Home | History | Annotate | Line # | Download | only in fpe
fpu_explode.c revision 1.2
      1 /*	$NetBSD: fpu_explode.c,v 1.2 1996/04/30 11:52:18 briggs Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
     45  */
     46 
     47 /*
     48  * FPU subroutines: `explode' the machine's `packed binary' format numbers
     49  * into our internal format.
     50  */
     51 
     52 #include <sys/types.h>
     53 #include <sys/systm.h>
     54 
     55 #include "ieee.h"
     56 #include <machine/reg.h>
     57 
     58 #include "fpu_arith.h"
     59 #include "fpu_emulate.h"
     60 
     61 
     62 /* Conversion to internal format -- note asymmetry. */
     63 static int	fpu_itof __P((struct fpn *fp, u_int i));
     64 static int	fpu_stof __P((struct fpn *fp, u_int i));
     65 static int	fpu_dtof __P((struct fpn *fp, u_int i, u_int j));
     66 static int	fpu_xtof __P((struct fpn *fp, u_int i, u_int j, u_int k));
     67 
     68 /*
     69  * N.B.: in all of the following, we assume the FP format is
     70  *
     71  *	---------------------------
     72  *	| s | exponent | fraction |
     73  *	---------------------------
     74  *
     75  * (which represents -1**s * 1.fraction * 2**exponent), so that the
     76  * sign bit is way at the top (bit 31), the exponent is next, and
     77  * then the remaining bits mark the fraction.  A zero exponent means
     78  * zero or denormalized (0.fraction rather than 1.fraction), and the
     79  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
     80  *
     81  * Since the sign bit is always the topmost bit---this holds even for
     82  * integers---we set that outside all the *tof functions.  Each function
     83  * returns the class code for the new number (but note that we use
     84  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
     85  */
     86 
     87 /*
     88  * int -> fpn.
     89  */
     90 static int
     91 fpu_itof(fp, i)
     92 	register struct fpn *fp;
     93 	register u_int i;
     94 {
     95 
     96 	if (i == 0)
     97 		return (FPC_ZERO);
     98 	/*
     99 	 * The value FP_1 represents 2^FP_LG, so set the exponent
    100 	 * there and let normalization fix it up.  Convert negative
    101 	 * numbers to sign-and-magnitude.  Note that this relies on
    102 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
    103 	 */
    104 	fp->fp_exp = FP_LG;
    105 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
    106 	fp->fp_mant[1] = 0;
    107 	fp->fp_mant[2] = 0;
    108 	fp->fp_mant[3] = 0;
    109 	fpu_norm(fp);
    110 	return (FPC_NUM);
    111 }
    112 
    113 #define	mask(nbits) ((1 << (nbits)) - 1)
    114 
    115 /*
    116  * All external floating formats convert to internal in the same manner,
    117  * as defined here.  Note that only normals get an implied 1.0 inserted.
    118  */
    119 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
    120 	if (exp == 0) { \
    121 		if (allfrac == 0) \
    122 			return (FPC_ZERO); \
    123 		fp->fp_exp = 1 - expbias; \
    124 		fp->fp_mant[0] = f0; \
    125 		fp->fp_mant[1] = f1; \
    126 		fp->fp_mant[2] = f2; \
    127 		fp->fp_mant[3] = f3; \
    128 		fpu_norm(fp); \
    129 		return (FPC_NUM); \
    130 	} \
    131 	if (exp == (2 * expbias + 1)) { \
    132 		if (allfrac == 0) \
    133 			return (FPC_INF); \
    134 		fp->fp_mant[0] = f0; \
    135 		fp->fp_mant[1] = f1; \
    136 		fp->fp_mant[2] = f2; \
    137 		fp->fp_mant[3] = f3; \
    138 		return (FPC_QNAN); \
    139 	} \
    140 	fp->fp_exp = exp - expbias; \
    141 	fp->fp_mant[0] = FP_1 | f0; \
    142 	fp->fp_mant[1] = f1; \
    143 	fp->fp_mant[2] = f2; \
    144 	fp->fp_mant[3] = f3; \
    145 	return (FPC_NUM)
    146 
    147 /*
    148  * 32-bit single precision -> fpn.
    149  * We assume a single occupies at most (64-FP_LG) bits in the internal
    150  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
    151  */
    152 static int
    153 fpu_stof(fp, i)
    154 	register struct fpn *fp;
    155 	register u_int i;
    156 {
    157 	register int exp;
    158 	register u_int frac, f0, f1;
    159 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
    160 
    161 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
    162 	frac = i & mask(SNG_FRACBITS);
    163 	f0 = frac >> SNG_SHIFT;
    164 	f1 = frac << (32 - SNG_SHIFT);
    165 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
    166 }
    167 
    168 /*
    169  * 64-bit double -> fpn.
    170  * We assume this uses at most (96-FP_LG) bits.
    171  */
    172 static int
    173 fpu_dtof(fp, i, j)
    174 	register struct fpn *fp;
    175 	register u_int i, j;
    176 {
    177 	register int exp;
    178 	register u_int frac, f0, f1, f2;
    179 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
    180 
    181 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
    182 	frac = i & mask(DBL_FRACBITS - 32);
    183 	f0 = frac >> DBL_SHIFT;
    184 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
    185 	f2 = j << (32 - DBL_SHIFT);
    186 	frac |= j;
    187 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
    188 }
    189 
    190 /*
    191  * 96-bit extended -> fpn.
    192  */
    193 static int
    194 fpu_xtof(fp, i, j, k)
    195 	register struct fpn *fp;
    196 	register u_int i, j, k;
    197 {
    198 	register int exp;
    199 	register u_int frac, f0, f1, f2;
    200 #define EXT_SHIFT (EXT_FRACBITS - 1 - 32 - FP_LG)
    201 
    202 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
    203 	f0 = j >> EXT_SHIFT;
    204 	f1 = (j << (32 - EXT_SHIFT)) | (k >> EXT_SHIFT);
    205 	f2 = k << (32 - EXT_SHIFT);
    206 	frac = j | k;
    207 
    208 	/* m68k extended does not imply denormal by exp==0 */
    209 	if (exp == 0) {
    210 		if (frac == 0)
    211 			return (FPC_ZERO);
    212 		fp->fp_exp = - EXT_EXP_BIAS;
    213 		fp->fp_mant[0] = f0;
    214 		fp->fp_mant[1] = f1;
    215 		fp->fp_mant[2] = f2;
    216 		fp->fp_mant[3] = 0;
    217 		fpu_norm(fp);
    218 		return (FPC_NUM);
    219 	}
    220 	if (exp == (2 * EXT_EXP_BIAS + 1)) {
    221 		if (frac == 0)
    222 			return (FPC_INF);
    223 		fp->fp_mant[0] = f0;
    224 		fp->fp_mant[1] = f1;
    225 		fp->fp_mant[2] = f2;
    226 		fp->fp_mant[3] = 0;
    227 		return (FPC_QNAN);
    228 	}
    229 	fp->fp_exp = exp - EXT_EXP_BIAS;
    230 	fp->fp_mant[0] = FP_1 | f0;
    231 	fp->fp_mant[1] = f1;
    232 	fp->fp_mant[2] = f2;
    233 	fp->fp_mant[3] = 0;
    234 	return (FPC_NUM);
    235 }
    236 
    237 /*
    238  * Explode the contents of a memory operand.
    239  */
    240 void
    241 fpu_explode(fe, fp, type, space)
    242 	register struct fpemu *fe;
    243 	register struct fpn *fp;
    244 	int type;
    245 	register u_int *space;
    246 {
    247 	register u_int s;
    248 
    249 	s = space[0];
    250 	fp->fp_sign = s >> 31;
    251 	fp->fp_sticky = 0;
    252 	switch (type) {
    253 
    254 	case FTYPE_BYT:
    255 		s >>= 8;
    256 	case FTYPE_WRD:
    257 		s >>= 16;
    258 	case FTYPE_LNG:
    259 		s = fpu_itof(fp, s);
    260 		break;
    261 
    262 	case FTYPE_SNG:
    263 		s = fpu_stof(fp, s);
    264 		break;
    265 
    266 	case FTYPE_DBL:
    267 		s = fpu_dtof(fp, s, space[1]);
    268 		break;
    269 
    270 	case FTYPE_EXT:
    271 		s = fpu_xtof(fp, s, space[1], space[2]);
    272 		break;
    273 
    274 	default:
    275 		panic("fpu_explode");
    276 	}
    277 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
    278 		/*
    279 		 * Input is a signalling NaN.  All operations that return
    280 		 * an input NaN operand put it through a ``NaN conversion'',
    281 		 * which basically just means ``turn on the quiet bit''.
    282 		 * We do this here so that all NaNs internally look quiet
    283 		 * (we can tell signalling ones by their class).
    284 		 */
    285 		fp->fp_mant[0] |= FP_QUIETBIT;
    286 		fe->fe_fpsr |= FPSR_SNAN;	/* assert SNAN exception */
    287 		s = FPC_SNAN;
    288 	}
    289 	fp->fp_class = s;
    290 }
    291