fpu_explode.c revision 1.6 1 /* $NetBSD: fpu_explode.c,v 1.6 2003/10/23 15:07:30 kleink Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)fpu_explode.c 8.1 (Berkeley) 6/11/93
41 */
42
43 /*
44 * FPU subroutines: `explode' the machine's `packed binary' format numbers
45 * into our internal format.
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: fpu_explode.c,v 1.6 2003/10/23 15:07:30 kleink Exp $");
50
51 #include <sys/types.h>
52 #include <sys/systm.h>
53
54 #include <machine/ieee.h>
55 #include <machine/reg.h>
56
57 #include "fpu_arith.h"
58 #include "fpu_emulate.h"
59
60
61 /* Conversion to internal format -- note asymmetry. */
62 static int fpu_itof __P((struct fpn *fp, u_int i));
63 static int fpu_stof __P((struct fpn *fp, u_int i));
64 static int fpu_dtof __P((struct fpn *fp, u_int i, u_int j));
65 static int fpu_xtof __P((struct fpn *fp, u_int i, u_int j, u_int k));
66
67 /*
68 * N.B.: in all of the following, we assume the FP format is
69 *
70 * ---------------------------
71 * | s | exponent | fraction |
72 * ---------------------------
73 *
74 * (which represents -1**s * 1.fraction * 2**exponent), so that the
75 * sign bit is way at the top (bit 31), the exponent is next, and
76 * then the remaining bits mark the fraction. A zero exponent means
77 * zero or denormalized (0.fraction rather than 1.fraction), and the
78 * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
79 *
80 * Since the sign bit is always the topmost bit---this holds even for
81 * integers---we set that outside all the *tof functions. Each function
82 * returns the class code for the new number (but note that we use
83 * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
84 */
85
86 /*
87 * int -> fpn.
88 */
89 static int
90 fpu_itof(fp, i)
91 register struct fpn *fp;
92 register u_int i;
93 {
94
95 if (i == 0)
96 return (FPC_ZERO);
97 /*
98 * The value FP_1 represents 2^FP_LG, so set the exponent
99 * there and let normalization fix it up. Convert negative
100 * numbers to sign-and-magnitude. Note that this relies on
101 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
102 */
103 fp->fp_exp = FP_LG;
104 fp->fp_mant[0] = (int)i < 0 ? -i : i;
105 fp->fp_mant[1] = 0;
106 fp->fp_mant[2] = 0;
107 fpu_norm(fp);
108 return (FPC_NUM);
109 }
110
111 #define mask(nbits) ((1 << (nbits)) - 1)
112
113 /*
114 * All external floating formats convert to internal in the same manner,
115 * as defined here. Note that only normals get an implied 1.0 inserted.
116 */
117 #define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
118 if (exp == 0) { \
119 if (allfrac == 0) \
120 return (FPC_ZERO); \
121 fp->fp_exp = 1 - expbias; \
122 fp->fp_mant[0] = f0; \
123 fp->fp_mant[1] = f1; \
124 fp->fp_mant[2] = f2; \
125 fpu_norm(fp); \
126 return (FPC_NUM); \
127 } \
128 if (exp == (2 * expbias + 1)) { \
129 if (allfrac == 0) \
130 return (FPC_INF); \
131 fp->fp_mant[0] = f0; \
132 fp->fp_mant[1] = f1; \
133 fp->fp_mant[2] = f2; \
134 return (FPC_QNAN); \
135 } \
136 fp->fp_exp = exp - expbias; \
137 fp->fp_mant[0] = FP_1 | f0; \
138 fp->fp_mant[1] = f1; \
139 fp->fp_mant[2] = f2; \
140 return (FPC_NUM)
141
142 /*
143 * 32-bit single precision -> fpn.
144 * We assume a single occupies at most (64-FP_LG) bits in the internal
145 * format: i.e., needs at most fp_mant[0] and fp_mant[1].
146 */
147 static int
148 fpu_stof(fp, i)
149 register struct fpn *fp;
150 register u_int i;
151 {
152 register int exp;
153 register u_int frac, f0, f1;
154 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
155
156 exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
157 frac = i & mask(SNG_FRACBITS);
158 f0 = frac >> SNG_SHIFT;
159 f1 = frac << (32 - SNG_SHIFT);
160 FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
161 }
162
163 /*
164 * 64-bit double -> fpn.
165 * We assume this uses at most (96-FP_LG) bits.
166 */
167 static int
168 fpu_dtof(fp, i, j)
169 register struct fpn *fp;
170 register u_int i, j;
171 {
172 register int exp;
173 register u_int frac, f0, f1, f2;
174 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
175
176 exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
177 frac = i & mask(DBL_FRACBITS - 32);
178 f0 = frac >> DBL_SHIFT;
179 f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
180 f2 = j << (32 - DBL_SHIFT);
181 frac |= j;
182 FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
183 }
184
185 /*
186 * 96-bit extended -> fpn.
187 */
188 static int
189 fpu_xtof(fp, i, j, k)
190 register struct fpn *fp;
191 register u_int i, j, k;
192 {
193 register int exp;
194 register u_int frac, f0, f1, f2;
195 #define EXT_SHIFT (EXT_FRACBITS - 1 - 32 - FP_LG)
196
197 exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
198 f0 = j >> EXT_SHIFT;
199 f1 = (j << (32 - EXT_SHIFT)) | (k >> EXT_SHIFT);
200 f2 = k << (32 - EXT_SHIFT);
201 frac = j | k;
202
203 /* m68k extended does not imply denormal by exp==0 */
204 if (exp == 0) {
205 if (frac == 0)
206 return (FPC_ZERO);
207 fp->fp_exp = - EXT_EXP_BIAS;
208 fp->fp_mant[0] = f0;
209 fp->fp_mant[1] = f1;
210 fp->fp_mant[2] = f2;
211 fpu_norm(fp);
212 return (FPC_NUM);
213 }
214 if (exp == (2 * EXT_EXP_BIAS + 1)) {
215 if (frac == 0)
216 return (FPC_INF);
217 fp->fp_mant[0] = f0;
218 fp->fp_mant[1] = f1;
219 fp->fp_mant[2] = f2;
220 return (FPC_QNAN);
221 }
222 fp->fp_exp = exp - EXT_EXP_BIAS;
223 fp->fp_mant[0] = FP_1 | f0;
224 fp->fp_mant[1] = f1;
225 fp->fp_mant[2] = f2;
226 return (FPC_NUM);
227 }
228
229 /*
230 * Explode the contents of a memory operand.
231 */
232 void
233 fpu_explode(fe, fp, type, space)
234 register struct fpemu *fe;
235 register struct fpn *fp;
236 int type;
237 register u_int *space;
238 {
239 register u_int s;
240
241 s = space[0];
242 fp->fp_sign = s >> 31;
243 fp->fp_sticky = 0;
244 switch (type) {
245
246 case FTYPE_BYT:
247 s >>= 8;
248 case FTYPE_WRD:
249 s >>= 16;
250 case FTYPE_LNG:
251 s = fpu_itof(fp, s);
252 break;
253
254 case FTYPE_SNG:
255 s = fpu_stof(fp, s);
256 break;
257
258 case FTYPE_DBL:
259 s = fpu_dtof(fp, s, space[1]);
260 break;
261
262 case FTYPE_EXT:
263 s = fpu_xtof(fp, s, space[1], space[2]);
264 break;
265
266 default:
267 panic("fpu_explode");
268 }
269 if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
270 /*
271 * Input is a signalling NaN. All operations that return
272 * an input NaN operand put it through a ``NaN conversion'',
273 * which basically just means ``turn on the quiet bit''.
274 * We do this here so that all NaNs internally look quiet
275 * (we can tell signalling ones by their class).
276 */
277 fp->fp_mant[0] |= FP_QUIETBIT;
278 fe->fe_fpsr |= FPSR_SNAN; /* assert SNAN exception */
279 s = FPC_SNAN;
280 }
281 fp->fp_class = s;
282 }
283