 (1 << (FP_LG + 1)) /* 2.0 in fp_mant[0] */
93 1.1 briggs
94 1.19 tsutsui static inline void CPYFPN(struct fpn *, const struct fpn *);
95 1.17 tsutsui
96 1.17 tsutsui static inline void
97 1.19 tsutsui CPYFPN(struct fpn *dst, const struct fpn *src)
98 1.17 tsutsui {
99 1.17 tsutsui
100 1.17 tsutsui if (dst != src) {
101 1.17 tsutsui *dst = *src;
102 1.17 tsutsui }
103 1.1 briggs }
104 1.1 briggs
105 1.1 briggs /*
106 1.1 briggs * Number classes. Since zero, Inf, and NaN cannot be represented using
107 1.1 briggs * the above layout, we distinguish these from other numbers via a class.
108 1.1 briggs */
109 1.1 briggs #define FPC_SNAN -2 /* signalling NaN (sign irrelevant) */
110 1.1 briggs #define FPC_QNAN -1 /* quiet NaN (sign irrelevant) */
111 1.1 briggs #define FPC_ZERO 0 /* zero (sign matters) */
112 1.1 briggs #define FPC_NUM 1 /* number (sign matters) */
113 1.1 briggs #define FPC_INF 2 /* infinity (sign matters) */
114 1.1 briggs
115 1.1 briggs #define ISNAN(fp) ((fp)->fp_class < 0)
116 1.1 briggs #define ISZERO(fp) ((fp)->fp_class == 0)
117 1.1 briggs #define ISINF(fp) ((fp)->fp_class == FPC_INF)
118 1.1 briggs
119 1.1 briggs /*
120 1.1 briggs * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
121 1.1 briggs * to the `more significant' operand for our purposes. Appendix N says that
122 1.1 briggs * the result of a computation involving two numbers are:
123 1.1 briggs *
124 1.1 briggs * If both are SNaN: operand 2, converted to Quiet
125 1.1 briggs * If only one is SNaN: the SNaN operand, converted to Quiet
126 1.1 briggs * If both are QNaN: operand 2
127 1.1 briggs * If only one is QNaN: the QNaN operand
128 1.1 briggs *
129 1.1 briggs * In addition, in operations with an Inf operand, the result is usually
130 1.1 briggs * Inf. The class numbers are carefully arranged so that if
131 1.1 briggs * (unsigned)class(op1) > (unsigned)class(op2)
132 1.1 briggs * then op1 is the one we want; otherwise op2 is the one we want.
133 1.1 briggs */
134 1.1 briggs #define ORDER(x, y) { \
135 1.22 isaki if ((uint32_t)(x)->fp_class > (uint32_t)(y)->fp_class) \
136 1.1 briggs SWAP(x, y); \
137 1.1 briggs }
138 1.1 briggs #define SWAP(x, y) { \
139 1.20 isaki struct fpn *swap; \
140 1.1 briggs swap = (x), (x) = (y), (y) = swap; \
141 1.1 briggs }
142 1.1 briggs
143 1.1 briggs /*
144 1.1 briggs * Emulator state.
145 1.1 briggs */
146 1.1 briggs struct fpemu {
147 1.16 isaki struct frame *fe_frame; /* integer regs, etc */
148 1.16 isaki struct fpframe *fe_fpframe; /* FP registers, etc */
149 1.22 isaki uint32_t fe_fpsr; /* fpsr copy (modified during op) */
150 1.22 isaki uint32_t fe_fpcr; /* fpcr copy */
151 1.16 isaki struct fpn fe_f1; /* operand 1 */
152 1.16 isaki struct fpn fe_f2; /* operand 2, if required */
153 1.16 isaki struct fpn fe_f3; /* available storage for result */
154 1.1 briggs };
155 1.1 briggs
156 1.1 briggs /*****************************************************************************
157 1.1 briggs * End of definitions derived from Sparc FPE
158 1.1 briggs *****************************************************************************/
159 1.1 briggs
160 1.1 briggs /*
161 1.1 briggs * Internal info about a decoded effective address.
162 1.1 briggs */
163 1.1 briggs struct insn_ea {
164 1.16 isaki int ea_regnum;
165 1.16 isaki int ea_ext[3]; /* extension words if any */
166 1.16 isaki int ea_flags; /* flags == 0 means mode 2: An@ */
167 1.1 briggs #define EA_DIRECT 0x001 /* mode [01]: Dn or An */
168 1.1 briggs #define EA_PREDECR 0x002 /* mode 4: An@- */
169 1.1 briggs #define EA_POSTINCR 0x004 /* mode 3: An@+ */
170 1.1 briggs #define EA_OFFSET 0x008 /* mode 5 or (7,2): APC@(d16) */
171 1.1 briggs #define EA_INDEXED 0x010 /* mode 6 or (7,3): APC@(Xn:*:*,d8) etc */
172 1.1 briggs #define EA_ABS 0x020 /* mode (7,[01]): abs */
173 1.1 briggs #define EA_PC_REL 0x040 /* mode (7,[23]): PC@(d16) etc */
174 1.1 briggs #define EA_IMMED 0x080 /* mode (7,4): #immed */
175 1.1 briggs #define EA_MEM_INDIR 0x100 /* mode 6 or (7,3): APC@(Xn:*:*,*)@(*) etc */
176 1.1 briggs #define EA_BASE_SUPPRSS 0x200 /* mode 6 or (7,3): base register suppressed */
177 1.5 briggs #define EA_FRAME_EA 0x400 /* MC68LC040 only: precalculated EA from
178 1.5 briggs format 4 stack frame */
179 1.16 isaki int ea_moffs; /* offset used for fmoveMulti */
180 1.1 briggs };
181 1.1 briggs
182 1.1 briggs #define ea_offset ea_ext[0] /* mode 5: offset word */
183 1.1 briggs #define ea_absaddr ea_ext[0] /* mode (7,[01]): absolute address */
184 1.1 briggs #define ea_immed ea_ext /* mode (7,4): immediate value */
185 1.1 briggs #define ea_basedisp ea_ext[0] /* mode 6: base displacement */
186 1.1 briggs #define ea_outerdisp ea_ext[1] /* mode 6: outer displacement */
187 1.1 briggs #define ea_idxreg ea_ext[2] /* mode 6: index register number */
188 1.5 briggs #define ea_fea ea_ext[0] /* MC68LC040 only: frame EA */
189 1.1 briggs
190 1.1 briggs struct instruction {
191 1.22 isaki uint32_t is_pc; /* insn's address */
192 1.22 isaki uint32_t is_nextpc; /* next PC */
193 1.16 isaki int is_advance; /* length of instruction */
194 1.16 isaki int is_datasize; /* size of memory operand */
195 1.16 isaki int is_opcode; /* opcode word */
196 1.16 isaki int is_word1; /* second word */
197 1.16 isaki struct insn_ea is_ea; /* decoded effective address mode */
198 1.1 briggs };
199 1.1 briggs
200 1.1 briggs /*
201 1.1 briggs * FP data types
202 1.1 briggs */
203 1.1 briggs #define FTYPE_LNG 0 /* Long Word Integer */
204 1.1 briggs #define FTYPE_SNG 1 /* Single Prec */
205 1.1 briggs #define FTYPE_EXT 2 /* Extended Prec */
206 1.1 briggs #define FTYPE_BCD 3 /* Packed BCD */
207 1.1 briggs #define FTYPE_WRD 4 /* Word Integer */
208 1.1 briggs #define FTYPE_DBL 5 /* Double Prec */
209 1.1 briggs #define FTYPE_BYT 6 /* Byte Integer */
210 1.1 briggs
211 1.1 briggs /*
212 1.1 briggs * Other functions.
213 1.1 briggs */
214 1.1 briggs
215 1.1 briggs /* Build a new Quiet NaN (sign=0, frac=all 1's). */
216 1.19 tsutsui struct fpn *fpu_newnan(struct fpemu *);
217 1.1 briggs
218 1.1 briggs /*
219 1.1 briggs * Shift a number right some number of bits, taking care of round/sticky.
220 1.1 briggs * Note that the result is probably not a well-formed number (it will lack
221 1.1 briggs * the normal 1-bit mant[0]&FP_1).
222 1.1 briggs */
223 1.19 tsutsui int fpu_shr(struct fpn *, int);
224 1.1 briggs /*
225 1.1 briggs * Round a number according to the round mode in FPCR
226 1.1 briggs */
227 1.20 isaki int fpu_round(struct fpemu *, struct fpn *);
228 1.1 briggs
229 1.1 briggs /* type conversion */
230 1.22 isaki void fpu_explode(struct fpemu *, struct fpn *, int t, const uint32_t *);
231 1.22 isaki void fpu_implode(struct fpemu *, struct fpn *, int t, uint32_t *);
232 1.1 briggs
233 1.1 briggs /*
234 1.1 briggs * non-static emulation functions
235 1.1 briggs */
236 1.1 briggs /* type 0 */
237 1.19 tsutsui int fpu_emul_fmovecr(struct fpemu *, struct instruction *);
238 1.19 tsutsui int fpu_emul_fstore(struct fpemu *, struct instruction *);
239 1.19 tsutsui int fpu_emul_fscale(struct fpemu *, struct instruction *);
240 1.1 briggs
241 1.1 briggs /*
242 1.1 briggs * include function declarations of those which are called by fpu_emul_arith()
243 1.1 briggs */
244 1.1 briggs #include "fpu_arith_proto.h"
245 1.1 briggs
246 1.19 tsutsui int fpu_emulate(struct frame *, struct fpframe *, ksiginfo_t *);
247 1.18 tsutsui struct fpn *fpu_cmp(struct fpemu *);
248 1.18 tsutsui
249 1.22 isaki struct fpn *fpu_sincos_taylor(struct fpemu *, struct fpn *, uint32_t, int);
250 1.4 briggs
251 1.1 briggs /*
252 1.1 briggs * "helper" functions
253 1.1 briggs */
254 1.1 briggs /* return values from constant rom */
255 1.22 isaki struct fpn *fpu_const(struct fpn *, uint32_t);
256 1.23 isaki #define FPU_CONST_PI (0x00) /* pi */
257 1.23 isaki #define FPU_CONST_LN_2 (0x30) /* ln(2) */
258 1.23 isaki #define FPU_CONST_LN_10 (0x31) /* ln(10) */
259 1.23 isaki #define FPU_CONST_1 (0x32) /* 1.0 */
260 1.23 isaki
261 1.1 briggs /* update exceptions and FPSR */
262 1.19 tsutsui int fpu_upd_excp(struct fpemu *);
263 1.22 isaki uint32_t fpu_upd_fpsr(struct fpemu *, struct fpn *);
264 1.1 briggs
265 1.1 briggs /* address mode decoder, and load/store */
266 1.19 tsutsui int fpu_decode_ea(struct frame *, struct instruction *,
267 1.19 tsutsui struct insn_ea *, int);
268 1.19 tsutsui int fpu_load_ea(struct frame *, struct instruction *,
269 1.19 tsutsui struct insn_ea *, char *);
270 1.19 tsutsui int fpu_store_ea(struct frame *, struct instruction *,
271 1.19 tsutsui struct insn_ea *, char *);
272 1.4 briggs
273 1.4 briggs /* fpu_subr.c */
274 1.20 isaki void fpu_norm(struct fpn *);
275 1.1 briggs
276 1.5 briggs #if !defined(FPE_DEBUG)
277 1.5 briggs # define FPE_DEBUG 0
278 1.5 briggs #endif
279 1.1 briggs
280 1.1 briggs #endif /* _FPU_EMULATE_H_ */
281