Home | History | Annotate | Line # | Download | only in fpe
fpu_emulate.h revision 1.4.24.1
      1  1.4.24.1   perry /*	$NetBSD: fpu_emulate.h,v 1.4.24.1 1999/06/21 15:18:50 perry Exp $	*/
      2       1.1  briggs 
      3       1.1  briggs /*
      4       1.1  briggs  * Copyright (c) 1995 Gordon Ross
      5       1.1  briggs  * Copyright (c) 1995 Ken Nakata
      6       1.1  briggs  * All rights reserved.
      7       1.1  briggs  *
      8       1.1  briggs  * Redistribution and use in source and binary forms, with or without
      9       1.1  briggs  * modification, are permitted provided that the following conditions
     10       1.1  briggs  * are met:
     11       1.1  briggs  * 1. Redistributions of source code must retain the above copyright
     12       1.1  briggs  *    notice, this list of conditions and the following disclaimer.
     13       1.1  briggs  * 2. Redistributions in binary form must reproduce the above copyright
     14       1.1  briggs  *    notice, this list of conditions and the following disclaimer in the
     15       1.1  briggs  *    documentation and/or other materials provided with the distribution.
     16       1.1  briggs  * 3. The name of the author may not be used to endorse or promote products
     17       1.1  briggs  *    derived from this software without specific prior written permission.
     18       1.1  briggs  * 4. All advertising materials mentioning features or use of this software
     19       1.1  briggs  *    must display the following acknowledgement:
     20       1.1  briggs  *      This product includes software developed by Gordon Ross
     21       1.1  briggs  *
     22       1.1  briggs  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23       1.1  briggs  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24       1.1  briggs  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25       1.1  briggs  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26       1.1  briggs  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27       1.1  briggs  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28       1.1  briggs  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29       1.1  briggs  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30       1.1  briggs  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31       1.1  briggs  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32       1.1  briggs  */
     33       1.1  briggs 
     34       1.1  briggs #ifndef _FPU_EMULATE_H_
     35       1.1  briggs #define _FPU_EMULATE_H_
     36       1.1  briggs 
     37       1.1  briggs #include <sys/types.h>
     38       1.1  briggs 
     39       1.1  briggs /*
     40       1.1  briggs  * Floating point emulator (tailored for SPARC/modified for m68k, but
     41       1.1  briggs  * structurally machine-independent).
     42       1.1  briggs  *
     43       1.1  briggs  * Floating point numbers are carried around internally in an `expanded'
     44       1.1  briggs  * or `unpacked' form consisting of:
     45       1.1  briggs  *	- sign
     46       1.1  briggs  *	- unbiased exponent
     47  1.4.24.1   perry  *	- mantissa (`1.' + 63-bit fraction + guard + round)
     48       1.1  briggs  *	- sticky bit
     49       1.1  briggs  * Any implied `1' bit is inserted, giving a 113-bit mantissa that is
     50       1.1  briggs  * always nonzero.  Additional low-order `guard' and `round' bits are
     51       1.1  briggs  * scrunched in, making the entire mantissa 115 bits long.  This is divided
     52       1.1  briggs  * into four 32-bit words, with `spare' bits left over in the upper part
     53       1.1  briggs  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
     54       1.1  briggs  * number is thus kept within the half-open interval [1.0,2.0) (but see
     55       1.1  briggs  * the `number classes' below).  This holds even for denormalized numbers:
     56       1.1  briggs  * when we explode an external denorm, we normalize it, introducing low-order
     57       1.1  briggs  * zero bits, so that the rest of the code always sees normalized values.
     58       1.1  briggs  *
     59       1.1  briggs  * Note that a number of our algorithms use the `spare' bits at the top.
     60       1.1  briggs  * The most demanding algorithm---the one for sqrt---depends on two such
     61       1.1  briggs  * bits, so that it can represent values up to (but not including) 8.0,
     62       1.1  briggs  * and then it needs a carry on top of that, so that we need three `spares'.
     63       1.1  briggs  *
     64       1.1  briggs  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
     65       1.1  briggs  * whole words from the mantissa into it.
     66       1.1  briggs  *
     67       1.1  briggs  * All operations are done in this internal extended precision.  According
     68       1.1  briggs  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
     69       1.1  briggs  * it is OK to do a+b in extended precision and then round the result to
     70       1.1  briggs  * single precision---provided single, double, and extended precisions are
     71       1.1  briggs  * `far enough apart' (they always are), but we will try to avoid any such
     72       1.1  briggs  * extra work where possible.
     73       1.1  briggs  */
     74       1.1  briggs struct fpn {
     75       1.1  briggs 	int	fp_class;		/* see below */
     76       1.1  briggs 	int	fp_sign;		/* 0 => positive, 1 => negative */
     77       1.1  briggs 	int	fp_exp;			/* exponent (unbiased) */
     78       1.1  briggs 	int	fp_sticky;		/* nonzero bits lost at right end */
     79  1.4.24.1   perry 	u_int	fp_mant[3];		/* 66-bit mantissa */
     80       1.1  briggs };
     81       1.1  briggs 
     82  1.4.24.1   perry #define	FP_NMANT	67		/* total bits in mantissa (incl g,r) */
     83       1.1  briggs #define	FP_NG		2		/* number of low-order guard bits */
     84       1.1  briggs #define	FP_LG		((FP_NMANT - 1) & 31)	/* log2(1.0) for fp_mant[0] */
     85       1.1  briggs #define	FP_QUIETBIT	(1 << (FP_LG - 1))	/* Quiet bit in NaNs (0.5) */
     86       1.1  briggs #define	FP_1		(1 << FP_LG)		/* 1.0 in fp_mant[0] */
     87       1.1  briggs #define	FP_2		(1 << (FP_LG + 1))	/* 2.0 in fp_mant[0] */
     88       1.1  briggs 
     89       1.1  briggs #define CPYFPN(dst, src)						\
     90       1.1  briggs if ((dst) != (src)) {							\
     91       1.1  briggs     (dst)->fp_class = (src)->fp_class;					\
     92       1.1  briggs     (dst)->fp_sign = (src)->fp_sign;					\
     93       1.1  briggs     (dst)->fp_exp = (src)->fp_exp;					\
     94       1.1  briggs     (dst)->fp_sticky = (src)->fp_sticky;				\
     95       1.1  briggs     (dst)->fp_mant[0] = (src)->fp_mant[0];				\
     96       1.1  briggs     (dst)->fp_mant[1] = (src)->fp_mant[1];				\
     97       1.1  briggs     (dst)->fp_mant[2] = (src)->fp_mant[2];				\
     98       1.1  briggs }
     99       1.1  briggs 
    100       1.1  briggs /*
    101       1.1  briggs  * Number classes.  Since zero, Inf, and NaN cannot be represented using
    102       1.1  briggs  * the above layout, we distinguish these from other numbers via a class.
    103       1.1  briggs  */
    104       1.1  briggs #define	FPC_SNAN	-2		/* signalling NaN (sign irrelevant) */
    105       1.1  briggs #define	FPC_QNAN	-1		/* quiet NaN (sign irrelevant) */
    106       1.1  briggs #define	FPC_ZERO	0		/* zero (sign matters) */
    107       1.1  briggs #define	FPC_NUM		1		/* number (sign matters) */
    108       1.1  briggs #define	FPC_INF		2		/* infinity (sign matters) */
    109       1.1  briggs 
    110       1.1  briggs #define	ISNAN(fp)	((fp)->fp_class < 0)
    111       1.1  briggs #define	ISZERO(fp)	((fp)->fp_class == 0)
    112       1.1  briggs #define	ISINF(fp)	((fp)->fp_class == FPC_INF)
    113       1.1  briggs 
    114       1.1  briggs /*
    115       1.1  briggs  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
    116       1.1  briggs  * to the `more significant' operand for our purposes.  Appendix N says that
    117       1.1  briggs  * the result of a computation involving two numbers are:
    118       1.1  briggs  *
    119       1.1  briggs  *	If both are SNaN: operand 2, converted to Quiet
    120       1.1  briggs  *	If only one is SNaN: the SNaN operand, converted to Quiet
    121       1.1  briggs  *	If both are QNaN: operand 2
    122       1.1  briggs  *	If only one is QNaN: the QNaN operand
    123       1.1  briggs  *
    124       1.1  briggs  * In addition, in operations with an Inf operand, the result is usually
    125       1.1  briggs  * Inf.  The class numbers are carefully arranged so that if
    126       1.1  briggs  *	(unsigned)class(op1) > (unsigned)class(op2)
    127       1.1  briggs  * then op1 is the one we want; otherwise op2 is the one we want.
    128       1.1  briggs  */
    129       1.1  briggs #define	ORDER(x, y) { \
    130       1.1  briggs 	if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
    131       1.1  briggs 		SWAP(x, y); \
    132       1.1  briggs }
    133       1.1  briggs #define	SWAP(x, y) {				\
    134       1.1  briggs 	register struct fpn *swap;		\
    135       1.1  briggs 	swap = (x), (x) = (y), (y) = swap;	\
    136       1.1  briggs }
    137       1.1  briggs 
    138       1.1  briggs /*
    139       1.1  briggs  * Emulator state.
    140       1.1  briggs  */
    141       1.1  briggs struct fpemu {
    142       1.1  briggs     struct	frame *fe_frame; /* integer regs, etc */
    143       1.1  briggs     struct	fpframe *fe_fpframe; /* FP registers, etc */
    144       1.1  briggs     u_int	fe_fpsr;	/* fpsr copy (modified during op) */
    145       1.1  briggs     u_int	fe_fpcr;	/* fpcr copy */
    146       1.1  briggs     struct	fpn fe_f1;	/* operand 1 */
    147       1.1  briggs     struct	fpn fe_f2;	/* operand 2, if required */
    148       1.1  briggs     struct	fpn fe_f3;	/* available storage for result */
    149       1.1  briggs };
    150       1.1  briggs 
    151       1.1  briggs /*****************************************************************************
    152       1.1  briggs  * End of definitions derived from Sparc FPE
    153       1.1  briggs  *****************************************************************************/
    154       1.1  briggs 
    155       1.1  briggs /*
    156       1.1  briggs  * Internal info about a decoded effective address.
    157       1.1  briggs  */
    158       1.1  briggs struct insn_ea {
    159       1.1  briggs     int	ea_regnum;
    160       1.1  briggs     int	ea_ext[3];		/* extention words if any */
    161       1.1  briggs     int	ea_flags;		/* flags == 0 means mode 2: An@ */
    162       1.1  briggs #define	EA_DIRECT	0x001	/* mode [01]: Dn or An */
    163       1.1  briggs #define EA_PREDECR	0x002	/* mode 4: An@- */
    164       1.1  briggs #define	EA_POSTINCR	0x004	/* mode 3: An@+ */
    165       1.1  briggs #define EA_OFFSET	0x008	/* mode 5 or (7,2): APC@(d16) */
    166       1.1  briggs #define	EA_INDEXED	0x010	/* mode 6 or (7,3): APC@(Xn:*:*,d8) etc */
    167       1.1  briggs #define EA_ABS  	0x020	/* mode (7,[01]): abs */
    168       1.1  briggs #define EA_PC_REL	0x040	/* mode (7,[23]): PC@(d16) etc */
    169       1.1  briggs #define	EA_IMMED	0x080	/* mode (7,4): #immed */
    170       1.1  briggs #define EA_MEM_INDIR	0x100	/* mode 6 or (7,3): APC@(Xn:*:*,*)@(*) etc */
    171       1.1  briggs #define EA_BASE_SUPPRSS	0x200	/* mode 6 or (7,3): base register suppressed */
    172  1.4.24.1   perry #define EA_FRAME_EA	0x400	/* MC68LC040 only: precalculated EA from
    173  1.4.24.1   perry 				   format 4 stack frame */
    174  1.4.24.1   perry     int	ea_moffs;		/* offset used for fmoveMulti */
    175       1.1  briggs };
    176       1.1  briggs 
    177       1.1  briggs #define ea_offset	ea_ext[0]	/* mode 5: offset word */
    178       1.1  briggs #define ea_absaddr	ea_ext[0]	/* mode (7,[01]): absolute address */
    179       1.1  briggs #define ea_immed	ea_ext		/* mode (7,4): immediate value */
    180       1.1  briggs #define ea_basedisp	ea_ext[0]	/* mode 6: base displacement */
    181       1.1  briggs #define ea_outerdisp	ea_ext[1]	/* mode 6: outer displacement */
    182       1.1  briggs #define	ea_idxreg	ea_ext[2]	/* mode 6: index register number */
    183  1.4.24.1   perry #define ea_fea		ea_ext[0]	/* MC68LC040 only: frame EA */
    184       1.1  briggs 
    185       1.1  briggs struct instruction {
    186  1.4.24.1   perry     u_int		is_pc;		/* insn's address */
    187  1.4.24.1   perry     u_int		is_nextpc;	/* next PC */
    188  1.4.24.1   perry     int			is_advance;	/* length of instruction */
    189  1.4.24.1   perry     int			is_datasize;	/* size of memory operand */
    190  1.4.24.1   perry     int			is_opcode;	/* opcode word */
    191  1.4.24.1   perry     int			is_word1;	/* second word */
    192  1.4.24.1   perry     struct insn_ea	is_ea;	/* decoded effective address mode */
    193       1.1  briggs };
    194       1.1  briggs 
    195       1.1  briggs /*
    196       1.1  briggs  * FP data types
    197       1.1  briggs  */
    198       1.1  briggs #define FTYPE_LNG 0 /* Long Word Integer */
    199       1.1  briggs #define FTYPE_SNG 1 /* Single Prec */
    200       1.1  briggs #define FTYPE_EXT 2 /* Extended Prec */
    201       1.1  briggs #define FTYPE_BCD 3 /* Packed BCD */
    202       1.1  briggs #define FTYPE_WRD 4 /* Word Integer */
    203       1.1  briggs #define FTYPE_DBL 5 /* Double Prec */
    204       1.1  briggs #define FTYPE_BYT 6 /* Byte Integer */
    205       1.1  briggs 
    206       1.1  briggs /*
    207       1.1  briggs  * MC68881/68882 FPcr bit definitions (should these go to <m68k/reg.h>
    208       1.1  briggs  * or <m68k/fpu.h> or something?)
    209       1.1  briggs  */
    210       1.1  briggs 
    211       1.1  briggs /* fpsr */
    212       1.1  briggs #define FPSR_CCB    0xff000000
    213       1.1  briggs # define FPSR_NEG   0x08000000
    214       1.1  briggs # define FPSR_ZERO  0x04000000
    215       1.1  briggs # define FPSR_INF   0x02000000
    216       1.1  briggs # define FPSR_NAN   0x01000000
    217       1.1  briggs #define FPSR_QTT    0x00ff0000
    218       1.1  briggs # define FPSR_QSG   0x00800000
    219       1.1  briggs # define FPSR_QUO   0x007f0000
    220       1.1  briggs #define FPSR_EXCP   0x0000ff00
    221       1.1  briggs # define FPSR_BSUN  0x00008000
    222       1.1  briggs # define FPSR_SNAN  0x00004000
    223       1.1  briggs # define FPSR_OPERR 0x00002000
    224       1.1  briggs # define FPSR_OVFL  0x00001000
    225       1.1  briggs # define FPSR_UNFL  0x00000800
    226       1.1  briggs # define FPSR_DZ    0x00000400
    227       1.1  briggs # define FPSR_INEX2 0x00000200
    228       1.1  briggs # define FPSR_INEX1 0x00000100
    229       1.1  briggs #define FPSR_AEX    0x000000ff
    230       1.1  briggs # define FPSR_AIOP  0x00000080
    231       1.1  briggs # define FPSR_AOVFL 0x00000040
    232       1.1  briggs # define FPSR_AUNFL 0x00000020
    233       1.1  briggs # define FPSR_ADZ   0x00000010
    234       1.1  briggs # define FPSR_AINEX 0x00000008
    235       1.1  briggs 
    236       1.1  briggs /* fpcr */
    237       1.1  briggs #define FPCR_EXCP   FPSR_EXCP
    238       1.1  briggs # define FPCR_BSUN  FPSR_BSUN
    239       1.1  briggs # define FPCR_SNAN  FPSR_SNAN
    240       1.1  briggs # define FPCR_OPERR FPSR_OPERR
    241       1.1  briggs # define FPCR_OVFL  FPSR_OVFL
    242       1.1  briggs # define FPCR_UNFL  FPSR_UNFL
    243       1.1  briggs # define FPCR_DZ    FPSR_DZ
    244       1.1  briggs # define FPCR_INEX2 FPSR_INEX2
    245       1.1  briggs # define FPCR_INEX1 FPSR_INEX1
    246       1.1  briggs #define FPCR_MODE   0x000000ff
    247       1.1  briggs # define FPCR_PREC  0x000000c0
    248       1.1  briggs #  define FPCR_EXTD 0x00000000
    249       1.1  briggs #  define FPCR_SNGL 0x00000040
    250       1.1  briggs #  define FPCR_DBL  0x00000080
    251       1.1  briggs # define FPCR_ROUND 0x00000030
    252       1.1  briggs #  define FPCR_NEAR 0x00000000
    253       1.1  briggs #  define FPCR_ZERO 0x00000010
    254       1.1  briggs #  define FPCR_MINF 0x00000020
    255       1.1  briggs #  define FPCR_PINF 0x00000030
    256       1.1  briggs 
    257       1.1  briggs /*
    258       1.1  briggs  * Other functions.
    259       1.1  briggs  */
    260       1.1  briggs 
    261       1.1  briggs /* Build a new Quiet NaN (sign=0, frac=all 1's). */
    262       1.1  briggs struct	fpn *fpu_newnan __P((struct fpemu *fe));
    263       1.1  briggs 
    264       1.1  briggs /*
    265       1.1  briggs  * Shift a number right some number of bits, taking care of round/sticky.
    266       1.1  briggs  * Note that the result is probably not a well-formed number (it will lack
    267       1.1  briggs  * the normal 1-bit mant[0]&FP_1).
    268       1.1  briggs  */
    269       1.1  briggs int	fpu_shr __P((struct fpn * fp, int shr));
    270       1.1  briggs /*
    271       1.1  briggs  * Round a number according to the round mode in FPCR
    272       1.1  briggs  */
    273       1.1  briggs int	round __P((register struct fpemu *fe, register struct fpn *fp));
    274       1.1  briggs 
    275       1.1  briggs /* type conversion */
    276       1.1  briggs void	fpu_explode __P((struct fpemu *fe, struct fpn *fp, int t, u_int *src));
    277       1.1  briggs void	fpu_implode __P((struct fpemu *fe, struct fpn *fp, int t, u_int *dst));
    278       1.1  briggs 
    279       1.1  briggs /*
    280       1.1  briggs  * non-static emulation functions
    281       1.1  briggs  */
    282       1.1  briggs /* type 0 */
    283       1.1  briggs int fpu_emul_fmovecr __P((struct fpemu *fe, struct instruction *insn));
    284       1.1  briggs int fpu_emul_fstore __P((struct fpemu *fe, struct instruction *insn));
    285       1.1  briggs int fpu_emul_fscale __P((struct fpemu *fe, struct instruction *insn));
    286       1.1  briggs 
    287       1.1  briggs /*
    288       1.1  briggs  * include function declarations of those which are called by fpu_emul_arith()
    289       1.1  briggs  */
    290       1.1  briggs #include "fpu_arith_proto.h"
    291       1.1  briggs 
    292       1.4  briggs int fpu_emulate __P((struct frame *frame, struct fpframe *fpf));
    293       1.4  briggs 
    294       1.1  briggs /*
    295       1.1  briggs  * "helper" functions
    296       1.1  briggs  */
    297       1.1  briggs /* return values from constant rom */
    298       1.1  briggs struct fpn *fpu_const __P((struct fpn *fp, u_int offset));
    299       1.1  briggs /* update exceptions and FPSR */
    300       1.1  briggs int fpu_upd_excp __P((struct fpemu *fe));
    301       1.1  briggs u_int fpu_upd_fpsr __P((struct fpemu *fe, struct fpn *fp));
    302       1.1  briggs 
    303       1.1  briggs /* address mode decoder, and load/store */
    304       1.1  briggs int fpu_decode_ea __P((struct frame *frame, struct instruction *insn,
    305       1.1  briggs 		   struct insn_ea *ea, int modreg));
    306       1.1  briggs int fpu_load_ea __P((struct frame *frame, struct instruction *insn,
    307       1.1  briggs 		 struct insn_ea *ea, char *dst));
    308       1.1  briggs int fpu_store_ea __P((struct frame *frame, struct instruction *insn,
    309       1.1  briggs 		  struct insn_ea *ea, char *src));
    310       1.4  briggs 
    311       1.4  briggs /* fpu_subr.c */
    312       1.4  briggs void fpu_norm __P((register struct fpn *fp));
    313       1.1  briggs 
    314  1.4.24.1   perry #if !defined(FPE_DEBUG)
    315  1.4.24.1   perry #  define FPE_DEBUG 0
    316  1.4.24.1   perry #endif
    317       1.1  briggs 
    318       1.1  briggs #endif /* _FPU_EMULATE_H_ */
    319