Home | History | Annotate | Line # | Download | only in fpe
fpu_emulate.h revision 1.4
      1 /*	$NetBSD: fpu_emulate.h,v 1.4 1996/04/30 11:52:14 briggs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Gordon Ross
      5  * Copyright (c) 1995 Ken Nakata
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. The name of the author may not be used to endorse or promote products
     17  *    derived from this software without specific prior written permission.
     18  * 4. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *      This product includes software developed by Gordon Ross
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #ifndef _FPU_EMULATE_H_
     35 #define _FPU_EMULATE_H_
     36 
     37 #include <sys/types.h>
     38 
     39 /*
     40  * Floating point emulator (tailored for SPARC/modified for m68k, but
     41  * structurally machine-independent).
     42  *
     43  * Floating point numbers are carried around internally in an `expanded'
     44  * or `unpacked' form consisting of:
     45  *	- sign
     46  *	- unbiased exponent
     47  *	- mantissa (`1.' + 112-bit fraction + guard + round)
     48  *	- sticky bit
     49  * Any implied `1' bit is inserted, giving a 113-bit mantissa that is
     50  * always nonzero.  Additional low-order `guard' and `round' bits are
     51  * scrunched in, making the entire mantissa 115 bits long.  This is divided
     52  * into four 32-bit words, with `spare' bits left over in the upper part
     53  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
     54  * number is thus kept within the half-open interval [1.0,2.0) (but see
     55  * the `number classes' below).  This holds even for denormalized numbers:
     56  * when we explode an external denorm, we normalize it, introducing low-order
     57  * zero bits, so that the rest of the code always sees normalized values.
     58  *
     59  * Note that a number of our algorithms use the `spare' bits at the top.
     60  * The most demanding algorithm---the one for sqrt---depends on two such
     61  * bits, so that it can represent values up to (but not including) 8.0,
     62  * and then it needs a carry on top of that, so that we need three `spares'.
     63  *
     64  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
     65  * whole words from the mantissa into it.
     66  *
     67  * All operations are done in this internal extended precision.  According
     68  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
     69  * it is OK to do a+b in extended precision and then round the result to
     70  * single precision---provided single, double, and extended precisions are
     71  * `far enough apart' (they always are), but we will try to avoid any such
     72  * extra work where possible.
     73  */
     74 struct fpn {
     75 	int	fp_class;		/* see below */
     76 	int	fp_sign;		/* 0 => positive, 1 => negative */
     77 	int	fp_exp;			/* exponent (unbiased) */
     78 	int	fp_sticky;		/* nonzero bits lost at right end */
     79 	u_int	fp_mant[4];		/* 115-bit mantissa */
     80 };
     81 
     82 #define	FP_NMANT	115		/* total bits in mantissa (incl g,r) */
     83 #define	FP_NG		2		/* number of low-order guard bits */
     84 #define	FP_LG		((FP_NMANT - 1) & 31)	/* log2(1.0) for fp_mant[0] */
     85 #define	FP_QUIETBIT	(1 << (FP_LG - 1))	/* Quiet bit in NaNs (0.5) */
     86 #define	FP_1		(1 << FP_LG)		/* 1.0 in fp_mant[0] */
     87 #define	FP_2		(1 << (FP_LG + 1))	/* 2.0 in fp_mant[0] */
     88 
     89 #define CPYFPN(dst, src)						\
     90 if ((dst) != (src)) {							\
     91     (dst)->fp_class = (src)->fp_class;					\
     92     (dst)->fp_sign = (src)->fp_sign;					\
     93     (dst)->fp_exp = (src)->fp_exp;					\
     94     (dst)->fp_sticky = (src)->fp_sticky;				\
     95     (dst)->fp_mant[0] = (src)->fp_mant[0];				\
     96     (dst)->fp_mant[1] = (src)->fp_mant[1];				\
     97     (dst)->fp_mant[2] = (src)->fp_mant[2];				\
     98     (dst)->fp_mant[3] = (src)->fp_mant[3];				\
     99 }
    100 
    101 /*
    102  * Number classes.  Since zero, Inf, and NaN cannot be represented using
    103  * the above layout, we distinguish these from other numbers via a class.
    104  */
    105 #define	FPC_SNAN	-2		/* signalling NaN (sign irrelevant) */
    106 #define	FPC_QNAN	-1		/* quiet NaN (sign irrelevant) */
    107 #define	FPC_ZERO	0		/* zero (sign matters) */
    108 #define	FPC_NUM		1		/* number (sign matters) */
    109 #define	FPC_INF		2		/* infinity (sign matters) */
    110 
    111 #define	ISNAN(fp)	((fp)->fp_class < 0)
    112 #define	ISZERO(fp)	((fp)->fp_class == 0)
    113 #define	ISINF(fp)	((fp)->fp_class == FPC_INF)
    114 
    115 /*
    116  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
    117  * to the `more significant' operand for our purposes.  Appendix N says that
    118  * the result of a computation involving two numbers are:
    119  *
    120  *	If both are SNaN: operand 2, converted to Quiet
    121  *	If only one is SNaN: the SNaN operand, converted to Quiet
    122  *	If both are QNaN: operand 2
    123  *	If only one is QNaN: the QNaN operand
    124  *
    125  * In addition, in operations with an Inf operand, the result is usually
    126  * Inf.  The class numbers are carefully arranged so that if
    127  *	(unsigned)class(op1) > (unsigned)class(op2)
    128  * then op1 is the one we want; otherwise op2 is the one we want.
    129  */
    130 #define	ORDER(x, y) { \
    131 	if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
    132 		SWAP(x, y); \
    133 }
    134 #define	SWAP(x, y) {				\
    135 	register struct fpn *swap;		\
    136 	swap = (x), (x) = (y), (y) = swap;	\
    137 }
    138 
    139 /*
    140  * Emulator state.
    141  */
    142 struct fpemu {
    143     struct	frame *fe_frame; /* integer regs, etc */
    144     struct	fpframe *fe_fpframe; /* FP registers, etc */
    145     u_int	fe_fpsr;	/* fpsr copy (modified during op) */
    146     u_int	fe_fpcr;	/* fpcr copy */
    147     struct	fpn fe_f1;	/* operand 1 */
    148     struct	fpn fe_f2;	/* operand 2, if required */
    149     struct	fpn fe_f3;	/* available storage for result */
    150 };
    151 
    152 /*****************************************************************************
    153  * End of definitions derived from Sparc FPE
    154  *****************************************************************************/
    155 
    156 /*
    157  * Internal info about a decoded effective address.
    158  */
    159 struct insn_ea {
    160     int	ea_regnum;
    161     int	ea_ext[3];		/* extention words if any */
    162     int	ea_flags;		/* flags == 0 means mode 2: An@ */
    163 #define	EA_DIRECT	0x001	/* mode [01]: Dn or An */
    164 #define EA_PREDECR	0x002	/* mode 4: An@- */
    165 #define	EA_POSTINCR	0x004	/* mode 3: An@+ */
    166 #define EA_OFFSET	0x008	/* mode 5 or (7,2): APC@(d16) */
    167 #define	EA_INDEXED	0x010	/* mode 6 or (7,3): APC@(Xn:*:*,d8) etc */
    168 #define EA_ABS  	0x020	/* mode (7,[01]): abs */
    169 #define EA_PC_REL	0x040	/* mode (7,[23]): PC@(d16) etc */
    170 #define	EA_IMMED	0x080	/* mode (7,4): #immed */
    171 #define EA_MEM_INDIR	0x100	/* mode 6 or (7,3): APC@(Xn:*:*,*)@(*) etc */
    172 #define EA_BASE_SUPPRSS	0x200	/* mode 6 or (7,3): base register suppressed */
    173     int	ea_tdisp;		/* temp. displ. used to xfer many words */
    174 };
    175 
    176 #define ea_offset	ea_ext[0]	/* mode 5: offset word */
    177 #define ea_absaddr	ea_ext[0]	/* mode (7,[01]): absolute address */
    178 #define ea_immed	ea_ext		/* mode (7,4): immediate value */
    179 #define ea_basedisp	ea_ext[0]	/* mode 6: base displacement */
    180 #define ea_outerdisp	ea_ext[1]	/* mode 6: outer displacement */
    181 #define	ea_idxreg	ea_ext[2]	/* mode 6: index register number */
    182 
    183 struct instruction {
    184     int		is_advance;	/* length of instruction */
    185     int		is_datasize;	/* byte, word, long, float, double, ... */
    186     int		is_opcode;	/* opcode word */
    187     int		is_word1;	/* second word */
    188     struct	insn_ea	is_ea0;	/* decoded effective address mode */
    189 };
    190 
    191 /*
    192  * FP data types
    193  */
    194 #define FTYPE_LNG 0 /* Long Word Integer */
    195 #define FTYPE_SNG 1 /* Single Prec */
    196 #define FTYPE_EXT 2 /* Extended Prec */
    197 #define FTYPE_BCD 3 /* Packed BCD */
    198 #define FTYPE_WRD 4 /* Word Integer */
    199 #define FTYPE_DBL 5 /* Double Prec */
    200 #define FTYPE_BYT 6 /* Byte Integer */
    201 
    202 /*
    203  * MC68881/68882 FPcr bit definitions (should these go to <m68k/reg.h>
    204  * or <m68k/fpu.h> or something?)
    205  */
    206 
    207 /* fpsr */
    208 #define FPSR_CCB    0xff000000
    209 # define FPSR_NEG   0x08000000
    210 # define FPSR_ZERO  0x04000000
    211 # define FPSR_INF   0x02000000
    212 # define FPSR_NAN   0x01000000
    213 #define FPSR_QTT    0x00ff0000
    214 # define FPSR_QSG   0x00800000
    215 # define FPSR_QUO   0x007f0000
    216 #define FPSR_EXCP   0x0000ff00
    217 # define FPSR_BSUN  0x00008000
    218 # define FPSR_SNAN  0x00004000
    219 # define FPSR_OPERR 0x00002000
    220 # define FPSR_OVFL  0x00001000
    221 # define FPSR_UNFL  0x00000800
    222 # define FPSR_DZ    0x00000400
    223 # define FPSR_INEX2 0x00000200
    224 # define FPSR_INEX1 0x00000100
    225 #define FPSR_AEX    0x000000ff
    226 # define FPSR_AIOP  0x00000080
    227 # define FPSR_AOVFL 0x00000040
    228 # define FPSR_AUNFL 0x00000020
    229 # define FPSR_ADZ   0x00000010
    230 # define FPSR_AINEX 0x00000008
    231 
    232 /* fpcr */
    233 #define FPCR_EXCP   FPSR_EXCP
    234 # define FPCR_BSUN  FPSR_BSUN
    235 # define FPCR_SNAN  FPSR_SNAN
    236 # define FPCR_OPERR FPSR_OPERR
    237 # define FPCR_OVFL  FPSR_OVFL
    238 # define FPCR_UNFL  FPSR_UNFL
    239 # define FPCR_DZ    FPSR_DZ
    240 # define FPCR_INEX2 FPSR_INEX2
    241 # define FPCR_INEX1 FPSR_INEX1
    242 #define FPCR_MODE   0x000000ff
    243 # define FPCR_PREC  0x000000c0
    244 #  define FPCR_EXTD 0x00000000
    245 #  define FPCR_SNGL 0x00000040
    246 #  define FPCR_DBL  0x00000080
    247 # define FPCR_ROUND 0x00000030
    248 #  define FPCR_NEAR 0x00000000
    249 #  define FPCR_ZERO 0x00000010
    250 #  define FPCR_MINF 0x00000020
    251 #  define FPCR_PINF 0x00000030
    252 
    253 /*
    254  * Other functions.
    255  */
    256 
    257 /* Build a new Quiet NaN (sign=0, frac=all 1's). */
    258 struct	fpn *fpu_newnan __P((struct fpemu *fe));
    259 
    260 /*
    261  * Shift a number right some number of bits, taking care of round/sticky.
    262  * Note that the result is probably not a well-formed number (it will lack
    263  * the normal 1-bit mant[0]&FP_1).
    264  */
    265 int	fpu_shr __P((struct fpn * fp, int shr));
    266 /*
    267  * Round a number according to the round mode in FPCR
    268  */
    269 int	round __P((register struct fpemu *fe, register struct fpn *fp));
    270 
    271 /* type conversion */
    272 void	fpu_explode __P((struct fpemu *fe, struct fpn *fp, int t, u_int *src));
    273 void	fpu_implode __P((struct fpemu *fe, struct fpn *fp, int t, u_int *dst));
    274 
    275 /*
    276  * non-static emulation functions
    277  */
    278 /* type 0 */
    279 int fpu_emul_fmovecr __P((struct fpemu *fe, struct instruction *insn));
    280 int fpu_emul_fstore __P((struct fpemu *fe, struct instruction *insn));
    281 int fpu_emul_fscale __P((struct fpemu *fe, struct instruction *insn));
    282 
    283 /*
    284  * include function declarations of those which are called by fpu_emul_arith()
    285  */
    286 #include "fpu_arith_proto.h"
    287 
    288 int fpu_emulate __P((struct frame *frame, struct fpframe *fpf));
    289 
    290 /*
    291  * "helper" functions
    292  */
    293 /* return values from constant rom */
    294 struct fpn *fpu_const __P((struct fpn *fp, u_int offset));
    295 /* update exceptions and FPSR */
    296 int fpu_upd_excp __P((struct fpemu *fe));
    297 u_int fpu_upd_fpsr __P((struct fpemu *fe, struct fpn *fp));
    298 
    299 /* address mode decoder, and load/store */
    300 int fpu_decode_ea __P((struct frame *frame, struct instruction *insn,
    301 		   struct insn_ea *ea, int modreg));
    302 int fpu_load_ea __P((struct frame *frame, struct instruction *insn,
    303 		 struct insn_ea *ea, char *dst));
    304 int fpu_store_ea __P((struct frame *frame, struct instruction *insn,
    305 		  struct insn_ea *ea, char *src));
    306 
    307 /* fpu_subr.c */
    308 void fpu_norm __P((register struct fpn *fp));
    309 
    310 /* declarations for debugging */
    311 
    312 extern int fpu_debug_level;
    313 
    314 /* debug classes */
    315 #define DL_DUMPINSN 0x0001
    316 #define DL_DECODEEA 0x0002
    317 #define DL_LOADEA   0x0004
    318 #define DL_STOREEA  0x0008
    319 #define DL_OPERANDS 0x0010
    320 #define DL_RESULT   0x0020
    321 #define DL_TESTCC   0x0040
    322 #define DL_BRANCH   0x0080
    323 #define DL_FSTORE   0x0100
    324 #define DL_FSCALE   0x0200
    325 #define DL_ARITH    0x0400
    326 #define DL_INSN     0x0800
    327 #define DL_FMOVEM   0x1000
    328 /* not defined yet
    329 #define DL_2000     0x2000
    330 #define DL_4000     0x4000
    331 */
    332 #define DL_VERBOSE  0x8000
    333 /* composit debug classes */
    334 #define DL_EA       (DL_DECODEEA|DL_LOADEA|DL_STOREEA)
    335 #define DL_VALUES   (DL_OPERANDS|DL_RESULT)
    336 #define DL_COND     (DL_TESTCC|DL_BRANCH)
    337 #define DL_ALL      0xffff
    338 
    339 #endif /* _FPU_EMULATE_H_ */
    340