fpu_explode.c revision 1.15 1 /* $NetBSD: fpu_explode.c,v 1.15 2015/02/05 12:23:27 isaki Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)fpu_explode.c 8.1 (Berkeley) 6/11/93
41 */
42
43 /*
44 * FPU subroutines: `explode' the machine's `packed binary' format numbers
45 * into our internal format.
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: fpu_explode.c,v 1.15 2015/02/05 12:23:27 isaki Exp $");
50
51 #include <sys/types.h>
52 #include <sys/systm.h>
53
54 #include <machine/ieee.h>
55 #include <machine/reg.h>
56
57 #include "fpu_arith.h"
58 #include "fpu_emulate.h"
59
60
61 /* Conversion to internal format -- note asymmetry. */
62 static int fpu_itof(struct fpn *fp, uint32_t i);
63 static int fpu_stof(struct fpn *fp, uint32_t i);
64 static int fpu_dtof(struct fpn *fp, uint32_t i, uint32_t j);
65 static int fpu_xtof(struct fpn *fp, uint32_t i, uint32_t j, uint32_t k);
66
67 /*
68 * N.B.: in all of the following, we assume the FP format is
69 *
70 * ---------------------------
71 * | s | exponent | fraction |
72 * ---------------------------
73 *
74 * (which represents -1**s * 1.fraction * 2**exponent), so that the
75 * sign bit is way at the top (bit 31), the exponent is next, and
76 * then the remaining bits mark the fraction. A zero exponent means
77 * zero or denormalized (0.fraction rather than 1.fraction), and the
78 * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
79 *
80 * Since the sign bit is always the topmost bit---this holds even for
81 * integers---we set that outside all the *tof functions. Each function
82 * returns the class code for the new number (but note that we use
83 * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
84 */
85
86 /*
87 * int -> fpn.
88 */
89 static int
90 fpu_itof(struct fpn *fp, uint32_t i)
91 {
92
93 if (i == 0)
94 return (FPC_ZERO);
95 /*
96 * The value FP_1 represents 2^FP_LG, so set the exponent
97 * there and let normalization fix it up. Convert negative
98 * numbers to sign-and-magnitude. Note that this relies on
99 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
100 */
101 fp->fp_exp = FP_LG;
102 fp->fp_mant[0] = (int)i < 0 ? -i : i;
103 fp->fp_mant[1] = 0;
104 fp->fp_mant[2] = 0;
105 fpu_norm(fp);
106 return (FPC_NUM);
107 }
108
109 #define mask(nbits) ((1 << (nbits)) - 1)
110
111 /*
112 * All external floating formats convert to internal in the same manner,
113 * as defined here. Note that only normals get an implied 1.0 inserted.
114 */
115 #define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
116 if (exp == 0) { \
117 if (allfrac == 0) \
118 return (FPC_ZERO); \
119 fp->fp_exp = 1 - expbias; \
120 fp->fp_mant[0] = f0; \
121 fp->fp_mant[1] = f1; \
122 fp->fp_mant[2] = f2; \
123 fpu_norm(fp); \
124 return (FPC_NUM); \
125 } \
126 if (exp == (2 * expbias + 1)) { \
127 if (allfrac == 0) \
128 return (FPC_INF); \
129 fp->fp_mant[0] = f0; \
130 fp->fp_mant[1] = f1; \
131 fp->fp_mant[2] = f2; \
132 return (FPC_QNAN); \
133 } \
134 fp->fp_exp = exp - expbias; \
135 fp->fp_mant[0] = FP_1 | f0; \
136 fp->fp_mant[1] = f1; \
137 fp->fp_mant[2] = f2; \
138 return (FPC_NUM)
139
140 /*
141 * 32-bit single precision -> fpn.
142 * We assume a single occupies at most (64-FP_LG) bits in the internal
143 * format: i.e., needs at most fp_mant[0] and fp_mant[1].
144 */
145 static int
146 fpu_stof(struct fpn *fp, uint32_t i)
147 {
148 int exp;
149 uint32_t frac, f0, f1;
150 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
151
152 exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
153 frac = i & mask(SNG_FRACBITS);
154 f0 = frac >> SNG_SHIFT;
155 f1 = frac << (32 - SNG_SHIFT);
156 FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
157 }
158
159 /*
160 * 64-bit double -> fpn.
161 * We assume this uses at most (96-FP_LG) bits.
162 */
163 static int
164 fpu_dtof(struct fpn *fp, uint32_t i, uint32_t j)
165 {
166 int exp;
167 uint32_t frac, f0, f1, f2;
168 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
169
170 exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
171 frac = i & mask(DBL_FRACBITS - 32);
172 f0 = frac >> DBL_SHIFT;
173 f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
174 f2 = j << (32 - DBL_SHIFT);
175 frac |= j;
176 FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
177 }
178
179 /*
180 * 96-bit extended -> fpn.
181 */
182 static int
183 fpu_xtof(struct fpn *fp, uint32_t i, uint32_t j, uint32_t k)
184 {
185 int exp;
186 uint32_t f0, f1, f2;
187 #define EXT_SHIFT (EXT_FRACBITS - 1 - 32 - FP_LG)
188
189 exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
190 f0 = j >> EXT_SHIFT;
191 f1 = (j << (32 - EXT_SHIFT)) | (k >> EXT_SHIFT);
192 f2 = k << (32 - EXT_SHIFT);
193
194 /* m68k extended does not imply denormal by exp==0 */
195 if (exp == 0) {
196 if ((j | k) == 0)
197 return (FPC_ZERO);
198 fp->fp_exp = - EXT_EXP_BIAS;
199 fp->fp_mant[0] = f0;
200 fp->fp_mant[1] = f1;
201 fp->fp_mant[2] = f2;
202 fpu_norm(fp);
203 return (FPC_NUM);
204 }
205 if (exp == (2 * EXT_EXP_BIAS + 1)) {
206 /* MSB is an integer part and don't care */
207 if ((j & 0x7fffffff) == 0 && k == 0)
208 return (FPC_INF);
209 fp->fp_mant[0] = f0;
210 fp->fp_mant[1] = f1;
211 fp->fp_mant[2] = f2;
212 return (FPC_QNAN);
213 }
214 fp->fp_exp = exp - EXT_EXP_BIAS;
215 fp->fp_mant[0] = FP_1 | f0;
216 fp->fp_mant[1] = f1;
217 fp->fp_mant[2] = f2;
218 return (FPC_NUM);
219 }
220
221 /*
222 * Explode the contents of a memory operand.
223 */
224 void
225 fpu_explode(struct fpemu *fe, struct fpn *fp, int type, const uint32_t *space)
226 {
227 uint32_t s;
228
229 s = space[0];
230 fp->fp_sign = s >> 31;
231 fp->fp_sticky = 0;
232 switch (type) {
233
234 case FTYPE_BYT:
235 s >>= 8;
236 case FTYPE_WRD:
237 s >>= 16;
238 case FTYPE_LNG:
239 s = fpu_itof(fp, s);
240 break;
241
242 case FTYPE_SNG:
243 s = fpu_stof(fp, s);
244 break;
245
246 case FTYPE_DBL:
247 s = fpu_dtof(fp, s, space[1]);
248 break;
249
250 case FTYPE_EXT:
251 s = fpu_xtof(fp, s, space[1], space[2]);
252 break;
253
254 default:
255 panic("fpu_explode");
256 }
257 if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
258 /*
259 * Input is a signalling NaN. All operations that return
260 * an input NaN operand put it through a ``NaN conversion'',
261 * which basically just means ``turn on the quiet bit''.
262 * We do this here so that all NaNs internally look quiet
263 * (we can tell signalling ones by their class).
264 */
265 fp->fp_mant[0] |= FP_QUIETBIT;
266 fe->fe_fpsr |= FPSR_SNAN; /* assert SNAN exception */
267 s = FPC_SNAN;
268 }
269 fp->fp_class = s;
270 }
271