fpu_emulate.h revision 1.2 1 /* $NetBSD: fpu_emulate.h,v 1.2 1995/11/05 00:35:20 briggs Exp $ */
2
3 /*
4 * Copyright (c) 1995 Gordon Ross
5 * Copyright (c) 1995 Ken Nakata
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 * 4. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Gordon Ross
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #ifndef _FPU_EMULATE_H_
35 #define _FPU_EMULATE_H_
36
37 #include <sys/types.h>
38
39 /*
40 * Floating point emulator (tailored for SPARC/modified for m68k, but
41 * structurally machine-independent).
42 *
43 * Floating point numbers are carried around internally in an `expanded'
44 * or `unpacked' form consisting of:
45 * - sign
46 * - unbiased exponent
47 * - mantissa (`1.' + 112-bit fraction + guard + round)
48 * - sticky bit
49 * Any implied `1' bit is inserted, giving a 113-bit mantissa that is
50 * always nonzero. Additional low-order `guard' and `round' bits are
51 * scrunched in, making the entire mantissa 115 bits long. This is divided
52 * into four 32-bit words, with `spare' bits left over in the upper part
53 * of the top word (the high bits of fp_mant[0]). An internal `exploded'
54 * number is thus kept within the half-open interval [1.0,2.0) (but see
55 * the `number classes' below). This holds even for denormalized numbers:
56 * when we explode an external denorm, we normalize it, introducing low-order
57 * zero bits, so that the rest of the code always sees normalized values.
58 *
59 * Note that a number of our algorithms use the `spare' bits at the top.
60 * The most demanding algorithm---the one for sqrt---depends on two such
61 * bits, so that it can represent values up to (but not including) 8.0,
62 * and then it needs a carry on top of that, so that we need three `spares'.
63 *
64 * The sticky-word is 32 bits so that we can use `OR' operators to goosh
65 * whole words from the mantissa into it.
66 *
67 * All operations are done in this internal extended precision. According
68 * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
69 * it is OK to do a+b in extended precision and then round the result to
70 * single precision---provided single, double, and extended precisions are
71 * `far enough apart' (they always are), but we will try to avoid any such
72 * extra work where possible.
73 */
74 struct fpn {
75 int fp_class; /* see below */
76 int fp_sign; /* 0 => positive, 1 => negative */
77 int fp_exp; /* exponent (unbiased) */
78 int fp_sticky; /* nonzero bits lost at right end */
79 u_int fp_mant[4]; /* 115-bit mantissa */
80 };
81
82 #define FP_NMANT 115 /* total bits in mantissa (incl g,r) */
83 #define FP_NG 2 /* number of low-order guard bits */
84 #define FP_LG ((FP_NMANT - 1) & 31) /* log2(1.0) for fp_mant[0] */
85 #define FP_QUIETBIT (1 << (FP_LG - 1)) /* Quiet bit in NaNs (0.5) */
86 #define FP_1 (1 << FP_LG) /* 1.0 in fp_mant[0] */
87 #define FP_2 (1 << (FP_LG + 1)) /* 2.0 in fp_mant[0] */
88
89 #define CPYFPN(dst, src) \
90 if ((dst) != (src)) { \
91 (dst)->fp_class = (src)->fp_class; \
92 (dst)->fp_sign = (src)->fp_sign; \
93 (dst)->fp_exp = (src)->fp_exp; \
94 (dst)->fp_sticky = (src)->fp_sticky; \
95 (dst)->fp_mant[0] = (src)->fp_mant[0]; \
96 (dst)->fp_mant[1] = (src)->fp_mant[1]; \
97 (dst)->fp_mant[2] = (src)->fp_mant[2]; \
98 (dst)->fp_mant[3] = (src)->fp_mant[3]; \
99 }
100
101 /*
102 * Number classes. Since zero, Inf, and NaN cannot be represented using
103 * the above layout, we distinguish these from other numbers via a class.
104 */
105 #define FPC_SNAN -2 /* signalling NaN (sign irrelevant) */
106 #define FPC_QNAN -1 /* quiet NaN (sign irrelevant) */
107 #define FPC_ZERO 0 /* zero (sign matters) */
108 #define FPC_NUM 1 /* number (sign matters) */
109 #define FPC_INF 2 /* infinity (sign matters) */
110
111 #define ISNAN(fp) ((fp)->fp_class < 0)
112 #define ISZERO(fp) ((fp)->fp_class == 0)
113 #define ISINF(fp) ((fp)->fp_class == FPC_INF)
114
115 /*
116 * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
117 * to the `more significant' operand for our purposes. Appendix N says that
118 * the result of a computation involving two numbers are:
119 *
120 * If both are SNaN: operand 2, converted to Quiet
121 * If only one is SNaN: the SNaN operand, converted to Quiet
122 * If both are QNaN: operand 2
123 * If only one is QNaN: the QNaN operand
124 *
125 * In addition, in operations with an Inf operand, the result is usually
126 * Inf. The class numbers are carefully arranged so that if
127 * (unsigned)class(op1) > (unsigned)class(op2)
128 * then op1 is the one we want; otherwise op2 is the one we want.
129 */
130 #define ORDER(x, y) { \
131 if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
132 SWAP(x, y); \
133 }
134 #define SWAP(x, y) { \
135 register struct fpn *swap; \
136 swap = (x), (x) = (y), (y) = swap; \
137 }
138
139 /*
140 * Emulator state.
141 */
142 struct fpemu {
143 struct frame *fe_frame; /* integer regs, etc */
144 struct fpframe *fe_fpframe; /* FP registers, etc */
145 u_int fe_fpsr; /* fpsr copy (modified during op) */
146 u_int fe_fpcr; /* fpcr copy */
147 struct fpn fe_f1; /* operand 1 */
148 struct fpn fe_f2; /* operand 2, if required */
149 struct fpn fe_f3; /* available storage for result */
150 };
151
152 /*****************************************************************************
153 * End of definitions derived from Sparc FPE
154 *****************************************************************************/
155
156 /*
157 * Internal info about a decoded effective address.
158 */
159 struct insn_ea {
160 int ea_regnum;
161 int ea_ext[3]; /* extention words if any */
162 int ea_flags; /* flags == 0 means mode 2: An@ */
163 #define EA_DIRECT 0x001 /* mode [01]: Dn or An */
164 #define EA_PREDECR 0x002 /* mode 4: An@- */
165 #define EA_POSTINCR 0x004 /* mode 3: An@+ */
166 #define EA_OFFSET 0x008 /* mode 5 or (7,2): APC@(d16) */
167 #define EA_INDEXED 0x010 /* mode 6 or (7,3): APC@(Xn:*:*,d8) etc */
168 #define EA_ABS 0x020 /* mode (7,[01]): abs */
169 #define EA_PC_REL 0x040 /* mode (7,[23]): PC@(d16) etc */
170 #define EA_IMMED 0x080 /* mode (7,4): #immed */
171 #define EA_MEM_INDIR 0x100 /* mode 6 or (7,3): APC@(Xn:*:*,*)@(*) etc */
172 #define EA_BASE_SUPPRSS 0x200 /* mode 6 or (7,3): base register suppressed */
173 int ea_tdisp; /* temp. displ. used to xfer many words */
174 };
175
176 #define ea_offset ea_ext[0] /* mode 5: offset word */
177 #define ea_absaddr ea_ext[0] /* mode (7,[01]): absolute address */
178 #define ea_immed ea_ext /* mode (7,4): immediate value */
179 #define ea_basedisp ea_ext[0] /* mode 6: base displacement */
180 #define ea_outerdisp ea_ext[1] /* mode 6: outer displacement */
181 #define ea_idxreg ea_ext[2] /* mode 6: index register number */
182
183 struct instruction {
184 int is_advance; /* length of instruction */
185 int is_datasize; /* byte, word, long, float, double, ... */
186 int is_opcode; /* opcode word */
187 int is_word1; /* second word */
188 struct insn_ea is_ea0; /* decoded effective address mode */
189 };
190
191 /*
192 * FP data types
193 */
194 #define FTYPE_LNG 0 /* Long Word Integer */
195 #define FTYPE_SNG 1 /* Single Prec */
196 #define FTYPE_EXT 2 /* Extended Prec */
197 #define FTYPE_BCD 3 /* Packed BCD */
198 #define FTYPE_WRD 4 /* Word Integer */
199 #define FTYPE_DBL 5 /* Double Prec */
200 #define FTYPE_BYT 6 /* Byte Integer */
201
202 /*
203 * MC68881/68882 FPcr bit definitions (should these go to <m68k/reg.h>
204 * or <m68k/fpu.h> or something?)
205 */
206
207 /* fpsr */
208 #define FPSR_CCB 0xff000000
209 # define FPSR_NEG 0x08000000
210 # define FPSR_ZERO 0x04000000
211 # define FPSR_INF 0x02000000
212 # define FPSR_NAN 0x01000000
213 #define FPSR_QTT 0x00ff0000
214 # define FPSR_QSG 0x00800000
215 # define FPSR_QUO 0x007f0000
216 #define FPSR_EXCP 0x0000ff00
217 # define FPSR_BSUN 0x00008000
218 # define FPSR_SNAN 0x00004000
219 # define FPSR_OPERR 0x00002000
220 # define FPSR_OVFL 0x00001000
221 # define FPSR_UNFL 0x00000800
222 # define FPSR_DZ 0x00000400
223 # define FPSR_INEX2 0x00000200
224 # define FPSR_INEX1 0x00000100
225 #define FPSR_AEX 0x000000ff
226 # define FPSR_AIOP 0x00000080
227 # define FPSR_AOVFL 0x00000040
228 # define FPSR_AUNFL 0x00000020
229 # define FPSR_ADZ 0x00000010
230 # define FPSR_AINEX 0x00000008
231
232 /* fpcr */
233 #define FPCR_EXCP FPSR_EXCP
234 # define FPCR_BSUN FPSR_BSUN
235 # define FPCR_SNAN FPSR_SNAN
236 # define FPCR_OPERR FPSR_OPERR
237 # define FPCR_OVFL FPSR_OVFL
238 # define FPCR_UNFL FPSR_UNFL
239 # define FPCR_DZ FPSR_DZ
240 # define FPCR_INEX2 FPSR_INEX2
241 # define FPCR_INEX1 FPSR_INEX1
242 #define FPCR_MODE 0x000000ff
243 # define FPCR_PREC 0x000000c0
244 # define FPCR_EXTD 0x00000000
245 # define FPCR_SNGL 0x00000040
246 # define FPCR_DBL 0x00000080
247 # define FPCR_ROUND 0x00000030
248 # define FPCR_NEAR 0x00000000
249 # define FPCR_ZERO 0x00000010
250 # define FPCR_MINF 0x00000020
251 # define FPCR_PINF 0x00000030
252
253 /*
254 * Other functions.
255 */
256
257 /* Build a new Quiet NaN (sign=0, frac=all 1's). */
258 struct fpn *fpu_newnan __P((struct fpemu *fe));
259
260 /*
261 * Shift a number right some number of bits, taking care of round/sticky.
262 * Note that the result is probably not a well-formed number (it will lack
263 * the normal 1-bit mant[0]&FP_1).
264 */
265 int fpu_shr __P((struct fpn * fp, int shr));
266 /*
267 * Round a number according to the round mode in FPCR
268 */
269 int round __P((register struct fpemu *fe, register struct fpn *fp));
270
271 /* type conversion */
272 void fpu_explode __P((struct fpemu *fe, struct fpn *fp, int t, u_int *src));
273 void fpu_implode __P((struct fpemu *fe, struct fpn *fp, int t, u_int *dst));
274
275 /*
276 * non-static emulation functions
277 */
278 /* type 0 */
279 int fpu_emul_fmovecr __P((struct fpemu *fe, struct instruction *insn));
280 int fpu_emul_fstore __P((struct fpemu *fe, struct instruction *insn));
281 int fpu_emul_fscale __P((struct fpemu *fe, struct instruction *insn));
282
283 /*
284 * include function declarations of those which are called by fpu_emul_arith()
285 */
286 #include "fpu_arith_proto.h"
287
288 /*
289 * "helper" functions
290 */
291 /* return values from constant rom */
292 struct fpn *fpu_const __P((struct fpn *fp, u_int offset));
293 /* update exceptions and FPSR */
294 int fpu_upd_excp __P((struct fpemu *fe));
295 u_int fpu_upd_fpsr __P((struct fpemu *fe, struct fpn *fp));
296
297 /* address mode decoder, and load/store */
298 int fpu_decode_ea __P((struct frame *frame, struct instruction *insn,
299 struct insn_ea *ea, int modreg));
300 int fpu_load_ea __P((struct frame *frame, struct instruction *insn,
301 struct insn_ea *ea, char *dst));
302 int fpu_store_ea __P((struct frame *frame, struct instruction *insn,
303 struct insn_ea *ea, char *src));
304
305 /* macros for debugging */
306 #define DEBUG /* XXX */
307
308 extern int fpu_debug_level;
309
310 /* debug classes */
311 #define DL_DUMPINSN 0x0001
312 #define DL_DECODEEA 0x0002
313 #define DL_LOADEA 0x0004
314 #define DL_STOREEA 0x0008
315 #define DL_OPERANDS 0x0010
316 #define DL_RESULT 0x0020
317 #define DL_TESTCC 0x0040
318 #define DL_BRANCH 0x0080
319 #define DL_FSTORE 0x0100
320 #define DL_FSCALE 0x0200
321 #define DL_ARITH 0x0400
322 #define DL_INSN 0x0800
323 #define DL_FMOVEM 0x1000
324 /* not defined yet
325 #define DL_2000 0x2000
326 #define DL_4000 0x4000
327 */
328 #define DL_VERBOSE 0x8000
329 /* composit debug classes */
330 #define DL_EA (DL_DECODEEA|DL_LOADEA|DL_STOREEA)
331 #define DL_VALUES (DL_OPERANDS|DL_RESULT)
332 #define DL_COND (DL_TESTCC|DL_BRANCH)
333 #define DL_ALL 0xffff
334
335 #endif /* _FPU_EMULATE_H_ */
336