1 1.15 isaki /* $NetBSD: fpu_implode.c,v 1.15 2013/03/26 11:30:21 isaki Exp $ */ 2 1.1 briggs 3 1.1 briggs /* 4 1.1 briggs * Copyright (c) 1992, 1993 5 1.1 briggs * The Regents of the University of California. All rights reserved. 6 1.1 briggs * 7 1.1 briggs * This software was developed by the Computer Systems Engineering group 8 1.1 briggs * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 1.1 briggs * contributed to Berkeley. 10 1.1 briggs * 11 1.1 briggs * All advertising materials mentioning features or use of this software 12 1.1 briggs * must display the following acknowledgement: 13 1.1 briggs * This product includes software developed by the University of 14 1.1 briggs * California, Lawrence Berkeley Laboratory. 15 1.1 briggs * 16 1.1 briggs * Redistribution and use in source and binary forms, with or without 17 1.1 briggs * modification, are permitted provided that the following conditions 18 1.1 briggs * are met: 19 1.1 briggs * 1. Redistributions of source code must retain the above copyright 20 1.1 briggs * notice, this list of conditions and the following disclaimer. 21 1.1 briggs * 2. Redistributions in binary form must reproduce the above copyright 22 1.1 briggs * notice, this list of conditions and the following disclaimer in the 23 1.1 briggs * documentation and/or other materials provided with the distribution. 24 1.7 agc * 3. Neither the name of the University nor the names of its contributors 25 1.1 briggs * may be used to endorse or promote products derived from this software 26 1.1 briggs * without specific prior written permission. 27 1.1 briggs * 28 1.1 briggs * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 1.1 briggs * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 1.1 briggs * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 1.1 briggs * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 1.1 briggs * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 1.1 briggs * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 1.1 briggs * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 1.1 briggs * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 1.1 briggs * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 1.1 briggs * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 1.1 briggs * SUCH DAMAGE. 39 1.1 briggs * 40 1.1 briggs * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93 41 1.1 briggs */ 42 1.1 briggs 43 1.1 briggs /* 44 1.1 briggs * FPU subroutines: `implode' internal format numbers into the machine's 45 1.1 briggs * `packed binary' format. 46 1.1 briggs */ 47 1.6 lukem 48 1.6 lukem #include <sys/cdefs.h> 49 1.15 isaki __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.15 2013/03/26 11:30:21 isaki Exp $"); 50 1.1 briggs 51 1.1 briggs #include <sys/types.h> 52 1.2 briggs #include <sys/systm.h> 53 1.1 briggs 54 1.8 kleink #include <machine/ieee.h> 55 1.1 briggs #include <machine/reg.h> 56 1.1 briggs 57 1.1 briggs #include "fpu_emulate.h" 58 1.1 briggs #include "fpu_arith.h" 59 1.1 briggs 60 1.1 briggs /* Conversion from internal format -- note asymmetry. */ 61 1.15 isaki static uint32_t fpu_ftoi(struct fpemu *fe, struct fpn *fp); 62 1.15 isaki static uint32_t fpu_ftos(struct fpemu *fe, struct fpn *fp); 63 1.15 isaki static uint32_t fpu_ftod(struct fpemu *fe, struct fpn *fp, uint32_t *); 64 1.15 isaki static uint32_t fpu_ftox(struct fpemu *fe, struct fpn *fp, uint32_t *); 65 1.1 briggs 66 1.1 briggs /* 67 1.1 briggs * Round a number (algorithm from Motorola MC68882 manual, modified for 68 1.1 briggs * our internal format). Set inexact exception if rounding is required. 69 1.1 briggs * Return true iff we rounded up. 70 1.1 briggs * 71 1.1 briggs * After rounding, we discard the guard and round bits by shifting right 72 1.1 briggs * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky). 73 1.1 briggs * This saves effort later. 74 1.1 briggs * 75 1.1 briggs * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's 76 1.1 briggs * responsibility to fix this if necessary. 77 1.1 briggs */ 78 1.1 briggs int 79 1.13 isaki fpu_round(struct fpemu *fe, struct fpn *fp) 80 1.1 briggs { 81 1.15 isaki uint32_t m0, m1, m2; 82 1.13 isaki int gr, s; 83 1.1 briggs 84 1.1 briggs m0 = fp->fp_mant[0]; 85 1.1 briggs m1 = fp->fp_mant[1]; 86 1.1 briggs m2 = fp->fp_mant[2]; 87 1.4 briggs gr = m2 & 3; 88 1.1 briggs s = fp->fp_sticky; 89 1.1 briggs 90 1.1 briggs /* mant >>= FP_NG */ 91 1.1 briggs m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG)); 92 1.1 briggs m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG)); 93 1.1 briggs m0 >>= FP_NG; 94 1.1 briggs 95 1.1 briggs if ((gr | s) == 0) /* result is exact: no rounding needed */ 96 1.1 briggs goto rounddown; 97 1.1 briggs 98 1.1 briggs fe->fe_fpsr |= FPSR_INEX2; /* inexact */ 99 1.1 briggs 100 1.1 briggs /* Go to rounddown to round down; break to round up. */ 101 1.1 briggs switch (fe->fe_fpcr & FPCR_ROUND) { 102 1.1 briggs 103 1.1 briggs case FPCR_NEAR: 104 1.1 briggs default: 105 1.1 briggs /* 106 1.1 briggs * Round only if guard is set (gr & 2). If guard is set, 107 1.1 briggs * but round & sticky both clear, then we want to round 108 1.1 briggs * but have a tie, so round to even, i.e., add 1 iff odd. 109 1.1 briggs */ 110 1.1 briggs if ((gr & 2) == 0) 111 1.1 briggs goto rounddown; 112 1.4 briggs if ((gr & 1) || fp->fp_sticky || (m2 & 1)) 113 1.1 briggs break; 114 1.1 briggs goto rounddown; 115 1.1 briggs 116 1.1 briggs case FPCR_ZERO: 117 1.1 briggs /* Round towards zero, i.e., down. */ 118 1.1 briggs goto rounddown; 119 1.1 briggs 120 1.1 briggs case FPCR_MINF: 121 1.1 briggs /* Round towards -Inf: up if negative, down if positive. */ 122 1.1 briggs if (fp->fp_sign) 123 1.1 briggs break; 124 1.1 briggs goto rounddown; 125 1.1 briggs 126 1.1 briggs case FPCR_PINF: 127 1.1 briggs /* Round towards +Inf: up if positive, down otherwise. */ 128 1.1 briggs if (!fp->fp_sign) 129 1.1 briggs break; 130 1.1 briggs goto rounddown; 131 1.1 briggs } 132 1.1 briggs 133 1.1 briggs /* Bump low bit of mantissa, with carry. */ 134 1.4 briggs if (++m2 == 0 && ++m1 == 0) 135 1.1 briggs m0++; 136 1.4 briggs fp->fp_sticky = 0; 137 1.1 briggs fp->fp_mant[0] = m0; 138 1.1 briggs fp->fp_mant[1] = m1; 139 1.1 briggs fp->fp_mant[2] = m2; 140 1.1 briggs return (1); 141 1.1 briggs 142 1.1 briggs rounddown: 143 1.4 briggs fp->fp_sticky = 0; 144 1.1 briggs fp->fp_mant[0] = m0; 145 1.1 briggs fp->fp_mant[1] = m1; 146 1.1 briggs fp->fp_mant[2] = m2; 147 1.1 briggs return (0); 148 1.1 briggs } 149 1.1 briggs 150 1.1 briggs /* 151 1.1 briggs * For overflow: return true if overflow is to go to +/-Inf, according 152 1.1 briggs * to the sign of the overflowing result. If false, overflow is to go 153 1.1 briggs * to the largest magnitude value instead. 154 1.1 briggs */ 155 1.1 briggs static int 156 1.1 briggs toinf(struct fpemu *fe, int sign) 157 1.1 briggs { 158 1.1 briggs int inf; 159 1.1 briggs 160 1.1 briggs /* look at rounding direction */ 161 1.1 briggs switch (fe->fe_fpcr & FPCR_ROUND) { 162 1.1 briggs 163 1.1 briggs default: 164 1.1 briggs case FPCR_NEAR: /* the nearest value is always Inf */ 165 1.1 briggs inf = 1; 166 1.1 briggs break; 167 1.1 briggs 168 1.1 briggs case FPCR_ZERO: /* toward 0 => never towards Inf */ 169 1.1 briggs inf = 0; 170 1.1 briggs break; 171 1.1 briggs 172 1.1 briggs case FPCR_PINF: /* toward +Inf iff positive */ 173 1.1 briggs inf = (sign == 0); 174 1.1 briggs break; 175 1.1 briggs 176 1.1 briggs case FPCR_MINF: /* toward -Inf iff negative */ 177 1.1 briggs inf = sign; 178 1.1 briggs break; 179 1.1 briggs } 180 1.1 briggs return (inf); 181 1.1 briggs } 182 1.1 briggs 183 1.1 briggs /* 184 1.1 briggs * fpn -> int (int value returned as return value). 185 1.1 briggs * 186 1.1 briggs * N.B.: this conversion always rounds towards zero (this is a peculiarity 187 1.1 briggs * of the SPARC instruction set). 188 1.1 briggs */ 189 1.15 isaki static uint32_t 190 1.13 isaki fpu_ftoi(struct fpemu *fe, struct fpn *fp) 191 1.1 briggs { 192 1.15 isaki uint32_t i; 193 1.13 isaki int sign, exp; 194 1.1 briggs 195 1.1 briggs sign = fp->fp_sign; 196 1.1 briggs switch (fp->fp_class) { 197 1.1 briggs case FPC_ZERO: 198 1.1 briggs return (0); 199 1.1 briggs 200 1.1 briggs case FPC_NUM: 201 1.1 briggs /* 202 1.1 briggs * If exp >= 2^32, overflow. Otherwise shift value right 203 1.1 briggs * into last mantissa word (this will not exceed 0xffffffff), 204 1.1 briggs * shifting any guard and round bits out into the sticky 205 1.1 briggs * bit. Then ``round'' towards zero, i.e., just set an 206 1.5 chs * inexact exception if sticky is set (see fpu_round()). 207 1.1 briggs * If the result is > 0x80000000, or is positive and equals 208 1.1 briggs * 0x80000000, overflow; otherwise the last fraction word 209 1.1 briggs * is the result. 210 1.1 briggs */ 211 1.1 briggs if ((exp = fp->fp_exp) >= 32) 212 1.1 briggs break; 213 1.1 briggs /* NB: the following includes exp < 0 cases */ 214 1.12 isaki if (fpu_shr(fp, FP_NMANT - 1 - FP_NG - exp) != 0) { 215 1.12 isaki /* 216 1.12 isaki * m68881/2 do not underflow when 217 1.12 isaki * converting to integer 218 1.12 isaki */ 219 1.12 isaki ; 220 1.12 isaki } 221 1.5 chs fpu_round(fe, fp); 222 1.4 briggs i = fp->fp_mant[2]; 223 1.15 isaki if (i >= ((uint32_t)0x80000000 + sign)) 224 1.1 briggs break; 225 1.1 briggs return (sign ? -i : i); 226 1.1 briggs 227 1.1 briggs default: /* Inf, qNaN, sNaN */ 228 1.1 briggs break; 229 1.1 briggs } 230 1.1 briggs /* overflow: replace any inexact exception with invalid */ 231 1.1 briggs fe->fe_fpsr = (fe->fe_fpsr & ~FPSR_INEX2) | FPSR_OPERR; 232 1.1 briggs return (0x7fffffff + sign); 233 1.1 briggs } 234 1.1 briggs 235 1.1 briggs /* 236 1.1 briggs * fpn -> single (32 bit single returned as return value). 237 1.1 briggs * We assume <= 29 bits in a single-precision fraction (1.f part). 238 1.1 briggs */ 239 1.15 isaki static uint32_t 240 1.13 isaki fpu_ftos(struct fpemu *fe, struct fpn *fp) 241 1.1 briggs { 242 1.15 isaki uint32_t sign = fp->fp_sign << 31; 243 1.13 isaki int exp; 244 1.1 briggs 245 1.1 briggs #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */ 246 1.1 briggs #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */ 247 1.1 briggs 248 1.1 briggs /* Take care of non-numbers first. */ 249 1.1 briggs if (ISNAN(fp)) { 250 1.1 briggs /* 251 1.1 briggs * Preserve upper bits of NaN, per SPARC V8 appendix N. 252 1.1 briggs * Note that fp->fp_mant[0] has the quiet bit set, 253 1.1 briggs * even if it is classified as a signalling NaN. 254 1.1 briggs */ 255 1.1 briggs (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS); 256 1.1 briggs exp = SNG_EXP_INFNAN; 257 1.1 briggs goto done; 258 1.1 briggs } 259 1.1 briggs if (ISINF(fp)) 260 1.1 briggs return (sign | SNG_EXP(SNG_EXP_INFNAN)); 261 1.1 briggs if (ISZERO(fp)) 262 1.1 briggs return (sign); 263 1.1 briggs 264 1.1 briggs /* 265 1.1 briggs * Normals (including subnormals). Drop all the fraction bits 266 1.1 briggs * (including the explicit ``implied'' 1 bit) down into the 267 1.1 briggs * single-precision range. If the number is subnormal, move 268 1.1 briggs * the ``implied'' 1 into the explicit range as well, and shift 269 1.1 briggs * right to introduce leading zeroes. Rounding then acts 270 1.1 briggs * differently for normals and subnormals: the largest subnormal 271 1.1 briggs * may round to the smallest normal (1.0 x 2^minexp), or may 272 1.1 briggs * remain subnormal. In the latter case, signal an underflow 273 1.1 briggs * if the result was inexact or if underflow traps are enabled. 274 1.1 briggs * 275 1.1 briggs * Rounding a normal, on the other hand, always produces another 276 1.1 briggs * normal (although either way the result might be too big for 277 1.1 briggs * single precision, and cause an overflow). If rounding a 278 1.1 briggs * normal produces 2.0 in the fraction, we need not adjust that 279 1.1 briggs * fraction at all, since both 1.0 and 2.0 are zero under the 280 1.1 briggs * fraction mask. 281 1.1 briggs * 282 1.1 briggs * Note that the guard and round bits vanish from the number after 283 1.1 briggs * rounding. 284 1.1 briggs */ 285 1.1 briggs if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */ 286 1.3 is fe->fe_fpsr |= FPSR_UNFL; 287 1.1 briggs /* -NG for g,r; -SNG_FRACBITS-exp for fraction */ 288 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp); 289 1.5 chs if (fpu_round(fe, fp) && fp->fp_mant[2] == SNG_EXP(1)) 290 1.1 briggs return (sign | SNG_EXP(1) | 0); 291 1.12 isaki if (fe->fe_fpsr & FPSR_INEX2) { 292 1.12 isaki /* mc68881/2 don't underflow when converting */ 293 1.12 isaki fe->fe_fpsr |= FPSR_UNFL; 294 1.12 isaki } 295 1.4 briggs return (sign | SNG_EXP(0) | fp->fp_mant[2]); 296 1.1 briggs } 297 1.1 briggs /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */ 298 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS); 299 1.1 briggs #ifdef DIAGNOSTIC 300 1.4 briggs if ((fp->fp_mant[2] & SNG_EXP(1 << FP_NG)) == 0) 301 1.1 briggs panic("fpu_ftos"); 302 1.1 briggs #endif 303 1.5 chs if (fpu_round(fe, fp) && fp->fp_mant[2] == SNG_EXP(2)) 304 1.1 briggs exp++; 305 1.1 briggs if (exp >= SNG_EXP_INFNAN) { 306 1.1 briggs /* overflow to inf or to max single */ 307 1.3 is fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL; 308 1.1 briggs if (toinf(fe, sign)) 309 1.1 briggs return (sign | SNG_EXP(SNG_EXP_INFNAN)); 310 1.1 briggs return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK); 311 1.1 briggs } 312 1.1 briggs done: 313 1.1 briggs /* phew, made it */ 314 1.4 briggs return (sign | SNG_EXP(exp) | (fp->fp_mant[2] & SNG_MASK)); 315 1.1 briggs } 316 1.1 briggs 317 1.1 briggs /* 318 1.1 briggs * fpn -> double (32 bit high-order result returned; 32-bit low order result 319 1.1 briggs * left in res[1]). Assumes <= 61 bits in double precision fraction. 320 1.1 briggs * 321 1.1 briggs * This code mimics fpu_ftos; see it for comments. 322 1.1 briggs */ 323 1.15 isaki static uint32_t 324 1.15 isaki fpu_ftod(struct fpemu *fe, struct fpn *fp, uint32_t *res) 325 1.1 briggs { 326 1.15 isaki uint32_t sign = fp->fp_sign << 31; 327 1.13 isaki int exp; 328 1.1 briggs 329 1.1 briggs #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31)) 330 1.1 briggs #define DBL_MASK (DBL_EXP(1) - 1) 331 1.1 briggs 332 1.1 briggs if (ISNAN(fp)) { 333 1.1 briggs (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS); 334 1.1 briggs exp = DBL_EXP_INFNAN; 335 1.1 briggs goto done; 336 1.1 briggs } 337 1.1 briggs if (ISINF(fp)) { 338 1.1 briggs sign |= DBL_EXP(DBL_EXP_INFNAN); 339 1.1 briggs res[1] = 0; 340 1.1 briggs return (sign); 341 1.1 briggs } 342 1.1 briggs if (ISZERO(fp)) { 343 1.1 briggs res[1] = 0; 344 1.1 briggs return (sign); 345 1.1 briggs } 346 1.1 briggs 347 1.1 briggs if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) { 348 1.3 is fe->fe_fpsr |= FPSR_UNFL; 349 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp); 350 1.5 chs if (fpu_round(fe, fp) && fp->fp_mant[1] == DBL_EXP(1)) { 351 1.1 briggs res[1] = 0; 352 1.1 briggs return (sign | DBL_EXP(1) | 0); 353 1.1 briggs } 354 1.12 isaki if (fe->fe_fpsr & FPSR_INEX2) { 355 1.12 isaki /* mc68881/2 don't underflow when converting */ 356 1.12 isaki fe->fe_fpsr |= FPSR_UNFL; 357 1.12 isaki } 358 1.1 briggs exp = 0; 359 1.1 briggs goto done; 360 1.1 briggs } 361 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS); 362 1.5 chs if (fpu_round(fe, fp) && fp->fp_mant[1] == DBL_EXP(2)) 363 1.1 briggs exp++; 364 1.1 briggs if (exp >= DBL_EXP_INFNAN) { 365 1.3 is fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL; 366 1.1 briggs if (toinf(fe, sign)) { 367 1.1 briggs res[1] = 0; 368 1.1 briggs return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0); 369 1.1 briggs } 370 1.1 briggs res[1] = ~0; 371 1.1 briggs return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK); 372 1.1 briggs } 373 1.1 briggs done: 374 1.4 briggs res[1] = fp->fp_mant[2]; 375 1.4 briggs return (sign | DBL_EXP(exp) | (fp->fp_mant[1] & DBL_MASK)); 376 1.1 briggs } 377 1.1 briggs 378 1.1 briggs /* 379 1.1 briggs * fpn -> 68k extended (32 bit high-order result returned; two 32-bit low 380 1.1 briggs * order result left in res[1] & res[2]). Assumes == 64 bits in extended 381 1.1 briggs * precision fraction. 382 1.1 briggs * 383 1.1 briggs * This code mimics fpu_ftos; see it for comments. 384 1.1 briggs */ 385 1.15 isaki static uint32_t 386 1.15 isaki fpu_ftox(struct fpemu *fe, struct fpn *fp, uint32_t *res) 387 1.1 briggs { 388 1.15 isaki uint32_t sign = fp->fp_sign << 31; 389 1.13 isaki int exp; 390 1.1 briggs 391 1.1 briggs #define EXT_EXP(e) ((e) << 16) 392 1.4 briggs /* 393 1.4 briggs * on m68k extended prec, significand does not share the same long 394 1.4 briggs * word with exponent 395 1.4 briggs */ 396 1.4 briggs #define EXT_MASK 0 397 1.4 briggs #define EXT_EXPLICIT1 (1UL << (63 & 31)) 398 1.4 briggs #define EXT_EXPLICIT2 (1UL << (64 & 31)) 399 1.1 briggs 400 1.1 briggs if (ISNAN(fp)) { 401 1.4 briggs (void) fpu_shr(fp, FP_NMANT - EXT_FRACBITS); 402 1.1 briggs exp = EXT_EXP_INFNAN; 403 1.1 briggs goto done; 404 1.1 briggs } 405 1.1 briggs if (ISINF(fp)) { 406 1.1 briggs sign |= EXT_EXP(EXT_EXP_INFNAN); 407 1.1 briggs res[1] = res[2] = 0; 408 1.1 briggs return (sign); 409 1.1 briggs } 410 1.1 briggs if (ISZERO(fp)) { 411 1.1 briggs res[1] = res[2] = 0; 412 1.1 briggs return (sign); 413 1.1 briggs } 414 1.1 briggs 415 1.4 briggs if ((exp = fp->fp_exp + EXT_EXP_BIAS) < 0) { 416 1.3 is fe->fe_fpsr |= FPSR_UNFL; 417 1.12 isaki /* 418 1.12 isaki * I'm not sure about this <=... exp==0 doesn't mean 419 1.12 isaki * it's a denormal in extended format 420 1.12 isaki */ 421 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp); 422 1.5 chs if (fpu_round(fe, fp) && fp->fp_mant[1] == EXT_EXPLICIT1) { 423 1.1 briggs res[1] = res[2] = 0; 424 1.1 briggs return (sign | EXT_EXP(1) | 0); 425 1.1 briggs } 426 1.12 isaki if (fe->fe_fpsr & FPSR_INEX2) { 427 1.12 isaki /* mc68881/2 don't underflow */ 428 1.12 isaki fe->fe_fpsr |= FPSR_UNFL; 429 1.12 isaki } 430 1.1 briggs exp = 0; 431 1.1 briggs goto done; 432 1.1 briggs } 433 1.4 briggs #if (FP_NMANT - FP_NG - EXT_FRACBITS) > 0 434 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS); 435 1.4 briggs #endif 436 1.14 isaki if (fpu_round(fe, fp) && fp->fp_mant[0] == EXT_EXPLICIT2) { 437 1.1 briggs exp++; 438 1.14 isaki fpu_shr(fp, 1); 439 1.14 isaki } 440 1.1 briggs if (exp >= EXT_EXP_INFNAN) { 441 1.3 is fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL; 442 1.1 briggs if (toinf(fe, sign)) { 443 1.1 briggs res[1] = res[2] = 0; 444 1.1 briggs return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0); 445 1.1 briggs } 446 1.1 briggs res[1] = res[2] = ~0; 447 1.1 briggs return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK); 448 1.1 briggs } 449 1.1 briggs done: 450 1.4 briggs res[1] = fp->fp_mant[1]; 451 1.4 briggs res[2] = fp->fp_mant[2]; 452 1.1 briggs return (sign | EXT_EXP(exp)); 453 1.1 briggs } 454 1.1 briggs 455 1.1 briggs /* 456 1.1 briggs * Implode an fpn, writing the result into the given space. 457 1.1 briggs */ 458 1.1 briggs void 459 1.15 isaki fpu_implode(struct fpemu *fe, struct fpn *fp, int type, uint32_t *space) 460 1.1 briggs { 461 1.3 is /* XXX Dont delete exceptions set here: fe->fe_fpsr &= ~FPSR_EXCP; */ 462 1.1 briggs 463 1.1 briggs switch (type) { 464 1.1 briggs case FTYPE_LNG: 465 1.1 briggs space[0] = fpu_ftoi(fe, fp); 466 1.1 briggs break; 467 1.1 briggs 468 1.1 briggs case FTYPE_SNG: 469 1.1 briggs space[0] = fpu_ftos(fe, fp); 470 1.1 briggs break; 471 1.1 briggs 472 1.1 briggs case FTYPE_DBL: 473 1.1 briggs space[0] = fpu_ftod(fe, fp, space); 474 1.1 briggs break; 475 1.1 briggs 476 1.1 briggs case FTYPE_EXT: 477 1.1 briggs /* funky rounding precision options ?? */ 478 1.1 briggs space[0] = fpu_ftox(fe, fp, space); 479 1.1 briggs break; 480 1.1 briggs 481 1.1 briggs default: 482 1.1 briggs panic("fpu_implode"); 483 1.1 briggs } 484 1.1 briggs } 485